Advertisement

Ensemble Methods for Meteorological Predictions

  • Jun Du
  • Judith Berner
  • Roberto Buizza
  • Martin Charron
  • Peter Houtekamer
  • Dingchen Hou
  • Isidora Jankov
  • Mu Mu
  • Xuguang Wang
  • Mozheng Wei
  • Huiling Yuan
Living reference work entry

Abstract

Since the atmospheric system is a nonlinear chaotic system, its numerical prediction is bound by a predictability limit due to imperfect initial conditions and models. Ensemble forecasting is a dynamical approach to quantify the predictability of weather, climate, and water forecasts. This chapter introduces various methods to create an ensemble of forecasts based on three aspects: perturbing initial conditions (IC), perturbing a model, and building a virtual ensemble. For generating IC perturbations, methods include (1) random, (2) time-lagged, (3) bred vector, (4) ensemble transform (ET), (5) singular vector (SV), (6) conditional nonlinear optimal perturbation (CNOP), (7) ensemble transform Kalman filter (ETKF), (8) ensemble Kalman filter (EnKF), and (9) perturbations in boundaries including land surface and topography. For generating model perturbations, methods include (1) multi-model and multi-physics, (2) stochastically perturbed parametrization tendency (SPPT), (3) stochastically kinetic energy backscatter (SKEB), (4) convection triggering, (5) stochastic boundary-layer humidity (SHUM), (6) stochastic total tendency perturbation (STTP), and (7) vorticity confinement. A method to create a spatially correlated random pattern (mask) needed by SPPT, SKEB, etc. is introduced based on the Markov process; a factor separation method is introduced to estimate the relative impact of various physics schemes and their interactions. A method of perturbing a dynamic core to create an ensemble is also mentioned. Quantitative forecast uncertainty information and ensemble products can also be generated from “virtual ensembles” based on existing deterministic forecasts through at least five different approaches including (1) time-lagged, (2) poor-man’s, (3) hybrid, (4) neighborhood, and (5) analog ensembles. Generally speaking, the selection of perturbation methods in constructing an EPS is more important for smaller-scale and shorter-range forecasts and less critical for larger-scale and longer-range forecasts. Finally, the frequently asked question about the trade-off between ensemble size and model resolution is discussed. By introducing these methods, we hope to help readers who are interested in ensemble forecasting but not familiar with these approaches to build their own EPS or produce ensemble products as well as for students to learn the subject of ensemble forecasting.

Keywords

Ensemble forecasting Initial condition perturbation Boundary perturbation Model physics and dynamic core perturbations Virtual ensembles Ensemble size 

Notes

Acknowledgments

Ms. Mary Hart is appreciated for her help to improve the readability of the manuscript. We thank Jack Kain and Binbin Zhou for their reviews.

References

  1. E.A. Aligo, W.A. Gallus, M. Segal, Summer rainfall forecast spread in an ensemble initialized with different soil moisture analyses. Weather Forecast. 22, 299–314 (2007)CrossRefGoogle Scholar
  2. E.A. Aligo, W.A. Gallus Jr., M. Segal, On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Weather Forecast. 24, 575–594 (2009)CrossRefGoogle Scholar
  3. J.L. Anderson, An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884–2903 (2001)CrossRefGoogle Scholar
  4. J. Berner, F. Doblas-Reyes, T.N. Palmer, G.J. Shutts, A. Weisheimer, Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Phil. Trans. R. Soc. A 366, 2561–2579 (2008).  https://doi.org/10.1098/rsta.2008.0033CrossRefGoogle Scholar
  5. J. Berner, G.J. Shutts, M. Leutbecher, T.N. Palmer, A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66, 603–626 (2009)CrossRefGoogle Scholar
  6. J. Berner, S.-Y. Ha, J.P. Hacker, A. Fournier, C. Snyder, Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multi-physics representations. Mon. Weather Rev. 139, 1972–1995 (2011)CrossRefGoogle Scholar
  7. J. Berner, T. Jung, T.N. Palmer, Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Clim. 25, 4946–4962 (2012)CrossRefGoogle Scholar
  8. E.G. Birgin, J.M. Martınez, M. Raydan, Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)CrossRefGoogle Scholar
  9. C.H. Bishop, Z. Toth, Ensemble transformation and adaptive observation. J. Atmos. Sci. 56, 1748–1765 (1999)CrossRefGoogle Scholar
  10. C.H. Bishop, B.J. Etherton, S. Majumdar, Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)CrossRefGoogle Scholar
  11. B.T. Blake, J.R. Carley, T.I. Alcott, I. Jankov, M. Pyle, S. Perfater, B. Albright, An adaptive approach for the calculation of ensemble grid-point probabilities. Weather Forecast., submitted 33, (2018)Google Scholar
  12. M. Borges, D.L. Hartmann, Barotropic instability and optimal perturbations of observed non-zonal flows. J. Atmos. Sci. 49, 335–354 (1992)CrossRefGoogle Scholar
  13. N.E. Bowler, A. Arribas, K.R. Mylne, K.B. Robertson, S.E. Beare, The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134, 703–722 (2008)CrossRefGoogle Scholar
  14. N.E. Bowler, A. Arribas, S.E. Beare, K.R. Mylne, G.J. Shutts, The local ETKF and SKEB: Upgrade to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 135, 767–776 (2009)CrossRefGoogle Scholar
  15. C. Brankovic, T.N. Palmer, F. Molteni, S. Tibaldi, U. Cubasch, Extended-range predictions with ECMWF models: time-lagged ensemble forecasting. Q. J. R. Meteorol. Soc. 116, 867–912 (2006)CrossRefGoogle Scholar
  16. R. Buizza, T.N. Palmer, The singular vector structure of the atmospheric general circulation. J. Atmos. Sci. 52, 1434–1456 (1995)CrossRefGoogle Scholar
  17. R. Buizza, J. Tribbia, F. Molteni, T.N. Palmer, Computation of optimal unstable structures for a numerical weather prediction model. Tellus 45A, 388–407 (1993)CrossRefGoogle Scholar
  18. R. Buizza, M. Miller, T.N. Palmer, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2887–2908 (1999)CrossRefGoogle Scholar
  19. M. Charron, G. Pellerin, L. Spacek, P.L. Houtekamer, N. Gagnon, H.L. Mitchell, L. Michelin, Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Weather Rev. 138, 1877–1901 (2010)CrossRefGoogle Scholar
  20. J. Chen, J.-S. Xue, H. Yan, A new initial perturbation method of ensemble mesoscale heavy rain prediction. Chin. J. Atmos. Sci. 29(5), 717–726 (2005).  https://doi.org/10.3878/j.issn.1006-9895.2005.05.05CrossRefGoogle Scholar
  21. K.W.C. Cheung, J.C.L. Chan, Ensemble forecasting of tropical cyclone motion using a barotropic model. Part I: perturbations of the environment. Mon. Weather Rev. 127, 1229–1243 (1999a)CrossRefGoogle Scholar
  22. K.W.C. Cheung, J.C.L. Chan, Ensemble forecasting of tropical cyclone motion using a barotropic model. Part II: perturbations of the vortex. Mon. Weather Rev. 127, 2617–2640 (1999b)CrossRefGoogle Scholar
  23. A.J. Clark, W.A. Gallus, M. Xue, F. Kong, A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Weather Forecast. 24, 1121–1140 (2009)CrossRefGoogle Scholar
  24. A.J. Clark, W.A. Gallus Jr., M. Xue, F. Kong, Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Weather Forecast. 25, 1052–1081 (2010).  https://doi.org/10.1175/2010WAF2222390.1CrossRefGoogle Scholar
  25. A.J. Clark, J.S. Kain, D.J. Stensrud, M. Xue, F. Kong, M.C. Coniglio, K.W. Thomas, Y. Wang, K. Brewster, J. Gao, X. Wang, S.J. Weiss, J. Du, Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Weather Rev. 139, 1410–1418 (2011).  https://doi.org/10.1175/2010MWR3624.1CrossRefGoogle Scholar
  26. G.K. Dai, M. Mu, Z.N. Jiang, Relationships between optimal precursors triggering NAO onset and optimally growing initial errors during NAO prediction. J. Atmos. Sci. 73, 293–317 (2016)CrossRefGoogle Scholar
  27. D. Dee, On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Weather Rev. 123, 1128–1145 (1995)CrossRefGoogle Scholar
  28. L. Delle Monache, F.A. Eckel, D. Rife, B. Nagarajan, K. Searight, Probabilistic weather predictions with an analog ensemble. Mon. Weather Rev. 141, 3498–3516 (2013)CrossRefGoogle Scholar
  29. M. Delle, L.T. Nipen, Y. Liu, G. Roux, R. Stull, Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Weather Rev. 141, 3498–3516 (2011)CrossRefGoogle Scholar
  30. S.R. Dey, A.G. Leoncini, N.M. Roberts, R.S. Plant, S. Migliorini, A spatial view of ensemble spread in convection permitting ensembles. Mon. Weather Rev. 142, 4091–4107 (2014)CrossRefGoogle Scholar
  31. S.R. Dey, N.M. Roberts, R.S. Plant, S. Migliorini, A new method for characterization and verification of local spatial predictability for convective-scale ensembles. Q. J. R. Meteorol Soc. 142, 1982–1996 (2016)CrossRefGoogle Scholar
  32. F. Doblas-Reyes, A. Weisheimer, M. Déqué, N. Keenlyside, M. McVean, J.M. Murphy, P. Rogel, D. Smith, T.N. Palmer, Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q. J. R. Meteorol. Soc. 135, 1538–1559 (2009)CrossRefGoogle Scholar
  33. J. Du, Hybrid ensemble prediction system: a new ensembling approach. Preprints, in Symposium on the 50th Anniversary of Operational Numerical Weather Prediction (University of Maryland, College Park, 2004), June 14–17 2004, Am. Meteorol. Soc., CD-ROM (paper p4.2, 5pp). Available online http://www.emc.ncep.noaa.gov/mmb/SREF/reference.html
  34. J. Du, G. Deng, The utility of the transition from deterministic to probabilistic weather forecasts: verification and application of probabilistic forecasts. Meteorol. Mon. 36(12), 10–18 (2010)Google Scholar
  35. J. Du, G. DiMego, A regime-dependent bias correction approach. in 19th Conference on Probability and Statistics (New Orleans, 2008), Jan 20–24 2008, paper 3.2Google Scholar
  36. J. Du, J. Li, Application of ensemble methodology to heavy rain research and prediction. Adv. Meteorol. Sci. Technol. 4(5), 6–20 (2014)Google Scholar
  37. Du, J., M. S. Tracton, Impact of lateral boundary conditions on regional-model ensemble predicion. in Research Activities in Atmospheric and Oceanic Modelling, ed. by H. Ritchie. Report 28, CAS/JSC Working Group Numerical Experimentation (WGNE), WMO/TD-No. 942, (1999), pp. 6.7–6.8Google Scholar
  38. J. Du, M.S. Tracton, Implementation of a real-time short-range ensemble forecasting system at NCEP: an update. Preprints, in 9th Conference on Mesoscale Processes (Ft. Lauderdale, 2001), Am. Meteorol. Soc., pp. 355–356Google Scholar
  39. J. Du, B. Zhou, Ensemble fog prediction, in Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting, ed. by D. Koracin, C.E. Dorman (Springer, Cham, 2017), pp. 477–509Google Scholar
  40. J. Du, S.L. Mullen, F. Sanders, Short-range ensemble forecasting of quantitative precipitation. Mon. Weather Rev. 125, 2427–2459 (1997)CrossRefGoogle Scholar
  41. J. Du, G. DiMego, M.S. Tracton, B. Zhou, NCEP short-range ensemble forecasting (SREF) system: multi-IC, multi-model and multi-physics approach. in Research Activities in Atmospheric and Oceanic Modelling, ed. by J. Cote, Report 33, CAS/JSC Working Group Numerical Experimentation (WGNE), WMO/TD-No. 1161, (2003), pp. 5.09–5.10Google Scholar
  42. J. Du, J. McQueen, G. DiMego, T. Black, H Juang, E. Rogers, B. Ferrier, B. Zhou, Z. Toth, M.S Tracton, The NOAA/NWS/NCEP short-range ensemble forecast (SREF) system: evaluation of an initial condition vs. multi-model physics ensemble approach. Preprints (CD), in 16th Conference on Numerical Weather Prediction (Seattle, 2004), Am. Meteorol. SocGoogle Scholar
  43. J. Du, G. Gayno, K. Mitchell, Z. Toth, G. DiMego, Sensitivity study of T2m and precipitation forecasts to initial soil moisture conditions by using NCEP WRF ensemble. 22nd WAF/18th NWP conference (AMS, Park City, 2007)Google Scholar
  44. J. Du, R. Yu, C. Cui, J. Li, Using a mesoscale ensemble to predict forecast error and perform targeted observation. Acta Oceanol. Sin. 33(1), 83–91 (2014)CrossRefGoogle Scholar
  45. W.S. Duan, Z.H. Huo, An approach to generating mutually independent initial perturbations for ensemble forecasts: orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci. 73, 997–1014 (2016)CrossRefGoogle Scholar
  46. W.S. Duan, M. Mu, Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability. Sci. China Ser. D 52(7), 883–906 (2009)CrossRefGoogle Scholar
  47. Y. Duan, J. Gong, J. Du, et al., An overview of Beijing 2008 Olympics Research and Development Project (B08RDP). BMAS 93, 1–24 (2012)Google Scholar
  48. J. Dudhia, A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121(5), 1493–1513 (1993)CrossRefGoogle Scholar
  49. E.E. Ebert, Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Weather Rev. 129, 2461–2480 (2001)CrossRefGoogle Scholar
  50. W. Ebisuzaki, E. Kalnay, Ensemble experiments with a new lagged average forecasting scheme. WMO, Research activities in atmospheric and oceanic modeling. Report 15, (1991), pp. 6.31–6.32Google Scholar
  51. F.A. Eckel, L. Delle Monache, A hybrid NWP–analog ensemble. Mon. Weather Rev. 144, 897–911 (2016).  https://doi.org/10.1175/MWR-D-15-0096.1CrossRefGoogle Scholar
  52. M. Ehrendorfer, J. Tribbia, Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci. 54, 286–313 (1997)CrossRefGoogle Scholar
  53. E.S. Epstein, Stochastic-dynamic prediction. Tellus 21, 739–759 (1969)CrossRefGoogle Scholar
  54. R. Errico, D. Baumhefner, Predictability experiments using a high-resolution limited area model. Mon. Weather Rev. 115, 488–504 (1987)CrossRefGoogle Scholar
  55. G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 99(C5), 10143–10162 (1994)CrossRefGoogle Scholar
  56. B.F. Farrell, The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci. 39(8), 1663–1686 (1982)CrossRefGoogle Scholar
  57. B.F. Farrell, Optimal excitation of neutral rossby waves. J. Atmos. Sci. 45(2), 163–172 (1988)CrossRefGoogle Scholar
  58. B.F. Farrell, Optimal excitation of baroclinic waves. J. Atmos. Sci. 46(9), 1193–1206 (1989)CrossRefGoogle Scholar
  59. J.S. Frederiksen, A.G. Davies, Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci. 54, 2475–2492 (1997)CrossRefGoogle Scholar
  60. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (John Hopkins, 1996). ISBN:9780008018-5414-9Google Scholar
  61. E.P. Grimit, C.F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Weather Forecast. 17, 192–205 (2002)CrossRefGoogle Scholar
  62. J.P. Hacker, S.-Y. Ha, C. Snyder, J. Berner, F.A. Eckel, E. Kuchera, M. Pocernich, S. Rugg, J. Schramm, X. Wang, The U.S. Air Force weather Agencys mesoscale ensemble: scientific description and performance results. Tellus A 63, 625–641 (2011)CrossRefGoogle Scholar
  63. S. Hahn, G. Iaccarino, Towards adaptive vorticity confinement. 47th AIAA Aerospace sciences meeting including the new horizons forum and aerospace exposition, Aerospace Sciences Meetings. AIAA (2009)Google Scholar
  64. T.M. Hamill, J.S. Whitaker, Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Weather Rev. 134, 3209–3229 (2006).  https://doi.org/10.1175/MWR3237.1CrossRefGoogle Scholar
  65. T.M. Hamill, J.S. Whitaker, C. Snyder, Distance dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)CrossRefGoogle Scholar
  66. T.M. Hamill, R. Hagedorn, J.S. Whitaker, Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Weather Rev. 136, 2620–2632 (2008).  https://doi.org/10.1175/2007MWR2411.1CrossRefGoogle Scholar
  67. T.M. Hamill, J.S. Whitaker, D.T. Kleist, P. Pegion, M. Fiorino, S.G. Benjamin, Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Weather Rev. 139, 3243–3247 (2011).  https://doi.org/10.1175/MWR-D-11-00079.1CrossRefGoogle Scholar
  68. T.M. Hamill, M. Scheuerer, G. Bates, Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Weather Rev. 143, 3300–3309 (2015).  https://doi.org/10.1175/MWR-D-15-0004.1CrossRefGoogle Scholar
  69. R.N. Hoffman, E. Kalnay, Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus 35A, 100–118 (1983)CrossRefGoogle Scholar
  70. D. Hou, E. Kalnay, K.K. Droegemeier, Objective verification of the SAMEX‘98 ensemble forecasts. Mon. Weather Rev. 129, 73–91 (2001)CrossRefGoogle Scholar
  71. D. Hou, Z. Toth, Y. Zhu, A stochastic parameterization scheme within NCEP global ensemble forecast system. in 18th AMS Conference on Probability and Statistics (Atlanta, 2006), Jan. 29-Feb. 2 2006. Available on line at http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html.pdf
  72. D. Hou, Z. Toth, Y. Zhu, W. Yang, Impact of a stochastic perturbation scheme on NCEP global ensemble forecast system. in 19th AMS Conference on Probability and Statistics (New Orleans, 2008). 20–24 Jan 2008. Available on line at http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html.pdf
  73. P.L. Houtekamer, H.L. Mitchell, Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126, 196–811 (1998)CrossRefGoogle Scholar
  74. P.L. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, H.L. Mitchell, A system simulation approach to ensemble prediction. Mon. Weather Rev. 124, 1225–1242 (1996)CrossRefGoogle Scholar
  75. P.L. Houtekamer, X. Deng, H.L. Mitchell, S.-J. Baek, N. Gagnon, Higher resolution in an operational ensemble Kalman filter. Mon. Weather Rev. 142, 1143–1162 (2014)CrossRefGoogle Scholar
  76. Z.H. Huo, The application of nonlinear optimal perturbation methods in ensemble forecasting. Ph.D. Dissertation, University of Chinese Academy of Sciences (Beijing, 2016), p. 108Google Scholar
  77. I. Jankov, W.A. Gallus, M. Segal, B. Shaw, S.E. Koch, The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather Forecast. 20, 1048–1060 (2005)CrossRefGoogle Scholar
  78. I. Jankov, W.A. Gallus, M. Segal, S.E. Koch, Influence of initial conditions on the WRF–ARW model QPF response to physical parameterization changes. Weather Forecast. 22, 501–519 (2007)CrossRefGoogle Scholar
  79. Z.N. Jiang, M. Mu, A comparisons study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction. Adv. Atmos. Sci. 26, 465–470 (2009)CrossRefGoogle Scholar
  80. A. Johnson, X. Wang, M. Xue, F. Kong, Hierarchical cluster analysis of a convection allowing ensemble during the hazardous weather testbed 2009 spring experiment. Part II: ensemble clustering over the whole experiment period. Mon. Weather Rev. 139, 3694–3710 (2011).  https://doi.org/10.1175/MWR-D-11-00016.1CrossRefGoogle Scholar
  81. R. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME Ser. D J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  82. E. Kalnay, Atmospheric modeling, data assimilation and predictability (Cambridge University Press, 2003). 368ppGoogle Scholar
  83. E. Kalnay, A talk at Arakawa Symposium of 2007 American Meteorological Society annual meeting (San Antonio, 2007)Google Scholar
  84. D.T. Kleist, K. Ide, An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, part I: system description and 3D-hybrid results. Mon. Weather Rev. 143, 433–451 (2015a).  https://doi.org/10.1175/MWR-D-13-00351.1CrossRefGoogle Scholar
  85. D.T. Kleist, K. Ide, An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, part II: 4D EnVar and hybrid variants. Mon. Weather Rev. 143, 452–470 (2015b).  https://doi.org/10.1175/MWR-D-13-00350.1CrossRefGoogle Scholar
  86. M.-S. Koo, S.-Y. Hong, Stochastic representation of dynamic model tendency: formulation and preliminary results. Asia Pac. J. Atmos. Sci. 50(4), 497–506 (2014).  https://doi.org/10.1007/s13143-014-0039-0CrossRefGoogle Scholar
  87. T.N. Krishnamurti, C.M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C.E. Williford, S. Gadhil, S. Surendran, Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285, 1548–1550 (1999)CrossRefGoogle Scholar
  88. C.E. Leith, Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 102, 409–418 (1974)CrossRefGoogle Scholar
  89. J.M. Lewis, Roots of ensemble forecasting. Mon. Weather Rev. 133, 1865–1885 (2005)CrossRefGoogle Scholar
  90. X. Li, M. Charron, L. Spacek, G. Candille, A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Weather Rev. 136, 443–462 (2008)CrossRefGoogle Scholar
  91. J. Li, J. Du, Y. Liu, A comparison of initial condition-, multi-physics- and stochastic physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta. Meteor. Sin. 73(1), 50–71 (2015).  https://doi.org/10.11676/qxxb2015.008. (in both Chinese and English)CrossRefGoogle Scholar
  92. J. Li, J. Du, Y. Liu, J. Xu, Similarities and differences in the evolution of ensemble spread using various ensemble perturbation methods including terrain perturbation. Acta. Meteor. Sin. 75(1), 123–146 (2017).  https://doi.org/10.11676/qxxb2017.011. (in both Chinese and English)CrossRefGoogle Scholar
  93. D.C. Liu, J. Nocedal, On the limited memory method for large scale optimization. Math. Program. 45, 503–528 (1989)CrossRefGoogle Scholar
  94. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  95. E.N. Lorenz, A study of the predictability of a 28-variable atmospheric model. Tellus 17, 321–333 (1965)CrossRefGoogle Scholar
  96. E.N. Lorenz, The Essence of Chaos (University of Washington Press, Seattle, 1993), 240ppCrossRefGoogle Scholar
  97. E.N. Lorenz, Predictability: a problem partly solved. in Proceedings of Workshop on Predictability (ECMWF, Reading, 1996), 18ppGoogle Scholar
  98. C. Lu, H. Yuan, B.E. Schwartz, S.G. Benjamin, Short-range numerical weather prediction using time-lagged ensembles. Weather Forecast. 22, 580–595 (2007)CrossRefGoogle Scholar
  99. J. Ma, Y. Zhu, R. Wobus, P. Wang, An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci. 29(4), 782–794 (2012)CrossRefGoogle Scholar
  100. S.J. Majumdar, C.H. Bishop, B.J. Etherton, Adaptive sampling with ensemble transform Kalman filter. Part II: filed program implementation. Mon. Weather Rev 130, 1356 (2002)CrossRefGoogle Scholar
  101. A. Martin, V. Homar, L. Fita, J.M. Gutierrez, M.A Rodriguez, C. Primo, Geometrid vs. classical breeding of vectors: application to hazardous weather in the Western Mediterranean. Geophys. Res. Abstr. 9, European Geosciences Union (2007)Google Scholar
  102. P.J. Mason, D.J. Thomson, Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 51–78 (1992)CrossRefGoogle Scholar
  103. J.M. Mclay, C.H. Bishop, C.A. Reynolds, The ensemble-transform scheme adapted for the generation of stochastic forecast perturbations. Q. J. R. Meteorol. Soc. 133, 1257–1266 (2007)CrossRefGoogle Scholar
  104. J. McLay, C.H. Bishop, C.A. Reynolds, A local formulation of the ensemble transform (ET) analysis perturbation scheme. Weather and Forecast. 25, 985–993 (2010).  https://doi.org/10.1175/2010WAF2222359.1CrossRefGoogle Scholar
  105. M.P. Mittermaier, Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 133, 1487–1500 (2007).  https://doi.org/10.1002/qj.135CrossRefGoogle Scholar
  106. F. Molteni, T.N. Parmer, Predictability and finite-time instability of the northern winter circulation. Q. J. R. Meteorol. Soc. 119, 269–298 (1993)CrossRefGoogle Scholar
  107. F. Molteni, R. Buizza, T.N. Palmer, T. Petroliagis, The ECMWF ensemble prediction system: methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996)CrossRefGoogle Scholar
  108. M. Mu, Z.N. Jiang, A new approach to the generation of initial perturbations for ensemble prediction: conditional nonlinear optimal perturbation. Chin. Sci. Bull. 53(13), 2062–2068 (2008)Google Scholar
  109. M. Mu, W.S. Duan, B. Wang, Conditional nonlinear optimal perturbation and its applications. Nonlin. Process. Geophys. 10, 493–501 (2003)CrossRefGoogle Scholar
  110. M. Mu, W.S. Duan, D.K. Chen, W.D. Yu, Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. Natl. Sci. Rev. 2, 226–236 (2015)CrossRefGoogle Scholar
  111. S.L. Mullen, D.P. Baumhefner, Monte Carlo simulation of explosive cyclogenesis. Mon. Weather Rev. 122, 1548–1567 (1994)CrossRefGoogle Scholar
  112. S.L. Mullen, R. Buizza, The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF ensemble prediction system. Weather Forecast. 17, 173–191 (2002)CrossRefGoogle Scholar
  113. S.L. Mullen, J. Du, Monte Carlo forecasts of explosive cyclogenesis with a limited-area, mesoscale model. Preprints, 10th Conference on Numerical Weather Prediction (Portland, 1994), July 18–22 1994, Am. Meteorol. Soc., pp. 638–640Google Scholar
  114. S.L. Mullen, J. Du, F. Sanders, The dependence of ensemble dispersion on analysis forecast system: implications to short-range ensemble forecasting of precipitation. Mon. Weather Rev. 127, 1674–1686 (1999)CrossRefGoogle Scholar
  115. National Research Council, Completing the Forecasts: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts (National Academies Press, Washington, DC, 2006), 124pp.  https://doi.org/10.17226/11699CrossRefGoogle Scholar
  116. P. Nutter, D. Stensrud, M. Xue, Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Weather Rev. 132, 2358–2377 (2004a)CrossRefGoogle Scholar
  117. P. Nutter, M. Xue, D. Stensrud, Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts. Mon. Weather Rev. 132, 2378–2390 (2004b)CrossRefGoogle Scholar
  118. T. Palmer, R. Hagedorn (eds.), Predictability of weather and climate (Cambridge University Press, New York, 2006), 718ppGoogle Scholar
  119. T.N. Palmer, R. Buizza, M. Leutbecher, R. Hagedorn, T. Jung, M. Rodwell, F. Virat, J. Berner, E. Hagel, A. Lawrence, F. Pappenberger, Y-Y. Park, L. van Bremen, I. Gilmour, L. Smith, The ECMWF Ensemble Prediction System: recent and on-going developments. A paper presented at the 36th Session of the ECMWF Scientific Advisory Committee. ECMWF Research Department Technical Memorandum Note, vol. 540. (2007). Available from ECMWF, Shinfield Park, Reading RG2-9AX, UKGoogle Scholar
  120. T.N. Palmer, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G.J. Shutts, M. Steinheimer, A Weisheimer, Stochastic Parameterization and Model Uncertainty. ECMWF Research Department Technical Memorandum, vol. 598, (2009), p. 42. Available from ECMWF, Shinfield Park, Reading RG2-9AX, UK. http://www.ecmwf.int/publications/
  121. M.J.D. Powell, VMCWD: A FORTRAN subroutine for constrained optimization. DAMTP Report 1982/NA4 (University of Cambridge, UK, 1982)Google Scholar
  122. X. Qiao, S. Wang, J. Min, A stochastic perturbed parameterization tendency scheme for diffusion (SPPTD) and its application to an idealized supercell simulation. Mon. Weather Rev. 145(6), 2119–2139 (2017).  https://doi.org/10.1175/MWR-D-16-0307CrossRefGoogle Scholar
  123. D.S. Richardson, Skill and relative economic value of the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 126, 649–668 (2000)CrossRefGoogle Scholar
  124. D.S. Richardson, Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Q. J. R. Meteorol Soc. 127, 2473–2489 (2001)CrossRefGoogle Scholar
  125. N.M. Roberts, H.W. Lean, Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 136, 78–97 (2008).  https://doi.org/10.1175/2007MWR2123.1CrossRefGoogle Scholar
  126. S. Roquelaure, T. Bergot, A local ensemble prediction system (L-EPS) for fog and low clouds: construction, Bayesian model averaging calibration and validation. J. Appl. Meteorol. Clim. 47, 3072–3088 (2008)CrossRefGoogle Scholar
  127. S. Saha, S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H.M. Van den Dool, H.L. Pan, S. Moorthi, D. Behringer, D. Stokes, M. Peña, S. Lord, G. White, W. Ebisuzaki, P. Peng, P. Xie, The NCEP climate forecast system. J. Clim. 19, 3483–3517 (2006)CrossRefGoogle Scholar
  128. C. Sanchez, K.D. Williams, G.J. Shutts, R.E. McDonald, T.J. Hinton, C.A. Senior, N. Wood, Toward the development of a robust model hierarchy: investigation of dynamical limitations at low resolution and possible solutions. Q. J. R. Meteorol. Soc. 139, 75–84 (2013).  https://doi.org/10.1002/qj.1971CrossRefGoogle Scholar
  129. C.S. Schwartz et al., Toward improved convection-allowing ensembles: model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Weather Forecast. 25, 263–280 (2010).  https://doi.org/10.1175/2009WAF2222267.1CrossRefGoogle Scholar
  130. C. Schwartz, R. Sobash, Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: a review and recommendations. Mon. Weather Rev. 145, 3397–3418 (2017).  https://doi.org/10.1175/MWR-D-16-0400.1CrossRefGoogle Scholar
  131. G. Shutts, A Stochastic Kinetic Energy Backscatter Algorithm for Use in Ensemble Prediction Systems, Technical Memorandum, vol 449 (ECMWF, Reading, 2004)Google Scholar
  132. G. Shutts, A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131, 3079–3102 (2005)CrossRefGoogle Scholar
  133. G. Shutts, T. Allen, Sub-gridscale parameterization from the perspective of a computer games animator. Atmos. Sci. Lett. 8(4), 85–92 (2007).  https://doi.org/10.1002/asl.157CrossRefGoogle Scholar
  134. G. Shutts, M. Leutecher, A. Weisheimer, T. Stockdale, L. Isaksen, M. Bonavita, Representing model uncertainty: stochastic parameterizations at ECMWF. ECMWF Newsl. 129, 19–24 (2011)Google Scholar
  135. W.C. Skamarock et al., A Description of the Advanced Research WRF Version 3, NCAR Technical Note, vol NCAR/TN-475+STR (National Center for Atmospheric Research, Boulder, 2008).  https://doi.org/10.5065/D68S4MVHCrossRefGoogle Scholar
  136. U. Stein, P. Alpert, Factor separation in numerical simulations. J. Atmos. Sci. 50, 2107–2115 (1993)CrossRefGoogle Scholar
  137. J. Steinhoff, D. Underhill, Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys Fluid 6, 2738 (1994).  https://doi.org/10.1063/1.868164CrossRefGoogle Scholar
  138. D.J. Stensrud, H.E. Brooks, J. Du, M.S. Tracton, E. Rogers, Using ensembles for short-range forecasting. Mon. Weather Rev. 127, 433–446 (1999)CrossRefGoogle Scholar
  139. C. Sutton, T.M. Hamill, T.T. Warner, Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Weather Rev. 134, 3174–3189 (2006)CrossRefGoogle Scholar
  140. O. Talagrand, R. Vautard, B. Strauss, Evaluation of probabilistic prediction systems. in Proceedings, ECMWF Workshop on Predictability (ECMWF, 1997). Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom, pp. 1–25Google Scholar
  141. S. Tang, D. Wang, J. Du, J. Zhou, The experiment of hybrid ensemble forecast approach in short-range forecast for South China rainstorm. J. Appl. Meteorol. Sci. 26(6), 669–679 (2015)Google Scholar
  142. W.J. Tennant, G.J. Shutts, A. Arribas, S.A. Thompson, Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Weather Rev. 139, 1190–1206 (2011).  https://doi.org/10.1175/2010MWR3430.1CrossRefGoogle Scholar
  143. S.E. Theis, A. Hense, U. Damrath, Probabilistic precipitation forecasts from a deterministic model: a pragmatic approach. Meteorol. Appl. 12, 257–268 (2005).  https://doi.org/10.1017/S1350482705001763CrossRefGoogle Scholar
  144. P.D. Thompson, Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 9, 275–295 (1957)CrossRefGoogle Scholar
  145. Z. Toth, E. Kalnay, Ensemble forecasting at NCEP: the generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317–2330 (1993)CrossRefGoogle Scholar
  146. Z. Toth, E. Kalnay, Ensemble forecasting at NCEP: the breeding method. Mon. Weather Rev. 125, 3297–3318 (1997)CrossRefGoogle Scholar
  147. M.S. Tracton, E. Kalnay, Ensemble forecasting at NMC: practical aspects. Weather Forecast. 8, 379–398 (1993)CrossRefGoogle Scholar
  148. M.S. Tracton, J. Du, Z. Toth, H. Juang, Short-range ensemble forecasting (SREF) at NCEP/EMC. Preprints, in 12th Conference on Numerical Weather Prediction (Phoenix, 1998), Am. Meteorol. Soc. pp. 269–272Google Scholar
  149. X. Wang, C.H. Bishop, A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60, 1140–1158 (2003)CrossRefGoogle Scholar
  150. X. Wang, C.H. Bishop, S.J. Julier, Which is better, an ensemble of positive/negative pairs or a centered spherical simplex ensemble? Mon. Weather Rev. 132, 1590–1605 (2004)CrossRefGoogle Scholar
  151. X. Wang, T.M. Hamill, J.S. Whitaker, C.H. Bishop, A comparison of hybrid ensemble transform Kalman filter-optimal interpolation and ensemble square-root filter analysis schemes. Mon. Weather Rev. 135, 1055–1076 (2007)CrossRefGoogle Scholar
  152. X. Wang, D. Barker, C. Snyder, T.M. Hamill, A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon. Wea. Rev. 136, 5116–5131 (2008a).  https://doi.org/10.1175/2008MWR2444.1CrossRefGoogle Scholar
  153. X. Wang, D. Barker, C. Snyder, T.M. Hamill, A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments. Mon. Wea. Rev. 136, 5132–5147 (2008b).  https://doi.org/10.1175/2008MWR2445.1CrossRefGoogle Scholar
  154. X. Wang, T.M. Hamill, J.S. Whitaker, C.H. Bishop, A comparison of the hybrid and EnSRF analysis schemes in the presence of model error due to unresolved scales. Mon. Wea. Rev. 137, 3219–3232 (2009).  https://doi.org/10.1175/2009MWR2923.1CrossRefGoogle Scholar
  155. D. Wang, J. Du, C. Liu, Recongnizing and dealing with uncertainty in weather-related forecasts. Meteorol. Mon. 37(4), 385–392 (2011)Google Scholar
  156. X. Wang, D. Parrish, D. Kleist, J.S. Whitaker, GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: single resolution experiments. Mon. Weather Rev. 141, 4098–4117 (2013).  https://doi.org/10.1175/MWR-D-12-00141.1CrossRefGoogle Scholar
  157. J. Wang, J. Chen, J. Du, Y. Zhang, G. Deng, Sensitivity of ensemble forecast verification to model bias. Mon. Weather Rev., in press 146, 781–796 (2018).  https://doi.org/10.1175/MWR-D-17-0223.1CrossRefGoogle Scholar
  158. T.T. Warner, R.A. Perterson, R.E. Treadon, A tutorial on lateral boundary conditions as a basis and potential serious limitation to regional numerical weather prediction. Bull. Am. Meteorol. Soc. 78, 2599–2617 (1997)CrossRefGoogle Scholar
  159. A. Weaver, P. Courtier, Correlation modeling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127, 1815–1846 (2001).  https://doi.org/10.1002/qj.49712757518CrossRefGoogle Scholar
  160. M. Wei, Z. Toth, R. Wobus, Y. Zhu, C. Bishop, X. Wang, Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A 58, 28–44 (2006)CrossRefGoogle Scholar
  161. M. Wei, Z. Toth, R. Wobus, Y. Zhu, Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A 60, 62–79 (2008)CrossRefGoogle Scholar
  162. M. Wei, C. Rowley, P. Martin, C.N. Barron, G. Jacobs, The US Navy’s RELO ensemble prediction system and its performance in the Gulf of Mexico. Q. J. R. Meteorol. Soc. 140, 1129–1149 (2014).  https://doi.org/10.1002/qj.2199CrossRefGoogle Scholar
  163. A. Weisheimer, T.N. Palmer, F.J. Doblas-Reyes, Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys. Res. Lett. (Climate) 38, L16703 (2011).  https://doi.org/10.1029/2011GL048123CrossRefGoogle Scholar
  164. J. Whitaker, P. Pegion, T. Hamill, Representaing model uncertainty in data assimilation (using ensembles), EMC/NCEP/NOAA seminar (2013). Available at http://www.emc.ncep.noaa.gov/seminars/index.html
  165. R. Wobus, E. Kalnay, Three years of operational prediction of forecast skill. Mon. Weather Rev. 123, 2132–2148 (1995)CrossRefGoogle Scholar
  166. Z. Zhang, T.N. Krishnamurti, A perturbation method for hurricane ensemble prediction. Mon. Weather Rev. 127, 447–469 (1999)CrossRefGoogle Scholar
  167. B. Zhou, J. Du, Fog prediction from a multimodel mesoscale ensemble prediction system. Weather Forecast. 25, 303–322 (2010)CrossRefGoogle Scholar
  168. B. Zhou, J. Du, G. DiMego, Introduction to the NCEP very short range ensemble forecast system (VSREF). in 14th Conference on Aviation, Range, and Aerospace, 90th AMS Annual Meetings (Atlanta, 2010), 17–21 2010. Available at http://www.emc.ncep.noaa.gov/mmb/SREF/VSREF-2010-AMS-J12.3.pdf

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Jun Du
    • 1
  • Judith Berner
    • 7
  • Roberto Buizza
    • 2
  • Martin Charron
    • 8
  • Peter Houtekamer
    • 8
  • Dingchen Hou
    • 1
  • Isidora Jankov
    • 4
  • Mu Mu
    • 3
  • Xuguang Wang
    • 9
  • Mozheng Wei
    • 5
  • Huiling Yuan
    • 6
  1. 1.Environmental Modeling Center/National Centers for Environmental Prediction (NCEP)NOAACollege ParkUSA
  2. 2.European Centre for Medium Range Weather ForecastsReadingUK
  3. 3.Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  4. 4.Cooperative Institute for Research in the AtmosphereEarth System Research Lab (ESRL)/NOAABoulderUSA
  5. 5.Oceanography DivisionNavy Research LaboratoryStennis Space CenterUSA
  6. 6.School of Atmospheric SciencesNanjing UniversityNanjingChina
  7. 7.National Centers for Atmospheric ResearchBoulderUSA
  8. 8.Canadian Meteorological CenterEnvironmental CanadaMontrealCanada
  9. 9.School of MeteorologyThe University of OklahomaNormanUSA

Section editors and affiliations

  • Huiling Yuan
    • 1
  • Zoltan Toth
    • 2
  1. 1.School of Atmospheric Sciences, Nanjing UniversityNanjingChina
  2. 2.Global Systems DivisionEarth System Research Laboratory, National Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations