Skip to main content

Sequential Decoupling of Negative-Energy States in Douglas–Kroll–Hess Theory

  • Reference work entry
  • First Online:
  • 2050 Accesses

Abstract

Here, we review the historical development, current status, and prospects of Douglas–Kroll–Hess theory as a quantum chemical relativistic electrons-only theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reiher M, Wolf A, Hess BA (2006) Relativistic quantum chemistry: from quantum electrodynamics to quasi-relativistic methods. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, pp 401–444

    Google Scholar 

  2. Reiher M (2006) Douglas-Kroll-Hess theory: a relativistic electrons-only theory for chemistry. Theor Chem Acc 116:241

    Article  CAS  Google Scholar 

  3. Reiher M (2012) Relativistic Douglas-Kroll-Hess theory. WIREs: Comput Mol Sci 2:139

    CAS  Google Scholar 

  4. Nakajima T, Hirao K (2012) The Douglas-Kroll-Hess approach. Chem Rev 112:385

    Article  CAS  Google Scholar 

  5. Reiher M, Wolf A (2015) Relativistic quantum chemistry, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  6. Reiher M, Hinze J (2003) Four-component ab initio methods for electronic structure calculations of atoms, molecules, and solids. In: Hess BA (ed) Relativistic effects in heavy-element chemistry and physics. Wiley, Chichester, pp 61–88

    Google Scholar 

  7. Saue T, Visscher L (2003) Four-component electronic structure methods for molecules. In: Wilson S, Kaldor U (eds) Theoretical chemistry and physics of heavy and superheavy elements. Kluwer, Dordrecht, pp 211–267

    Chapter  Google Scholar 

  8. Eliav E, Kaldor U (2010) Four-component electronic structure methods. In: Barysz M, Ishikawa Y (eds) Relativistic methods for chemists. Challenges and advances in computational chemistry and physics, vol 10. Springer, Dordrecht, pp 279–349

    Chapter  Google Scholar 

  9. Heully JL, Lindgren I, Lindroth E, Lundquist S, Mårtensen-Pendrill AM (1986) Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure. J Phys B: At Mol Phys 19:2799

    Article  CAS  Google Scholar 

  10. Barysz M, Sadlej AJ (2002) Infinite-order two-component theory for relativistic quantum chemistry. J Chem Phys 116:2696

    Article  CAS  Google Scholar 

  11. Foldy LL, Wouthuysen SA (1950) On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys Rev 78(1):29

    Article  Google Scholar 

  12. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys 121(5):2037

    Google Scholar 

  13. Luber S, Malkin Ondik I, Reiher M (2009) Electromagnetic fields in relativistic one-particle equations. Chem Phys 356:205

    Article  CAS  Google Scholar 

  14. Chraplyvy ZV (1953) Reduction of relativistic two-particle wave equations to approximate forms. Phys Rev 91(2):388

    Article  Google Scholar 

  15. Chraplyvy ZV (1953) Reduction of relativistic two-particle wave equations to approximate forms. II. Phys Rev 92(5):1310

    Google Scholar 

  16. Barker WA, Glover FN (1955) Reduction of relativistic two-particle wave equations to approximate forms. III. Phys Rev 99(1):317

    Google Scholar 

  17. Eriksen E (1958) Foldy-Wouthuysen transformation – exact solution with generalization to the 2-particle problem. Phys Rev 111:1011

    Article  Google Scholar 

  18. Eriksen E (1958) Foldy-Wouthuysen transformation in closed form for spin 1/2 particle in time-independent external fields. Kongelige Norske Videnskabers Selskabs Forhandlinger 31:39

    Google Scholar 

  19. Eriksen E, Kolsrud M (1960) Canonical transformations of Dirac’s equation to even forms. Expansion in terms of the external fields. Suppl Nuovo Cimento 18:1

    Google Scholar 

  20. Eriksen E (1961) Transformations of relativistic 2-particle equations. Nuovo Cimento 20:747

    Article  Google Scholar 

  21. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys 82:89

    Article  CAS  Google Scholar 

  22. Hess BA (1985) Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys Rev A 32:756

    Article  CAS  Google Scholar 

  23. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  24. Jansen G, Hess BA (1989) Revision of the Douglas-Kroll transformation. Phys Rev A 39(11):6016

    Article  Google Scholar 

  25. Liu W (2010) Ideas of relativistic quantum chemistry. Mol Phys 108:1679

    Article  CAS  Google Scholar 

  26. Li Z, Xiao Y, Liu W (2012) On the spin separation of algebraic two-component relativistic Hamiltonians. J Chem Phys 137:154114

    Article  Google Scholar 

  27. Nakajima T, Hirao K (2000) The higher-order Douglas-Kroll transformation. J Chem Phys 113:7786

    Article  CAS  Google Scholar 

  28. Wolf A, Reiher M, Hess BA (2002) The generalized Douglas-Kroll transformation. J Chem Phys 117:9215

    Article  CAS  Google Scholar 

  29. van Wüllen C (2004) Relation between different variants of the generalized Douglas-Kroll transformation through sixth order. J Chem Phys 120:7307

    Article  Google Scholar 

  30. Brummelhuis R, Siedentop H, Stockmeyer E (2002) The ground state energy of relativistic one-electron atoms according to Hess and Jansen. Documenta Mathematica 7:167

    Google Scholar 

  31. Siedentop H, Stockmeyer E (2005) An analytic Douglas-Kroll-Heß method. Phys Lett A 341:473

    Article  CAS  Google Scholar 

  32. Siedentop H, Stockmeyer E (2006) The Douglas-Kroll-Heß method: convergence and block-diagonalization of Dirac operators. Ann Henri Poincaré 7:45

    Article  Google Scholar 

  33. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J Chem Phys 121:10945

    Google Scholar 

  34. Reiher M, Wolf A (2007) Regular no-pair Dirac operators: numerical study of the convergence of high-order Douglas-Kroll-Hess transformations. Phys Lett A 360:603

    Article  CAS  Google Scholar 

  35. Baerends EJ, Schwarz WHE, Schwerdtfeger P, Snijders JG (1990) Relativistic atomic orbital contractions and expansions: magnitudes and explanations. J Phys B: At Mol Phys 23:3225

    Article  CAS  Google Scholar 

  36. Wolf A, Reiher M (2006) Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. J Chem Phys 124:064103

    Google Scholar 

  37. Mastalerz R, Lindh R, Reiher M (2008) Douglas-Kroll-Hess electron density at an atomic nucleus. Chem Phys Lett 465:157

    Article  CAS  Google Scholar 

  38. Barone G, Mastalerz R, Lindh R, Reiher M (2008) Nuclear quadrupole moment of119Sn. J Phys Chem A 112:1666

    Article  CAS  Google Scholar 

  39. Knecht S, Fux S, van Meer R, Visscher L, Reiher M, Saue T (2011) Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury. Theor Chem Acc 129:631

    Article  CAS  Google Scholar 

  40. Wolf A, Reiher M (2006) Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. J Chem Phys 124:064102

    Google Scholar 

  41. Peng D, Hirao K (2009) An arbitrary order Douglas-Kroll method with polynomial cost. J Chem Phys 130:044102

    Article  Google Scholar 

  42. Peng D, Reiher M (2012) Exact decoupling of the relativistic Fock operator. Theor Chem Acc 131:1081

    Article  Google Scholar 

  43. Peng D, Middendorf N, Weigend F, Reiher M (2013) An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J Chem Phys 138:184105

    Article  Google Scholar 

  44. Hess BA, Kaldor U (2000) Relativistic all-electron coupled-cluster calculations on Au2 in the framework of the Douglas-Kroll transformation. J Chem Phys 112(4):1809

    Article  CAS  Google Scholar 

  45. Wolf A, Reiher M, Hess BA (2004) Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation. J Chem Phys 120:8624

    Article  CAS  Google Scholar 

  46. Mastalerz R, Barone G, Lindh R, Reiher M (2007) Analytic high-order Douglas-Kroll-Hess electric-field gradients. J Chem Phys 127:074105

    Article  Google Scholar 

  47. de Vries E, Jonker JE (1968) Non-relativistic approximations to the Dirac Hamiltonian. Nucl Phys B 6:213

    Article  Google Scholar 

  48. Jonker JE (1968) Non-relativistic approximations of the Dirac Hamiltonian II. Report IR 80 – Institute for theoretical physics. University of Groningen, The Netherlands

    Google Scholar 

  49. Samzow R, Hess BA (1991) Spin-orbit effects in the Br atom in the framework of the no-pair theory. Chem Phys Lett 184:491

    Article  CAS  Google Scholar 

  50. Samzow R, Hess BA, Jansen G (1992) The two-electron terms of the no-pair Hamiltonian. J Chem Phys 96(2):1227

    Article  CAS  Google Scholar 

  51. Park C, Almlöf JE (1994) Two-electron relativistic effects in molecules. Chem Phys Lett 231:269

    Article  CAS  Google Scholar 

  52. Heß BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365

    Article  Google Scholar 

  53. Schimmelpfennig B, Maron L, Wahlgren U, Teichteil C, Fagerli H, Gropen O (1998) On the combination of ECP-based Cl calculations with all-electron spin-orbit mean-field integrals. Chem Phys Lett 286(3–4):267

    Article  CAS  Google Scholar 

  54. Schimmelpfennig B, Maron L, Wahlgren U, Teichteil C, Fagerli H, Gropen O (1998) On the efficiency of an effective Hamiltonian in spin-orbit CI calculations. Chem Phys Lett 286(3–4):261

    Article  CAS  Google Scholar 

  55. Boettger JC (2000) Approximate two-electron spin-orbit coupling term for density-functional-theory DFT calculations using the Douglas-Kroll-Hess transformation. Phys Rev B 62(12):7809

    Article  CAS  Google Scholar 

  56. van Wüllen C, Michauk C (2005) Accurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations. J Chem Phys 123:204113

    Article  Google Scholar 

  57. Autschbach J, Peng D, Reiher M (2012) Two-component relativistic calculations of electric-field gradients using exact decoupling methods: spin-orbit and picture-change effects. J Chem Theory Comput 8:4239

    Article  CAS  Google Scholar 

  58. Jensen HJA (2005) ‘Douglas–Kroll the Easy Way’, talk at conference on relativistic effects in heavy elements – REHE 2005, Mülheim, Apr 2005

    Google Scholar 

  59. Kutzelnigg W, Liu W (2005) Quasirelativistic theory equivalent to fully relativistic theory. J Chem Phys 123:241102

    Article  Google Scholar 

  60. Kutzelnigg W, Liu W (2006) Quasirelativistic theory I. Theory in terms of a quasirelativistic operator. Mol Phys 104(13–14):2225

    Google Scholar 

  61. Liu W, Peng D (2006) Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J Chem Phys 125:044102

    Article  Google Scholar 

  62. Filatov M (2006) Quasirelativistic theory equivalent to fully relativistic theory. J Chem Phys 125:107101

    Article  Google Scholar 

  63. Kutzelnigg W, Liu W (2006) Response to “Comment on ‘Quasirelativistic theory equivalent to fully relativistic theory’ ”. J Chem Phys 125:107102

    Article  Google Scholar 

  64. Iliaš M, Saue T (2007) An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J Chem Phys 126:064102

    Article  Google Scholar 

  65. Liu W, Kutzelnigg W (2007) Quasirelativistic theory. II. Theory at matrix level. J Chem Phys 126:114107

    Google Scholar 

  66. Peng D, Liu W, Xiao Y, Cheng L (2007) Making four-and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”. J Chem Phys 127:104106

    Article  Google Scholar 

  67. Sikkema J, Visscher L, Saue T, Ilias M (2009) The molecular mean-field approach for correlated relativistic calculations. J Chem Phys 131:124116

    Article  Google Scholar 

  68. Liu W, Peng D (2009) Exact two-component Hamiltonians revisited. J Chem Phys 131:031104

    Article  Google Scholar 

  69. Barysz M, Sadlej AJ, Snijders JG (1997) Nonsingular two/one-component relativistic Hamiltonians accurate through arbitrary high order in α 2. Int J Quantum Chem 65:225

    Article  CAS  Google Scholar 

  70. Peng D, Reiher M (2012) Local relativistic exact decoupling. J Chem Phys 136:244108

    Article  Google Scholar 

  71. Seino J, Nakai H (2012) Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian. J Chem Phys 136:244102

    Article  Google Scholar 

  72. Seino J, Nakai H (2012) Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction. J Chem Phys 137:144101

    Google Scholar 

  73. Nakajima Y, Seino J, Nakai H (2013) Analytical energy gradients based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation. J Chem Phys 139:244107

    Article  Google Scholar 

  74. Gagliardi L, Handy NC, Ioannou AG, Skylaris CK, Spencer S, Willetts A, Simper AM (1998) A two-centre implementation of the Douglas-Kroll transformation in relativistic calculations. Chem Phys Lett 283:187

    Article  CAS  Google Scholar 

  75. Peralta JE, Scuseria GE (2004) Relativistic all-electron two-component self-consistent density functional calculations including one-electron scalar and spin-orbit effects. J Chem Phys 120(13):5875

    Article  CAS  Google Scholar 

  76. Peralta JE, Uddin J, Scuseria GE (2005) Scalar relativistic all-electron density functional calculations on periodic systems. J Chem Phys 122:084108

    Article  Google Scholar 

  77. Thar J, Kirchner B (2009) Relativistic all-electron molecular dynamics simulations. J Chem Phys 130:124103

    Article  Google Scholar 

  78. DIRAC, a relativistic ab initio electronic-structure program, Release DIRAC14 (2014), written by Saue T, Visscher L, Jensen HJAa, Bast R. with contributions from Bakken V, Dyall KG, Dubillard S, Ekström U, Eliav E, Enevoldsen T, Faßhauer E, Fleig T, Fossgaard O, Gomes ASP, Helgaker T, Lærdahl JK, Lee YS, Henriksson J, Iliaš M, Jacob ChR, Knecht S, Komorovský S, Kullie O, Larsen CV, Nataraj HS, Norman P, Olejniczak G, Olsen J, Park YC, Pedersen JK, Pernpointner M, di Remigio R, Ruud K, Sałek P, Schimmelpfennig B, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Villaume S, Visser O, Winther T, Yamamoto S (see http://www.diracprogram.org)

  79. Quiney HM, Skaane H, Grant IP (1998) Ab initio relativistic quantum chemistry: four-components good, two-components bad. Adv Quantum Chem 32:1

    Article  CAS  Google Scholar 

  80. Jensen HJA, Dyall KG, Saue T, Fægri K Jr (1996) Relativistic four-component multiconfigurational self-consistent-field theory for molecules: formalism. J Chem Phys 104(11):4083

    Article  CAS  Google Scholar 

  81. Abe M, Nakajima T, Hirao K (2006) The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian. J Chem Phys 125:234110

    Article  Google Scholar 

  82. Eliav E, Kaldor U, Ishikawa Y (1994) Open-shell relativistic coupled-cluster method with Dirac-Fock-Breit wave functions: energies of the gold atom and its cation. Phys Rev A 49(3):1724

    Article  CAS  Google Scholar 

  83. Eliav (Ilyabaev) E, Kaldor U, Ishikawa Y (1994) Relativistic coupled cluster method based on Dirac-Coulomb-Breit wavefunctions. Ground state energies of atoms with two to five electrons. Chem Phys Lett 222:82

    Google Scholar 

  84. Visscher L, Lee TJ, Dyall KG (1996) Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J Chem Phys 105(19):8769

    Article  CAS  Google Scholar 

  85. Knecht S, Legeza O, Reiher M (2014) Four-component density matrix renormalization group. J Chem Phys 140:041101

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swiss National Science Foundation SNF and by ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Reiher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Reiher, M. (2017). Sequential Decoupling of Negative-Energy States in Douglas–Kroll–Hess Theory. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_3

Download citation

Publish with us

Policies and ethics