Skip to main content

Nuclear Charge Density and Magnetization Distributions

  • Reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

In the study of electronic structure of matter, the atomic nuclei play the role of centers of force to which the electrons are bound. Within this context, almost all of the internal details of nuclear structure can be neglected, and the nuclei can be considered as objects with static extended distributions of charge and magnetic moment. This chapter presents a discussion of nuclear charge density and magnetization distributions. The underlying general principles are discussed, and details are given for model distributions that are widely used in relativistic quantum chemistry. Finally, the principal effects of extended nuclear distributions of charge and magnetic moment are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohr PJ, Newell DB, Taylor BN (2015) CODATA recommended values of the fundamental physical constants: 2014. Zenodo. doi:10.5281/zenodo.22826

    Google Scholar 

  2. Brown JM, Buenker RJ, Carrington A, Di Lauro C, Dixon RN, Field RW, Hougen JT, Hüttner W, Kuchitsu K, Mehring M, Merer AJ, Miller TA, Quack M, Ramsay DA, Veseth L, Zare RN (2000) Remarks on the signs of g factors in atomic and molecular Zeeman spectroscopy. Mol Phys 98:1597–1601. doi:10.1080/00268970009483366

    Article  CAS  Google Scholar 

  3. Olive KA et al (Particle Data Group) (2014) Review of particle physics. Chin Phys C 38:090001. doi:10.1088/1674-1137/38/9/090001 (see http://pdg.lbl.gov/ for the 2015 update)

  4. Magill J, Pfennig G, Dreher R, Sóti Z (2012) Karlsruher Nuklidkarte / Karlsruhe Chart of the Nuclides, 8th edn. Nucleonica, Eggenstein-Leopoldshafen

    Google Scholar 

  5. Brookhaven National Laboratory, National Nuclear Data Center, Chart of Nuclides. http://www.nndc.bnl.gov/chart/. Accessed 11 Oct 2014

  6. Ramsey NF (1953) Nuclear moments. Wiley, New York

    Google Scholar 

  7. Weissbluth M (1978) Atoms and molecules. Academic, New York

    Google Scholar 

  8. Schwerdtfeger P, Pernpointner M, Nazarewicz (2004) Calculation of Nuclear Quadrupole Coupling Constants. In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Theory and application. Wiley-VCH, Weinheim, pp 279–291

    Google Scholar 

  9. Stone NJ (2005) Table of nuclear magnetic dipole and electric quadrupole moments. At Data Nucl Data Tables 90:75–176. doi:10.1016/j.adt.2005.04.001

    Article  CAS  Google Scholar 

  10. Pyykkö P (2008) Year-2008 nuclear quadrupole moments. Mol Phys 106:1965–1974. doi: 10.1080/00268970802018367

    Article  Google Scholar 

  11. Stone NJ (2015) New table of recommended nuclear electric quadrupole momnets. Hyperfine Interact 230: 7–16. doi:10.1007/s10751-014-1094-8

    Article  CAS  Google Scholar 

  12. Cohen ER, Cvitaš T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor AJ (2008) Quantities, Units and Symbols in Physical Chemistry, 3rd ed., 2nd printing. IUPAC & RSC Publishing, Cambridge, pp 121–128

    Google Scholar 

  13. Holden NE (2014) Table of the isotopes. In: Haynes WM (ed) CRC Handbook of chemistry and physics, 95th edn. CRC Press, Boca Raton, pp 11-2–11-174

    Google Scholar 

  14. de Jager CW, de Vries H, de Vries C (1974) Nuclear charge-and magnetization-density-distribution parameters from elastic electron scattering. At Data Nucl Data Tables 14:479–508. doi:10.1016/S0092-640X(74)80002-1

    Article  Google Scholar 

  15. Engfer R, Schneuwly H, Vuilleumier JL, Walter HK, Zehnder A (1974) Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. At Data Nucl Data Tables 14:509–597. doi:10.1016/S0092-640X(74)80003-3

    Article  CAS  Google Scholar 

  16. de Vries H, de Jager CW, de Vries C (1987) Nuclear charge-density-distribution parameters from elastic electron scattering. At Data Nucl Data Tables 36:495–536. doi:10.1016/0092-640X(87)90013-1

    Article  Google Scholar 

  17. Collard HR, Elton LRB, Hofstadter R (1967) Nuclear Radii. In: Landolt-Börnstein numerical data and functional relationships in science and technology – new series, vol I/2. Springer, Berlin

    Google Scholar 

  18. Fricke G, Bernhardt C, Heilig K, Schaller LA, Schellenberg L, Shera EB, de Jager CW (1995) Nuclear ground state charge radii from electromagnetic interactions. At Data Nucl Data Tables 60:177–285. doi:10.1006/adnd.1995.1007

    Article  CAS  Google Scholar 

  19. Fricke G, Heilig K (2004) Nuclear charge radii. In: Landolt H, Börnstein R (eds) Numerical data and functional relationships in science and technology – new series, vol I/20, Springer, Berlin

    Google Scholar 

  20. Angeli I, Marinova KP (2013) Table of experimental nuclear ground state charge radii: an update. At Data Nucl Data Tables 99:69–95. doi:10.1016/j.adt.2011.12.006

    Article  CAS  Google Scholar 

  21. Johnson WR, Soff G (1985) The Lamb shift in Hydrogen-Like Atoms, 1 ≤ Z ≤ 110. At Data Nucl Data Tables 33:405–446. doi:10.1016/0092-640X(85)90010-5

    Article  CAS  Google Scholar 

  22. Andrae D (2000) Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules. Phys Rep 336:413–525. doi:10.1016/S0370-1573(00)00007-7

    Article  CAS  Google Scholar 

  23. Nerlo-Pomorska B, Pomorski K (1994) Simple formula for nuclear charge radius. Z Phys A 348:169–172. doi:10.1007/BF01291913

    Article  CAS  Google Scholar 

  24. Visscher L, Dyall KG (1997) Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Tables 67:207–224. doi:10.1006/-adnd.1997.0751

    Article  CAS  Google Scholar 

  25. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  26. Andrae D (2002) Nuclear charge density distributions in quantum chemistry. In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1: fundamentals. Elsevier, Amsterdam, pp 203–258. doi:10.1016/S1380-7323(02)80030-9

    Google Scholar 

  27. Friedrich J, Lenz F (1972) Elastic electron scattering from208Pb at moderate momentum transfers and model-independent description of the nuclear charge distribution. Nucl Phys A 183:523–544. doi:10.1016/0375-9474(72)90354-5

    Article  CAS  Google Scholar 

  28. Dreher B, Friedrich J, Merle K, Rothhaas H, Lührs G (1974) The determination of the nuclear ground state and transition charge density from measured electron scattering data. Nucl Phys A 235:219–248. doi:10.1016/0375-9474(74)90189-4

    Article  Google Scholar 

  29. Sick I (1974) Model-independent nuclear charge densities from elastic electron scattering. Nucl Phys A 218:509–541. doi:10.1016/0375-9474(74)90039-6

    Article  CAS  Google Scholar 

  30. Moore EA, Moss RE (1975) Finite nucleus models for molecular calculations. Mol Phys 30:1315–1323. doi:10.1080/00268977500102861

    Article  CAS  Google Scholar 

  31. Andrae D, Hinze J (1997) Numerical electronic structure calculations for atoms. I. Int J Quantum Chem 63:65–91

    Article  CAS  Google Scholar 

  32. Andrae D, Reiher M, Hinze J (2000) Numerical electronic structure calculations for atoms. II. Int J Quantum Chem 76:473–499

    Article  CAS  Google Scholar 

  33. Louck JD (1996) Angular momentum theory. In: Drake GWF (ed) Atomic, molecular & optical physics handbook. American Institute of Physics, Woodbury, pp 6–55

    Google Scholar 

  34. Andrae D, Reiher M, Hinze J (2000) A comparative study of finite nucleus models for low-lying states of few-electron high-Z atoms. Chem Phys Lett 320:457–468. doi:10.1016/S0009-2614(00)00068-3

    Article  CAS  Google Scholar 

  35. Cao X, Dolg M (2010) Relativistic Pseudopotentials. In: Barysz M, Ishikawa Y (eds) Relativistic methods for chemists. Springer, Dordrecht, pp 215–278

    Chapter  Google Scholar 

  36. Dolg M, Cao X (2012) Relativistic pseudopotentials: their development and scope of applications. Chem Rev 112:403–480. doi:10.1021/cr2001383

    Article  CAS  Google Scholar 

  37. Dyall KG, Relativistic basis sets. http://dirac.chem.sdu.dk/basisarchives/dyall/. Accessed 23 Aug 2014

  38. Pyykkö P (2012) The physics behind chemistry and the periodic table. Chem Rev 112:371–384. doi:10.1021/cr200042e

    Article  Google Scholar 

  39. Autschbach J (2012) Perspective: relativistic effects. J Chem Phys 136:150902. doi: 10.1063/1.3702628

    Article  Google Scholar 

  40. Autschbach J (2014) Relativistic calculations of magnetic resonance parameters: background and some recent developments. Philos Trans R Soc A 372:20120489. doi:10.1098/rsta.2012.0489

    Article  Google Scholar 

  41. Malkin E, Repiský M, Komorovský S, Mach P, Malkina OL, Malkin VG (2011) Effects of finite size nuclei in relativistic four-component calculations of hyperfine structure. J Chem Phys 134:044111. doi:10.1063/1.3526263

    Article  Google Scholar 

  42. Maldonado AF, Giménez CA, Aucar GA (2012) Nuclear charge-distribution effects on the NMR spectroscopy parameters. J Chem Phys 136:224110. doi:10.1063/1.4729253

    Article  Google Scholar 

  43. Hylton DJ (1985) Finite-nuclear-size corrections to the Uehling potential. Phys Rev A 32:1303–1309

    Article  CAS  Google Scholar 

  44. Beier T, Mohr PJ, Persson H, Soff G (1998) Influence of nuclear size on QED corrections in hydrogenlike heavy ions. Phys Rev A 58:954–963

    Article  CAS  Google Scholar 

  45. Berger R, Quack M (2000) Multiconfiguration linear response approach to the calculation of parity violating potentials in polyatomic molecules. J Chem Phys 112:3148–3158

    Article  CAS  Google Scholar 

  46. Laerdahl JK, Schwerdtfeger P, Quiney HM (2000) Theoretical analysis of parity-violating energy-differences between enantiomers of chiral molecules. Phys Rev Lett 84:3811–3814

    Article  CAS  Google Scholar 

  47. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. Dover, New York

    Google Scholar 

  48. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge University Press, Cambridge

    Google Scholar 

  49. Goano M (1993) Series expansion of the Fermi-Dirac integral \(\mathcal{F}_{j}(x)\) over the entire domain of real j and x. Solid-State Electron 36:217–221. doi:10.1016/0038-1101(93)90143-E

    Article  Google Scholar 

  50. Goano M (1995) Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans Math Softw 21:221–232. See also ACM Trans Math Softw 23:295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Andrae .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix provides definitions for mathematical expressions and special functions used in the main part of this chapter. Unless stated otherwise, further details can be found in standard references [47, 48].

Euler-Mascheroni constant γ E :

$$\displaystyle\begin{array}{rcl} \gamma _{\mathrm{E}} =\lim \limits _{n\rightarrow \infty }\left (\sum \limits _{k=1}^{n}\frac{1} {k} -\ln (n)\right ) = 0.57721\ldots.& &{}\end{array}$$
(90)

Heaviside step function Θ(x):

$$\displaystyle\begin{array}{rcl} \varTheta (x) = \left \{\begin{array}{ll} 0 &x <0, \\ 1/2&x = 0, \\ 1 &x> 0.\\ \end{array} \right.& &{}\end{array}$$
(91)

Gamma function Γ(a) and its logarithmic derivative:

$$\displaystyle\begin{array}{rcl} \varGamma (a) =\int _{ 0}^{\infty }\mathrm{d}t\,t^{a-1}\mathrm{e}^{-t}\quad (a> 0),\quad \varGamma (a + 1) = a\varGamma (a),\quad \varGamma (1) = 1.& &{}\end{array}$$
(92)
$$\displaystyle\begin{array}{rcl} \psi (a) = \frac{\varGamma '(a)} {\varGamma (a)} = \frac{1} {\varGamma (a)}\int _{0}^{\infty }\mathrm{d}t\,t^{a-1}\ln (t)\mathrm{e}^{-t},\qquad \psi (1) = -\gamma _{\mathrm{ E}}.& &{}\end{array}$$
(93)

Incomplete gamma functions P(a, x) and Q(a, x) and error function erf(x):

$$\displaystyle\begin{array}{rcl} P(a,x) = \frac{1} {\varGamma (a)}\int _{0}^{x}\mathrm{d}t\,t^{a-1}\mathrm{e}^{-t},\quad Q(a,x) = \frac{1} {\varGamma (a)}\int _{x}^{\infty }\mathrm{d}t\,t^{a-1}\mathrm{e}^{-t}\quad (a> 0).& &{}\end{array}$$
(94)

For a equal to a positive integer (a = n + 1, n ≥ 0):

$$\displaystyle\begin{array}{rcl} P(n + 1,x) = 1 - Q(n + 1,x) = 1 -\mathrm{ e}^{-x}\sum \limits _{ k=0}^{n}\frac{x^{k}} {k!}.& &{}\end{array}$$
(95)

For 2a equal to an odd positive integer (2a = 2k + 1, k ≥ 0):

$$\displaystyle\begin{array}{rcl} P(1/2,x^{2})& =\mathrm{ erf}(x) = \frac{2} {\sqrt{\pi }}\int _{0}^{x}\mathrm{d}t\,\exp (-t^{2}).&{}\end{array}$$
(96)
$$\displaystyle\begin{array}{rcl} P((m + 3)/2,x^{2})& =& \frac{2} {\varGamma ((m + 3)/2)}\int _{0}^{x}\mathrm{d}t\,t^{m+2}\exp (-t^{2})\qquad (m = 0,2,4,\ldots ) \\ & =& \mathrm{erf}(x) -\frac{2x} {\sqrt{\pi }}\exp (-x^{2})\sum \limits _{ k=0}^{m/2} \frac{(2x^{2})^{k}} {(2k + 1)!!}. {}\end{array}$$
(97)

Confluent hypergeometric function 1 F 1(a; c; x):

$$\displaystyle\begin{array}{rcl} _{1}F_{1}(a;c;x) =\sum \limits _{ k=0}^{\infty }\frac{(a)_{k}} {(c)_{k}} \frac{x^{k}} {k!},\quad (a)_{k} = \frac{\varGamma (a + k)} {\varGamma (a)}.& &{}\end{array}$$
(98)

Spherical Bessel functions of the first kind j n(x):

$$\displaystyle\begin{array}{rcl} j_{n}(x) = (-x)^{n}\left (\frac{1} {x} \frac{\mathrm{d}} {\mathrm{d}x}\right )^{n}\frac{\sin (x)} {x} \qquad (n \geq 0).& &{}\end{array}$$
(99)

The first two members of this sequence are

$$\displaystyle\begin{array}{rcl} j_{0}(x) = \frac{\sin (x)} {x},\qquad j_{1}(x) = \frac{\sin (x)} {x^{2}} -\frac{\cos (x)} {x}.& &{}\end{array}$$
(100)

Sine integral Si(x):

$$\displaystyle\begin{array}{rcl} \mathrm{Si}(x) =\int _{ 0}^{x}\mathrm{d}t\frac{\sin (t)} {t}.& &{}\end{array}$$
(101)

Fermi-Dirac integrals \(\mathcal{F}_{j}(a)\) and \(\mathcal{F}_{j}(a,x)\) and related functions:

$$\displaystyle\begin{array}{rcl} \mathcal{F}_{j}(a) = \frac{1} {\varGamma (j + 1)}\int _{0}^{\infty }\mathrm{d}t \frac{t^{j}} {1 +\exp (t - a)},& &{}\end{array}$$
(102)
$$\displaystyle\begin{array}{rcl} \mathcal{F}_{j}(a,x) = \frac{1} {\varGamma (j + 1)}\int _{x}^{\infty }\mathrm{d}t \frac{t^{j}} {1 +\exp (t - a)},& &{}\end{array}$$
(103)
$$\displaystyle\begin{array}{rcl} \mathcal{G}_{j}(a) = \frac{1} {\varGamma (j + 1)}\int _{0}^{\infty }\mathrm{d}t \frac{t^{j}\ln (t)} {1 +\exp (t - a)} =\psi (j + 1)\mathcal{F}_{j}(a) + \frac{\partial } {\partial j}\mathcal{F}_{j}(a).& &{}\end{array}$$
(104)

A general algorithm for the evaluation of complete and incomplete Fermi-Dirac integrals has been published [49, 50].

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Andrae, D. (2017). Nuclear Charge Density and Magnetization Distributions. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_23

Download citation

Publish with us

Policies and ethics