Skip to main content

Estimation of Probability Distributions for Hydrometeorological Applications

  • Living reference work entry
  • First Online:
Handbook of Hydrometeorological Ensemble Forecasting
  • 191 Accesses

Abstract

Hydrometeorologists use imperfect (i.e., incomplete and/or partially erroneous) measurements and imperfect models to make predictions, both for forecasting and to support scientific inference. Because no models or data are ever perfect, forecasting and hypothesis testing must account for uncertainty. The probability calculus is unarguably the most common quantitative framework used for this purpose. This article presents probabilistic methods for estimating and reducing uncertainty that are common in hydrometeorological applications. The major focus is on Bayesian methods and approximations of those methods based on ensembles (i.e., Monte Carlo methods). The article includes a brief overview of both parametric and nonparametric methods, a brief introduction to inverse methods, and a brief introduction to data assimilation from a Bayesian perspective. It is important to caution that although the probability calculus can be used to estimate predictive uncertainty and to aid scientific reasoning, all applications of probabilistic reasoning necessarily contain some amount of subjectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  Google Scholar 

  • R. Bellman, Dynamic Programing (Dover Publications, Mineola, 2003)

    Google Scholar 

  • S. Brooks, A. Gelman, G. Jones, X.-L. Meng, Handbook of Markov Chain Monte Carlo (Taylor & Francis CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  • R.T. Cox, Probability, frequency and reasonable expectation. Am. J. Phys. 14, 1–13 (1946)

    Article  Google Scholar 

  • G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  • D. Fink. A compendium of conjugate priors. Tech Report, 46 pp (1997). https://www.johndcook.com/CompendiumOfConjugatePriors.pdf

  • A. Gelman, G. Roberts, W. Gilks, Efficient metropolis jumping rules, in Bayesian Statistics, 5, ed. by J. M. Bernardo, J. O. Berger, A. P. Dawid, A. F. M. Smith (Oxford University Press, New York, 1996), pp. 599–608

    Google Scholar 

  • J.A. Hoeting, D. Madigan, A.E. Raftery, C.T. Volinsky, Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–401 (1999)

    Article  Google Scholar 

  • E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, New York, 2003)

    Book  Google Scholar 

  • A.N. Kolmogorov, Foundations of the Theory of Probability (Chelsea, New York, 1956)

    Google Scholar 

  • P.S. Laplace, A Philosophical Essay on Probabilities (Chapman & Hall, London, 1902)

    Google Scholar 

  • Y.Q. Liu, H.V. Gupta, Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour. Res. 43(7), W07401 (2007)

    Google Scholar 

  • N. Metropolis, The beginning of the Monte Carlo method. Los Alamos Sci. 15, 125–130 (1987)

    Google Scholar 

  • R. M. Neal, Probabilistic inference using Markov Chain Monte Carlo methods. Technical Report CRG-TR-93-1. Department of Computer Science, University of Toronto, Toronto, 1993

    Google Scholar 

  • C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, MA, 2006)

    Google Scholar 

  • R.H. Reichle, Data assimilation methods in the Earth sciences. Adv. Water Resour. 31(11), 1411–1418 (2008)

    Article  Google Scholar 

  • D. W. Scott, Multivariate density estimation and visualization, in Handbook of Computational Statistics: Concepts and Methods, ed. by J. E. Gentle, W. Haerdle, Y. Mori (Springer, New York, 2004), pp. 517–538,

    Google Scholar 

  • B.W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Stat. 6, 177–184 (1978)

    Article  Google Scholar 

  • R.J. Solomonoff, A formal theory of inductive inference. Part I. Inf. Control. 7, 1–22 (1964)

    Article  Google Scholar 

  • K.S. Van Horn, Constructing a logic of plausible inference: a guide to cox’s theorem. Int. J. Approx. Reason. 34, 3–24 (2003)

    Article  Google Scholar 

  • J.A. Vrugt, Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environ. Model. Softw. 75, 273–316 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grey S. Nearing .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nearing, G.S. (2018). Estimation of Probability Distributions for Hydrometeorological Applications. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40457-3_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40457-3_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40457-3

  • Online ISBN: 978-3-642-40457-3

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics