Skip to main content

Relativistic Methods for Calculating Electron Paramagnetic Resonance (EPR) Parameters

  • Reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

Basic concepts for calculating electronic paramagnetic resonance are discussed, with a focus on methods that are suitable for molecules containing heavy elements. Inclusion of relativistic effects is essential in such calculations. Selected examples are presented to illustrate practical applications of these theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood series in physical chemistry. Prentice Hall, New York

    Google Scholar 

  2. Rieger PH (2007) Electron spin resonance. Analysis and interpretation. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Harriman JE (1978) Theoretical foundations of electron spin resonance. Academic, New York

    Google Scholar 

  4. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon, Oxford

    Google Scholar 

  5. Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants: 2010. Rev Mod Phys 84:1527–1605

    Article  CAS  Google Scholar 

  6. Butler JE, Hutchison CA Jr (1981) Electron paramagnetic resonance and electron nuclear double resonance of 237-neptunium hexafluoride in uranium hexafluoride single crystals. J Chem Phys 74:3102–3119

    Article  CAS  Google Scholar 

  7. Griffith JS (1967) Transformations of a spin-Hamiltonian induced by reassignments of ficticious spin states. Mol Phys 12:359

    Article  CAS  Google Scholar 

  8. Neese F, Solomon EI (1998) Calculation of zero-field splittings, g-values and the relativistic nephelauxetic effect in transition metal complexes. Application to high-spin ferric complexes. Inorg Chem 37:6568

    Google Scholar 

  9. Bolvin H (2006) An alternative approach to the g-matrix: theory and applications. Chem Phys Chem 7:1575

    CAS  Google Scholar 

  10. Chibotaru LF, Ungur L (2012) Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J Chem Phys 137:064112–22

    CAS  Google Scholar 

  11. Chibotaru LF (2013) Ab initio methodology for pseudospin hamiltonians of anisotropic magnetic complexes. Adv Chem Phys 153:397

    CAS  Google Scholar 

  12. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  13. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  14. Angeli C, Cimiraglia R, Malrieu JP (2002) J Chem Phys 117:9138

    Article  CAS  Google Scholar 

  15. Lan TN, Kurashige Y, Yanai T (2014) Toward reliable prediction of hyperfine coupling constants using ab initio density matrix renormalization group method: diatomic2 Σ and vinyl radicals as test cases. J Chem Theory Comput 10:1953–1967

    Article  CAS  Google Scholar 

  16. Fernandez B, Jørgensen P, Byberg J, Olsen J, Helgaker T, Jensen HJA (1992) Spin polarization in restricted electronic structure theory: multiconfiguration self-consistent-field calculations of hyperfine coupling constants. J Chem Phys 97:3412–3419

    Article  CAS  Google Scholar 

  17. Malmqvist PA, Roos BO (1989) Chem Phys Lett 155:189

    Article  CAS  Google Scholar 

  18. Vad MS, Pedersen MN, Nørager A, Jensen HJA (2013) Correlated four-component EPR g-tensors for doublet molecules. J Chem Phys 138:214106–214109

    Article  Google Scholar 

  19. Kutzelnigg W (1990) Perturbation theory of relativistic corrections 2. Analysis and classification of known and other possible methods. Z Phys D 15:27–50

    Article  CAS  Google Scholar 

  20. Perdew JP, Ruzsinszky A, Constantin LA, Sun J, Csonka GI (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theory Comput 5:902–908

    Article  CAS  Google Scholar 

  21. Eriksson LA (1998) ESR hyperfine calculations. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry. Wiley, Chichester, pp 952–958

    Google Scholar 

  22. Patchkovskii S, Schreckenbach G (2004) Calculation of EPR g–tensors with density functional theory. In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Theory and applications. Wiley-VCH, Weinheim, pp 505–532

    Chapter  Google Scholar 

  23. Kaupp M, Köhler FH (2009) Combining NMR spectroscopy and quantum chemistry as tools to quantify spin density distributions in molecular magnetic compounds. Coord Chem Rev 253:2376–2386

    Article  CAS  Google Scholar 

  24. Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  25. Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K (2012) Recent advances in wave function-based methods of molecular-property calculations. Chem Rev 112:543–631

    Article  CAS  Google Scholar 

  26. Autschbach J, Ziegler T (2003) Double perturbation theory: a powerful tool in computational coordination chemistry. Coord Chem Rev 238/239:83–126

    Article  Google Scholar 

  27. Autschbach J (2010) Relativistic effects on magnetic resonance parameters and other properties of inorganic molecules and metal complexes. In: Barysz M, Ishikawa Y (eds) Relativistic methods for chemists. Challenges and advances in computational chemistry and physics, vol 10. Springer, Dordrecht, chap 12, pp 521–598

    Google Scholar 

  28. van Lenthe E, Wormer PES, van der Avoird A (1997) Density functional calculations of molecular g-tensors in the zero order regular approximation for relativistic effects. J Chem Phys 107:2488–2498

    Google Scholar 

  29. Malkin E, Repisky M, Komorovsky S, Mach P, Malkina OL, Malkin VG (2011) Effects of finite size nuclei in relativistic four-component calculations of hyperfine structure. J Chem Phys 134:044111–8

    Article  Google Scholar 

  30. Verma P, Autschbach J (2013) Relativistic density functional calculations of hyperfine coupling with variational versus perturbational treatment of spin-orbit coupling. J Chem Theory Comput 9:1932–1948

    Article  CAS  Google Scholar 

  31. Schmitt S, Jost P, van Wüllen C (2011) Zero-field splittings from density functional calculations: Analysis and improvement of known methods. J Chem Phys 134:194113

    Article  Google Scholar 

  32. van Wüllen C (2009) Magnetic anisotropy from density functional calculations. Comparison of different approaches: Mn12O12 acetate as a test case. J Chem Phys 130:194109

    Google Scholar 

  33. Autschbach J (2012) Perspective: relativistic effects. J Chem Phys 136:150902

    Article  Google Scholar 

  34. Visscher L, Dyall K (1997) Dirac–Fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Tables 67:207–224

    Article  CAS  Google Scholar 

  35. Van den Heuvel W, Soncini A (2012) NMR chemical shift in an electronic state with arbitrary degeneracy. Phys Rev Lett 109:073001

    Google Scholar 

  36. Rodowicz C (2013) Higher-order field-dependent terms in spin Hamiltonians for transition ions implications for high-magnetic field and high-frequency EMR measurements. Nukleonika 58:341

    Google Scholar 

  37. Maurice R, Bastardis R, de Graaf C, Suaud N, Mallah T, Guihéry N (2009) Universal approach to extract anisotropic spin hamiltonians. J Chem Theory Comput 11:2977

    Google Scholar 

  38. Pryce MHL (1959) Sign of g in magnetic resonance, and the sign of the quadrupole moment of Np237. Phys Rev Lett 3:375

    Article  CAS  Google Scholar 

  39. Axe JD, Stapleton HJ, Jefries CD (1961) Paramagnetic resonance hyperfine structure of tetravalent Pa231 in Cs2ZrCl6. Phys Rev 121:1630

    Article  CAS  Google Scholar 

  40. Rigny P, Plurien P (1967) Resonance paramagnetique dans les fluorures complexes d’uranium (V) de type UF6M. J Phys Chem Solids 28:2589

    Article  CAS  Google Scholar 

  41. Eisenstein JC, Pryce MHL (1965) Electronic structure and magnetic properties of the neptunyl ion. J Res Natl Bur Stand Sect A 69A:217–235

    Article  CAS  Google Scholar 

  42. Chibotaru LF, Ungur L (2012) Negative g factors, berry phases, and magnetic properties of complexes. Phys Rev Lett 109:246403

    Article  CAS  Google Scholar 

  43. Chibotaru L, Ceulemans A, Bolvin H (2008) The unique definition of the g tensor of a Kramers doublet. Phys Rev Lett 101:033003

    Article  CAS  Google Scholar 

  44. Notter FP, Bolvin H (2009) Optical and magnetic properties of the 5f 1 AnX 6 q-series: a theoretical study. J Chem Phys 130:184310

    Article  Google Scholar 

  45. Gendron F, Paez Hernandez D, Notter FP, Pritchard B, Bolvin H, Autschbach J (2014) Magnetic properties and electronic structure of neptunyl(VI) complexes: Wavefunctions, orbitals, and crystal-field models. Chem Eur J 20:7994

    Google Scholar 

  46. Gendron F, Pritchard B, Bolvin H, Autschbach J (2014) Magnetic resonance properties of actinyl carbonate complexes and plutonyl(VI)-tris-nitrate. Inorg Chem 53:8577

    Article  CAS  Google Scholar 

  47. Rogez G, Rebilly JN, Barra AL, Sorace L, Blondin G, Kirchner N, Duran M, van Slageren J, Parsons S, Ricard L, Marvilliers A, Mallah T (2005) Very large ising-type magnetic anisotropy in a mononuclear NiII complex. Angew Chem 44:1876

    Article  CAS  Google Scholar 

  48. Nelson D, ter Haar LW (1993) Single crystal studies of the zero-field splitting and magnetic exchange interactions in the magnetic susceptibility calibrant HgCo(NCS)4. Inorg Chem 32:182

    Article  CAS  Google Scholar 

  49. Páez Hernàndez D, Bolvin H (2014) Magnetic properties of a fourfold degenerate state: Np 4+ ion diluted in Cs 2 ZrCl 6 crystal. J Electron Spectrosc Relat Phenom 194:74

    Google Scholar 

  50. Andres H, Bominaar EL, Smith JM, Eckert NA, Holland PL, Münck E (2002) Planar three coordinate high spin FeII complexes with large orbital angular momentum: mossbauer, electron paramagnetic resonance, and electronic structure studies. J Am Chem Soc 124:3012

    Article  CAS  Google Scholar 

  51. Autschbach J (2014) Relativistic calculations of magnetic resonance parameters: background and some recent developments. J Philos Trans A 372:20120489

    Article  Google Scholar 

  52. Sharkas K, Autschbach J (2015) Effects from spin-orbit coupling on electron-nucleus hyperfine coupling calculated at the restricted active space level for Kramers doublets. J Chem Theory Comput 11:538

    Article  CAS  Google Scholar 

  53. Chibotaru L, Ungur L (2012) Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J Chem Phys 137:064112

    Google Scholar 

Download references

Acknowledgements

J.A. acknowledges support of his research on EPR and NMR parameters of open-shell heavy metal complexes by the US Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry program, under grant DE-FG02-09ER16066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Autschbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bolvin, H., Autschbach, J. (2017). Relativistic Methods for Calculating Electron Paramagnetic Resonance (EPR) Parameters. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_12

Download citation

Publish with us

Policies and ethics