Skip to main content

Seasonal Ensemble Forecast Post-processing

  • 86 Accesses

Abstract

In many parts of the world, water resources systems manage sub-seasonal to seasonal (S2S) variability in climate and runoff in part through the use of operational streamflow forecasts, supplemented by predictions of climate and other hydrologic variables. S2S hydrologic forecasts are produced through both statistical and dynamical (model-based) approaches, and separate S2S forecasts may be combined in multi-model frameworks to increase their skill. Statistical post-processing can be used to enhance the skill and reliability of model-based S2S predictions, and to reduce bias, as well as to merge forecasts from multiple approaches. This chapter describes seasonal hydrologic forecast approaches and products, and presents common techniques used in both the post-processing of single ensemble forecast series as well as the combination of multiple forecasts. Also discussed are the sources of S2S hydrological predictability and particular challenges and opportunities related to post-processing seasonal hydrologic predictions, for which the sample sizes of past simulations, observations and predictions are relatively more limited than in the context of short to medium range prediction.

This is a preview of subscription content, log in via an institution.

References

  • J. Beckers, A. Weerts, E. Tijdeman, E. Welles, ENSO-conditioned weather resampling method for seasonal ensemble streamflow prediction. Hydrol. Earth Syst. Sci. 20, 3277–3287 (2016). https://doi.org/10.5194/hess-20-3277-2016

    Article  Google Scholar 

  • A.A. Berg, K.A. Mulroy, Streamflow predictability in the Saskatchewan/Nelson River basin given macroscale estimates of the initial soil moisture status. Hydrol. Sci. J. 51(4), 642–654 (2006). https://doi.org/10.1623/hysj.51.4.6422006

    Article  Google Scholar 

  • K.J. Beven, Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Wat. Resour. 16, 41–51 (1993)

    Article  Google Scholar 

  • T.J. Bohn, M.Y. Sonessa, D.P. Lettenmaier, Seasonal hydrologic forecasting: do multimodel ensemble averages always yield improvements in forecast skill? J. Hydrometeorol. 11(6), 1358–1372 (2010)

    Article  Google Scholar 

  • C. Bracken, B. Rajagopalan, J. Prairie, A multisite seasonal ensemble streamflow forecasting technique. Water Resour. Res. 46, W03532 (2010). https://doi.org/10.1029/2009WR007965

    Article  Google Scholar 

  • A.A. Bradley, M. Habib, S.S. Schwartz, Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach. Water Resour. Res. 51, 7382–7400 (2015). https://doi.org/10.1002/2014WR016811

    Article  Google Scholar 

  • R.J.C. Burnash, R.L. Ferral, R.A. McGuire, A Generalized Streamflow Simulation System – Conceptual Modeling for Digital Computers (U.S. Department of Commerce National Weather Service and State of California Department of Water Resources, Sacramento, 1973)

    Google Scholar 

  • X. Chen, Z. Hao, N. Devineni, U. Lall, Climate information based streamflow and rainfall forecasts for Huai River basin using hierarchical Bayesian modeling. Hydrol. Earth Syst. Sci. 18, 1539–1548 (2014). https://doi.org/10.5194/hess-18-1539-2014

    Article  Google Scholar 

  • M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, R. Wilby, The schaake shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields. J. Hydrometeor. 5, 243–262 (2004). https://doi.org/10.1175/1525-7541(2004)005

    Article  Google Scholar 

  • L. Crochemore, M.-H. Ramos, F. Pappenberger, Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrol. Earth Syst. Sci. 20, 3601–3618 (2016). https://doi.org/10.5194/hess-20-3601-2016

    Article  Google Scholar 

  • G. Day, Extended streamflow forecasting using NWSRFS. J. Water. Res. Plan. Manag. 111(2), 157–170 (1985). https://doi.org/10.1061/(ASCE)0733-9496(1985)

    Article  Google Scholar 

  • A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39, 1–38 (1977)

    Google Scholar 

  • N. Devineni, A. Sankarasubramanian, Improving the prediction of winter precipitation and temperature over the continental United States: role of the ENSO state in developing multimodel combinations. Mon. Weather Rev. 138(6), 2447–2468 (2010a). https://doi.org/10.1175/2009MWR3112.1

    Article  Google Scholar 

  • N. Devineni, A. Sankarasubramanian, Improved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs. Geophys. Res. Lett. 37, L24704 (2010b). https://doi.org/10.1029/2010GL044989

    Article  Google Scholar 

  • N. Devineni, A. Sankarasubramanian, S. Ghosh, Multimodel ensembles of streamflow forecasts: role of predictor state in developing optimal combinations. Water Resour. Res. 44, W09404 (2008). https://doi.org/10.1029/2006WR005855

    Article  Google Scholar 

  • N. Devineni, U. Lall, N. Pederson, E. Cook, A tree ring based reconstruction of Delaware River basin streamflow using hierarchical Bayesian regression. J. Clim. 26, 4357–4374 (2013). https://doi.org/10.1175/JCLI-D-11-00675.1

    Article  Google Scholar 

  • Q. Duan, N.K. Ajami, X. Gao, S. Sorooshian, Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour. 30(5), 1371–1386 (2007). https://doi.org/10.1016/J.ADVWATRES.2006.11.014

    Article  Google Scholar 

  • D.C. Garen, Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plan. Manag. 118, 654–670 (1992). https://doi.org/10.1061/(ASCE)0733-9496

    Article  Google Scholar 

  • K.P. Georgakakos, D.-J. Seo, H. Gupta, J. Schaake, M.B. Butts, Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol. 298(1–4), 222–241 (2004). https://doi.org/10.1016/j.jhydrol.2004.03.037

    Article  Google Scholar 

  • K. Grantz, B. Rajagopalan, M. Clark, E. Zagona, A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resour. Res. 41, W10410 (2005). https://doi.org/10.1029/2004WR003467

    Article  Google Scholar 

  • W. Greuell, W.H.P. Franssen, R.W.A. Hutjes, Seasonal streamflow forecasts for Europe – II. Explanation of the skill. Hydrol. Earth Syst. Sci. Discuss. (2016). https://doi.org/10.5194/hess-2016–604. in review

  • R. Hagedorn, F. Doblas-Reyes, T. Palmer, The rationale behind the success of multimodel ensembles in seasonal forecasting I. Basic concept. Tellus. Ser.A. 57, 219–233 (2005)

    Google Scholar 

  • A.F. Hamlet, D.P. Lettenmaier, Columbia River streamflow forecasting based on ENSO and PDO climate signals. J. Water Resour. Plan. Manag. 125(6), 333–341 (1999)

    Article  Google Scholar 

  • S. Harrigan, C. Prudhomme, S. Parry, K. Smith, M. Tanguy, Benchmarking ensemble streamflow prediction skill in the UK. Hydrol. Earth Syst. Sci. Discuss. (2017). https://doi.org/10.5194/hess-2017-449. in review

  • T. Hashino, A.A. Bradley, S.S. Schwartz, Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci. 11, 939–950 (2007)

    Article  Google Scholar 

  • D. Helms, S.E. Phillips, P.F. Reich, The History of Snow Survey and Water Supply Forecasting. Natl. Bull. 290-9-6 (Natural Resources Conservation Service, U.S. Department of Agriculture, Washington, DC, 2008)

    Google Scholar 

  • J.M. Hidalgo-Muñoz, S.R. Gámiz-Fortis, Y. Castro-Díez, D. Argüeso, M.J. Esteban-Parra, Long-range seasonal streamflow forecasting over the Iberian Peninsula using large-scale atmospheric and oceanic information. Water Resour. Res. 51(5), 3543–3567 (2015). https://doi.org/10.1002/2014WR016826

    Article  Google Scholar 

  • F. Hoss, P.S. Fischbeck, Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables. Hydrol. Earth Syst. Sci. 19, 3969–3990 (2015). https://doi.org/10.5194/hess-19-3969-2015

    Article  Google Scholar 

  • B.P. Kirtman, D. Min, J.M. Infanti, J.L. Kinter, D.A. Paolino, Q. Zhang, H. van den Dool, S. Saha, M.P. Mendez, E. Becker, P. Peng, P. Tripp, J. Huang, D.G. DeWitt, M.K. Tippett, A.G. Barnston, S. Li, A. Rosati, S.D. Schubert, M. Rienecker, M. Suarez, Z.E. Li, J. Marshak, Y. Lim, J. Tribbia, K. Pegion, W.J. Merryfield, B. Denis, E.F. Wood, The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc. 95, 585–601 (2014). https://doi.org/10.1175/BAMS-D-12-00050.1

    Article  Google Scholar 

  • R.D. Koster, S. Mahanama, Land surface controls on hydroclimatic means and variability. J. Hydrometeorol. 13, 1604–1620 (2012)

    Article  Google Scholar 

  • T. Krishnamurti, C. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, Multimodel ensemble forecasts for weather and seasonal climate. J. Clim. 13, 4196–4216 (2000)

    Article  Google Scholar 

  • F. Lehner, A.W. Wood, D. Llewellyn, D.B. Blatchford, A.G. Goodbody, F. Pappenberger, Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. southwest. Geophys. Res. Lett. 44, 12,208 (2017). https://doi.org/10.1002/2017GL076043

    Article  Google Scholar 

  • C.H. Lima, U. Lall, Spatial scaling in a changing climate: a hierarchical bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J. Hydrol. 383(3), 307–318 (2010)

    Article  Google Scholar 

  • R. Linsley, N. Crawford, Continuous simulation models in urban hydrology. Geophys. Res. Lett. 1, 59–62 (1974). https://doi.org/10.1029/GL001i001p00059

    Article  Google Scholar 

  • D. Lucatero, H. Madsen, J.C. Refsgaard, J. Kidmose, K.H. Jensen, Seasonal streamflow forecasts in the Ahlergaarde catchment Denmark: effect of preprocessing and postprocessing on skill and statistical consistency. Hydrol. Earth Syst. Sci. Discuss. (2017). https://doi.org/10.5194/hess-2017-379. in review

  • P.A. Mendoza, B. Rajagopalan, M.P. Clark, G. Cortes, J. McPhee, A robust multimodel framework for ensemble seasonal hydroclimatic forecasts. Water Resour. Res. 50, 6030 (2014). https://doi.org/10.1002/2014WR015426

    Article  Google Scholar 

  • P.A. Mendoza, A.W. Wood, E.A. Clark, E. Rothwell, M.P. Clark, B. Nijssen, L.D. Brekke, J.R. Arnold, An intercomparison of approaches for improving predictability in operational seasonal streamflow forecasting. Hydrol. Earth Syst. Sci. 21, 3915–3935 (2017)

    Article  Google Scholar 

  • H. Moradkhani, M. Meier, Long-lead water supply forecast using large-scale climate predictors and independent component analysis. J. Hydrol. Eng. 15(10), 744–762 (2010). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000246

    Article  Google Scholar 

  • M. Najafi, H. Moradkhani, Ensemble combination of seasonal streamflow forecasts. J. Hydrol. Eng. 21(1), 04015043 (2015). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001250

    Article  Google Scholar 

  • S. Opitz-Stapleton, S. Gangopadhyay, B. Rajagopalan, Generating streamflow forecasts for the Yakima River Basin using large-scale climate predictors. J. Hydrol. 341(3–4), 131–143 (2007). https://doi.org/10.1016/j.jhydrol.2007.03.024

    Article  Google Scholar 

  • T.C. Pagano, D.C. Garen, T.R. Perkins, P.A. Pasteris, Daily updating of operational statistical seasonal water supply forecasts for the Western U.S. J. Am. Water Resour. Assoc. 45(3), 767–778 (2009). https://doi.org/10.1111/j.1752-1688.2009.00321.x

    Article  Google Scholar 

  • T. Pagano, A.W. Wood, K. Werner, R. Tama-Sweet, Western U.S. water supply forecasting: a tradition evolves. Eos. Trans. AGU 95(3), 28 (2014)

    Article  Google Scholar 

  • T. Piechota, F. Chiew, Seasonal streamflow forecasting in eastern Australia and the El Niño–southern oscillation. Water Resour. Res. 34(11), 3035–3044 (1998)

    Article  Google Scholar 

  • T.C. Piechota, F.H.S. Chiew, J.A. Dracup, T.A. McMahon, Development of exceedance probability streamflow forecast. J. Hydrol. Eng. 6(1), 20–28 (2001)

    Article  Google Scholar 

  • D. Raff, L. Brekke, K.V. Werner, A. Wood, K. White, Short-Term Water Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information. Technical Report CWTS-2013-1 (Bureau of Reclamation U.S. Army Corps of Engineers and National Oceanic and Atmospheric Administration, Denver, USA, 2013)

    Google Scholar 

  • A.E. Raftery, T. Gneiting, F. Balabdaoui, M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005)

    Article  Google Scholar 

  • B. Rajagopalan, U. Lall, A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resour. Res. 35(10), 3089–3101 (1999). https://doi.org/10.1029/1999WR900028

    Article  Google Scholar 

  • B. Rajagopalan, U. Lall, S. Zebiak, Optimal categorical climate forecasts through multiple GCM ensemble combination and regularization. Mon. Weather Rev. 130(7), 1792–1811 (2002)

    Article  Google Scholar 

  • S.K. Regonda, B. Rajagopalan, M. Clark, E. Zagona, A multi-model ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resour. Res. 42, W09404 (2006). https://doi.org/10.1029/2005WR004653

    Article  Google Scholar 

  • B. Renard, A Bayesian hierarchical approach to regional frequency analysis. Water Resour. Res. 47, W11513 (2011). https://doi.org/10.1029/2010WR010089

    Article  Google Scholar 

  • B. Renard, X. Sun, M. Lang, Bayesian methods for non-stationary extreme value analysis, in Extremes in a Changing Climate (Springer Netherlands, 2013), pp. 39–95

    Google Scholar 

  • D.E. Robertson, P. Pokhrel, Q.J. Wang, Improving statistical forecasts of seasonal streamflows using hydrological model output. Hydrol. Earth Syst. Sci. 17, 579–593 (2013). https://doi.org/10.5194/hess-17-579-2013

    Article  Google Scholar 

  • E.A. Rosenberg, A.W. Wood, A.C. Steinemann, Statistical applications of physically based hydrologic models to seasonal streamflow forecasts. Water Resour. Res. 47, W00H14 (2011). https://doi.org/10.1029/2010WR010101

    Article  Google Scholar 

  • E.A. Rosenberg, A.W. Wood, A.C. Steinemann, Informing hydrometric network design for statistical seasonal streamflow forecasts. J. Hydrometeorol. 14, 1587–1604 (2013). https://doi.org/10.1175/JHM-D-12-0136.1

    Article  Google Scholar 

  • J.D. Salas, C. Fu, B. Rajagopalan, Long-range forecasting of Colorado streamflows based on hydrologic atmospheric and oceanic data. J. Hydrol. Eng. 16(6), 508–520 (2011). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000343

    Article  Google Scholar 

  • A. Sankarasubramanian, U. Lall, Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour. Res. 39(5), 1134 (2003). https://doi.org/10.1029/2002WR001593

    Article  Google Scholar 

  • R. Schefzik, A similarity-based implementation of the Schaake shuffle. Mon. Weather Rev. 144, 1909–1921 (2016). https://doi.org/10.1175/MWR-D-15-0227.1

    Article  Google Scholar 

  • A. Schepen, Q.J. Wang, Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia. Water Resour. Res. 51, 1797 (2015). https://doi.org/10.1002/2014WR016163

    Article  Google Scholar 

  • A. Schepen, Q.J. Wang, Y. Everingham, Calibration, bridging, and merging to improve GCM seasonal temperature forecasts in Australia. Mon. Wea. Rev. 144, 2421–2441 (2016). https://doi.org/10.1175/MWR-D-15-0384.1

    Article  Google Scholar 

  • A. Schepen, T. Zhao, Q.J. Wang, D.E. Robertson, A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments. Hydrol. Earth Syst. Sci. 22, 1615–1628 (2018). https://doi.org/10.5194/hess-22-1615-2018

    Article  Google Scholar 

  • D.-J. Seo, H. Herr, J. Schaake, A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol. Earth Syst. Sci. Discuss. 3, 1987–2035 (2006)

    Article  Google Scholar 

  • L.J. Slater, G. Villarini, A.A. Bradley, et al., Clim. Dyn. (2017). https://doi.org/10.1007/s00382-017-3794-7

  • S. Sorooshian, Q. Duan, V.K. Gupta, Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture accounting model. Water Resour. Res. 29, 1185–1194 (1993)

    Article  Google Scholar 

  • F.A. Souza Filho, U. Lall, Seasonal to interannual ensemble streamflow forecasts for Ceara Brazil: applications of a multivariate semiparametric algorithm. Water Resour. Res. 39(11), 1307 (2003). https://doi.org/10.1029/2002WR001373

    Article  Google Scholar 

  • G.A. Tootle, A.K. Singh, T.C. Piechota, I. Farnham, Long lead-time forecasting of U.S. streamflow using partial least squares regression. J. Hydrol. Eng. 12, 442–451 (2007)

    Article  Google Scholar 

  • R.D. Valencia, J.C. Schakke Jr., Disaggregation processes in stochastic hydrology. Water Resour. Res. 9(3), 580–585 (1973). https://doi.org/10.1029/WR009i003p00580

    Article  Google Scholar 

  • A. Verdin, B. Rajagopalan, W. Kleiber, G. Podestá, F. Bert, A conditional stochastic weather generator for seasonal to multi-decadal simulations. J. Hydrol. (2015). https://doi.org/10.1016/j.jhydrol.2015.12.036

  • T. Wagener, N. McIntyre, M.J. Lees, H.S. Wheater, H.V. Gupta, Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis, Hydrol. Processes. 17(2), 455–476 (2003)

    Google Scholar 

  • Q.J. Wang, D.E. Robertson, F.H.S. Chiew, A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res. 45(5), 1–18 (2009). https://doi.org/10.1029/2008WR007355

    Article  Google Scholar 

  • H. Wang, A. Sankarasubramanian, R.S. Ranjithan, Integration of climate and weather information for improving 15-day-ahead accumulated precipitation forecasts. J. Hydrometeorol. 14(1), 186–202 (2013)

    Article  Google Scholar 

  • A.P. Weigel, M.A. Liniger, C. Appenzeller, Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q. J. R. Meteorol. Soc. 134(630), 241–260 (2008)

    Article  Google Scholar 

  • K. Werner, D. Brandon, M. Clark, S. Gangopadhyay, Climate index weighting schemes for NWS ESP-based seasonal volume forecasts. J. Hydrometeor, 5, 1076–1090 (2004). https://doi.org/10.1175/JHM-381.1

    Article  Google Scholar 

  • S. Westra, A. Sharma, C. Brown, U. Lall, Multivariate streamflow forecasting using independent component analysis. Water Resour. Res. 44(2), 1–11 (2008). https://doi.org/10.1029/2007WR006104

    Article  Google Scholar 

  • A.W. Wood, D.P. Lettenmaier, A new approach for seasonal hydrologic forecasting in the western U.S. Bull. Amer. Met. Soc. 87(12), 1699–1712 (2006). https://doi.org/10.1175/BAMS-87-12-1699

  • A.W. Wood, D.P. Lettenmaier, An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett. 35, L14401 (2008). https://doi.org/10.1029/2008GL034648

  • A.W. Wood, J.C. Schaake, Correcting errors in stream ow forecast ensemble mean and spread. J. Hydrometeorol. 9, 132–148 (2008)

    Article  Google Scholar 

  • A.W. Wood, T. Hopson, A. Newman, L. Brekke, J. Arnold, M. Clark, Quantifying streamflow forecast skill elasticity to initial condition and climate prediction skill. J. Hydrometeorol. 17, 651–668 (2016a). https://doi.org/10.1175/JHM-D-14-0213.1

    Article  Google Scholar 

  • A.W. Wood, T. Pagano, M. Roos, Tracing the origins of ESP HEPEX historical hydrology series edition 1 (online at: https://hepex.irstea.fr/tracing-the-origins-of-esp/) (2016b)

  • T. Zhao, J.C. Bennett, Q.J. Wang, A. Schepen, A.W. Wood, D.E. Robertson, M. Ramos, How suitable is quantile mapping for post processing GCM precipitation forecasts? J. Clim. 30, 3185–3196 (2017). https://doi.org/10.1175/JCLI-D-16-0652.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Wood .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wood, A.W., Sankarasubramanian, A., Mendoza, P. (2018). Seasonal Ensemble Forecast Post-processing. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40457-3_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40457-3_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40457-3

  • Online ISBN: 978-3-642-40457-3

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Seasonal Ensemble Forecast Post-processing
    Published:
    12 December 2018

    DOI: https://doi.org/10.1007/978-3-642-40457-3_37-2

  2. Original

    Seasonal Ensemble Forecast Post-processing
    Published:
    06 April 2018

    DOI: https://doi.org/10.1007/978-3-642-40457-3_37-1