Skip to main content

Relativistic Equation-of-Motion Coupled-Cluster Theory (EOM-CC)

  • Reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

Equation-of-motion coupled-cluster (EOM-CC) theory can be employed to calculate excitation energies (EE), ionization potentials(IP), as well as electron affinities (EA). The EOM-CC approach at the CC singles and doubles level (CCSD) is able to provide EEs, IPs, and EAs with an error of about 0.1–0.3 eV for single-excitation states or Koopmans states from a reference with a dominant single-reference character. Scalar-relativistic effects can be incorporated straightforwardly in EOM-CC calculations when untransformed two-electron interactions are adopted. On the other hand, time-reversal symmetry and spatial symmetry of double point groups need to be exploited to achieve an efficient implementation when spin-orbit coupling (SOC) is present. Furthermore, including SOC in post-self-consistent field (SCF) treatment could result in a further reduction in computational effort particularly for molecules with low symmetry. Due to effective treatment of orbital relaxation effects by single excitations in the cluster operator, this approach can afford accurate description on SOC effects. It is nontrivial to impose time-reversal symmetry for open-shell reference and broken time-reversal symmetry could result in spurious-level splitting. Open-shell system with one-unpaired electron can be calculated based on EOM-CC for IPs or EAs from a closed-shell reference. In addition, Kramer’s degeneracy has to be taken into consideration when calculating properties of systems with an odd number of electrons using EOM-CC for IPs or EAs from a closed-shell reference. EEs, IPs, and EAs for systems containing heavy elements can be obtained reliably based on EOM-CCSD approaches, and SOC splitting is calculated with reasonable accuracy even for double-excitation states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett RJ, Musial M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79:291–352. doi:10.1103/RevModPhys.79.291

    Article  CAS  Google Scholar 

  2. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483. doi:10.1016/S0009-2614(89)87395-6

    Article  CAS  Google Scholar 

  3. Bartlett RJ (2012) Coupled-cluster theory and its equation-of-motion extensions. WIREs Comput Mol Sci 2:126–138. doi:10.1002/wcms.76

    Article  CAS  Google Scholar 

  4. Sneskov K, Christiansen O (2012) Excited state coupled cluster methods. WIREs Comput Mol Sci 2:566–584. doi:10.1002/wcms.99

    Article  CAS  Google Scholar 

  5. Musiał M, Olszówka M, Lyakh DI, Bartlett RJ (2012) The equation-of-motion coupled cluster method for triple electron attached states. J Chem Phys 137:174102. doi:10.1063/1.4763354

    Article  Google Scholar 

  6. Stanton JF, Gauss J (1999) A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy methods. J Chem Phys 111:8785–8788. doi:10.1063/1.479673

    Article  CAS  Google Scholar 

  7. Christiansen O, Jørgensen P, Hättig C (1998) Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. Int J Quantum Chem 68:1–52. doi:10.1002/(SICI)1097-461X(1998)68:1 < 1::AID-QUA1 > 3.0.CO;2-Z

    Google Scholar 

  8. Kaldor U (1991) The Fock space coupled cluster method:theory and application. Theor Chim Acta 80:427–439. doi:10.1007/BF01119664

    Article  CAS  Google Scholar 

  9. Nooijen M, Bartlett RJ (1997) A new method for excited states: similarity transformed equationof-motion coupled-cluster theory. J Chem Phys 106:6441–6448. doi:10.1063/1.474000

    Article  CAS  Google Scholar 

  10. Nakatsuji H, Hirao K (1978) Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory. J Chem Phys 68:2053–2065. doi:10.1063/1.436028

    Article  CAS  Google Scholar 

  11. Kánnár D, Szalay PG (2014) Benchmarking coupled cluster methods on valence singlet excited states. J Chem Theory Comput 10:3757–3765. doi:10.1021/ct500495n

    Article  Google Scholar 

  12. Meissner L (1998) Fock-space coupled-cluster method in the intermediate Hamiltonian formulation: model with singles and doubles. J Chem Phys 108:9227–9235. doi:10.1063/1.476377

    Article  CAS  Google Scholar 

  13. Christiansen O, Koch H, Jørgensen P (1995) The second-order approximate coupled cluster singles and doubles model CC2. Chem Phys Lett 243:409–418. doi:10.1016/0009-2614(95) 00841-Q

    Article  CAS  Google Scholar 

  14. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. 128:134110. doi:10.1063/1.2889385

    Google Scholar 

  15. Stanton JF, Gauss J (1995) Analytic energy derivatives for the equation-of-motion coupled-cluster method: algebraic expressions, implementation and application to the S1 state of HFCO. Theor Chim Acta 91:267–289. doi:10.1007/BF01133076

    CAS  Google Scholar 

  16. Stanton JF, Gauss J (1994) Analytic energy derivatives for ionized states described by the equation-of-motion coupled cluster method. J Chem Phys 101:8938–8944. doi:0.1063/1.468022

    Google Scholar 

  17. Visscher L, Dyall KG, Lee TJ (1995) Kramers-restricted closed-shel1 CCSD theory. Int J Quantum Chem 29:411–419. doi:10.1002/qua.560560844

    Article  CAS  Google Scholar 

  18. Visscher L, Lee TJ, Dyall KG (1996) Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J Chem Phys 105:8769–8776. doi:10.1063/1.472655

    Article  CAS  Google Scholar 

  19. Nataraj HS, Kállay M, Visscher L (2010) General implementation of the relativistic coupled-cluster method. J Chem Phys 133:234109. doi:10.1063/1.3518712

    Article  Google Scholar 

  20. Dolg M, Cao XY (2012) Relativistic pseudopotentials: their development and scope of applications. Chem Rev 112:403–480. doi:10.1021/cr2001383

    Article  CAS  Google Scholar 

  21. Lee HS, Han YK, Kim MC, Bae C, Lee YS (1998) Spin-orbit effects calculated by two-component coupled-cluster methods: test calculations on AuH, Au2, TlH and Tl2. Chem Phys Lett 293:97–102. doi:10.1016/S0009-2614(98)00760-X

    Article  CAS  Google Scholar 

  22. Hirata S, Yanai T, Harrison RJ, Kamiya M, Fan PD (2007) High-order electron-correlation methods with scalar relativistic and spin-orbit corrections. J Chem Phys 126:024104. doi:10.1063/1.2423005

    Article  Google Scholar 

  23. Fleig T, Sørensen LK, Olsen J (2007) A relativistic 4-component general-order multi-reference coupled cluster method: initial implementation and application to HBr. Theor Chem Acc 118:347–356. doi:10.1007/s00214-007-0265-y

    Article  CAS  Google Scholar 

  24. Sørensen LK, Olsen J, Fleig T (2011) Two- and four-component relativistic generalized-active-space coupled cluster method: implementation and application to BiH. J Chem Phys 134:214102. doi:10.1063/1.3592148

    Article  Google Scholar 

  25. Saue T, Visscher L (2003) Four-component electronic structure methods for molecules. In: Kaldor U, Wilson S (eds) Theoretical chemistry and physics of heavy and superheavy elements. Kluwer Academic, Dordrecht, p 211

    Chapter  Google Scholar 

  26. Eliav E, Kaldor U, Hess BA (1998) The relativistic Fock-space coupled-cluster method for molecules: CdH and its ions. J Chem Phys 108:3409. doi:10.1063/1.475740

    Article  CAS  Google Scholar 

  27. Wang F, Gauss J, van Wüllen C (2008) Closed-shell coupled-cluster theory with spin-orbit coupling. J Chem Phys 129:064113. doi:10.1063/1.2968136

    Article  Google Scholar 

  28. Tu ZY, Yang DD, Wang F, Guo JW (2011) Symmetry exploitation in closed-shell coupled-cluster theory with spin-orbit coupling. J Chem Phys 135:034115. doi:10.1063/1.3611052

    Article  Google Scholar 

  29. Kim I, Park YC, Kim H, Lee YS (2012) Spin–orbit coupling and electron correlation in relativistic configuration interaction and coupled-cluster methods. Chem Phys 395:115–121. doi:10.1016/j.chemphys.2011.05.002

    Article  CAS  Google Scholar 

  30. Wang F, Gauss J (2008) Analytic energy gradients in closed-shell coupled-cluster theory with spin-orbit coupling. J Chem Phys 129:174110. doi:10.1063/1.3000010

    Article  Google Scholar 

  31. Wang F, Gauss J (2009) Analytic second derivatives in closed-shell coupled-cluster theory with spin-orbit coupling. J Chem Phys 131:164113. doi:10.1063/1.3245954

    Article  Google Scholar 

  32. Tu ZY, Wang F, Li XY (2011) Equation-of-motion coupled-cluster method for ionized states with spin-orbit coupling. J Chem Phys 136:174102. doi:10.1063/1.4704894

    Article  Google Scholar 

  33. Yang DD, Wang F, Guo JW (2012) Equation of motion coupled cluster method for electron attached states with spin–orbit coupling. Chem Phys Lett 531:236–241. doi:10.1016/j.cplett.2012.02.014

    Article  CAS  Google Scholar 

  34. Wang ZF, Tu ZY, Wang F (2014) Equation-of-motion coupled-cluster theory for excitation energies of closed-shell systems with spin-orbit coupling. J Chem Theory Comput 10:5567–5576. doi:10.1021/ct500854m

    Article  CAS  Google Scholar 

  35. Chaudhuri RK, Panda PK, Das BP (1999) Relativistic coupled-cluster-based linear response theory for ionization potentials of alkali-metal and alkaline-earth-metal atoms. Phys Rev A 60:246–252. doi:10.1103/PhysRevA.60.246

    Article  CAS  Google Scholar 

  36. Pathak H, Sahoo BK, Das BP, Vaval N, Pal1 S (2014) Relativistic equation-of-motion coupled-cluster method: application to closed-shell atomic systems. Phys Rev A 89:042510. doi:10.1103/PhysRevA.89.042510

    Google Scholar 

  37. Pathak H, Ghosh A, Sahoo BK, Das BP, Vaval N, Pal1 S (2014) Relativistic equation-of-motion coupled-cluster method for the double-ionization potentials of closed-shell atoms. Phys Rev A 90:010501(R). doi:10.1103/PhysRevA.90.010501

    Google Scholar 

  38. Hubert M, Olsen J, Loras J, Fleig T (2013) General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: implementation and application to ScH. J Chem Phys 139:194106. doi:10.1063/1.4827638

    Article  Google Scholar 

  39. Klein K, Gauss J (2008) Perturbative calculation of spin-orbit splittings using the equation-of-motion ionization-potential coupled-cluster ansatz. J Chem Phys 129:194106. doi:10.1063/1.3013199

    Article  Google Scholar 

  40. Visscher L (2001) Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. J Chem Phys 115:9720–9726. doi:10.1063/1.1415746

    Article  CAS  Google Scholar 

  41. Infante I, Gomes ASP, Visscher L (2006) On the performance of the intermediate Hamiltonian Fock-space coupled-cluster method on linear triatomic molecules: the electronic spectra of NpO+2, NpO2+2, and PuO2+2. J Chem Phys 125:074301. doi:10.1063/1.2244564

    Article  Google Scholar 

  42. Schirmer J, Mertins F (2010) Review of biorthogonal coupled cluster representations for electronic excitation. Theor Chem Acc 125:145–172. doi:10.1007/s00214-009-0597-x

    Article  CAS  Google Scholar 

  43. Krylov AI (2008) Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker’s guide to Fock space. Ann Rev Phys Chem 59:433–462. doi:10.1146/annurev.physchem.59.032607.093602

    Article  CAS  Google Scholar 

  44. Kállay M, Gauss J (2004) Calculation of excited-state properties using general coupled-cluster and configuration-interaction models. J Chem Phys 121:9257–9269. doi:10.1063/1.1805494

    Article  Google Scholar 

  45. Visscher L (1996) On the construction of double group molecular symmetry functions. Chem Phys Lett 253:20–26. doi:10.1016/0009-2614(96)00234-5

    Article  CAS  Google Scholar 

  46. Moore CE (1949/1952/1958) Atomic energy levels. National Bureau of Standards Circular 467, U.S. Government Printing Office, Washington, DC, vols. 1–3

    Google Scholar 

  47. Li ZD, Suo BB, Zhang Y, Xiao YL, Liu WJ (2013) Combining spin-adapted open-shell TD-DFT with spin–orbit coupling. Mol Phys 111:3741–3755. doi:10.1080/00268976. 2013. 785611

    Article  CAS  Google Scholar 

  48. Muck LA, Gauss J (2012) Spin-orbit splittings in degenerate open-shell states via Mukherjee’s multireference coupled-cluster theory: a measure for the coupling contribution. J Chem Phys 136:111103

    Article  Google Scholar 

  49. Berning A, Schweizer M, Werner HJ, Knowles P, Palmieri P (2000) Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol Phys 98:1823

    Article  CAS  Google Scholar 

  50. Klein K, Gauss J (2008) Perturbative calculation of spin-orbit splittings using the equation-of motion ionization-potential coupled-cluster ansatz. J Chem Phys 129:194106

    Article  Google Scholar 

  51. Manohar PU, Krylov AI (2008) A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. J Chem Phys 129:194105. doi: 10.1063/1.3013087

    Article  Google Scholar 

  52. Stanton JF, Gauss J (1995) Perturbative treatment of the similarity transformed Hamiltonian in equationofmotion coupled-cluster approximations. J Chem Phys 103:1064–1076. doi:10.1063/1.469817

    Article  CAS  Google Scholar 

  53. Head-Gordon M, Rico RJ, Oumi M, Lee TJ (1994) A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem Phys Lett 219:21–29. doi:10.1016/0009-2614(94)00070-0

    Article  CAS  Google Scholar 

  54. Kim J, Ihee H, Lee YS (2011) Spin–orbit ab initio study of two low-lying states of chloroiodomethane cation. Theor Chem Acc 129:343–347. doi:10.1007/s00214-010-0849-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wang, F. (2017). Relativistic Equation-of-Motion Coupled-Cluster Theory (EOM-CC). In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_33

Download citation

Publish with us

Policies and ethics