Skip to main content

Evolution of the Primate Brain

  • Reference work entry
  • First Online:

Abstract

The active intelligence of today’s primates flowered from trends that sculpted primate brain evolution across deep time: an increase in absolute brain size but a decrease in relative brain size (RBS, the ratio of brain size to body size) in bigger-bodied compared to smaller-bodied species (reflecting developmental scaling within species), increased RBS in highly “encephalized” species, and increased complexity of brain organization in conjunction with major adaptive shifts and selection for neurological specializations. Indices that quantify encephalization are discussed, as are developmental and physiological factors that constrain brain size. Data are provided which suggest that absolute brain size and RBS increased steadily rather than erratically during the last 3 Ma of hominin evolution, and the “received wisdom” that human frontal lobes are disproportionately enlarged is questioned. Despite the enormous importance attributed to the evolution of primate brain size, the conviction remains that size alone is not enough to account for the observed diversity in primate behavior and that circuitry, neurochemistry, and subsystems (modules) were reorganized within brains to accommodate evolving behavioral repertoires (such as those entailed in language). Arguments about the relative evolutionary merits of brain size versus neurological reorganization are reviewed and, to some extent, reconciled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47:225–245

    Article  CAS  PubMed  Google Scholar 

  • Aboitiz F, Garcia R (1997) The evolutionary origin of the language areas in the brain. A neuroanatomical perspective. Brain Res Rev 25:381–396

    Article  CAS  PubMed  Google Scholar 

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis; the brain and the digestive system inhuman and primate evolution. Curr Anthropol 36:199–221

    Article  Google Scholar 

  • Aiello LC, Bates N, Joffe T (2001) In defense of the expensive tissue hypothesis. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 57–78

    Chapter  Google Scholar 

  • Allen JS, Bruss J, Damasio H (2006) Looking for the lunate sulcus: a magnetic resonance imaging study in modern humans. Anat Rec 288A:867–876

    Article  Google Scholar 

  • Allman J (1977) Evolution of the visual system in the early primates. In: Sprague JM, Epstein AN (eds) Progress in psychology and physiological psychology. Academic, New York, pp 1–53

    Google Scholar 

  • Allman J (1990) Evolution of neocortex. In: Jones EG, Peters A (eds) Cerebral cortex, volume B: Comparative structure and evolution of cerebral cortex. Part II. Plenum Press, New York, pp 269–283

    Chapter  Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitectures and intersubject variability. J Comp Neurol 412:319–341

    Article  CAS  PubMed  Google Scholar 

  • Armstrong E, Clarke MR, Hill EM (1987) Relative size of the anterior thalamic nuclei differentiates anthropoids by social system. Brain Behav Evol 30:263–271

    Article  CAS  PubMed  Google Scholar 

  • Bailey P (1948) Concerning cytoarchitecture of the frontal lobe of chimpanzee (Pan satyrus) and man (Homo sapiens). In: The frontal lobes. The Williams & Wilkins, Baltimore, pp 84–94

    Google Scholar 

  • Bailey P, von Bonin G, McCulloch WS (1950) The isocortex of the chimpanzee brain. The University of Illinois Press, Urbana

    Google Scholar 

  • Balter MA, Gibbons A (2002) Were ‘little people’ the first to venture out of Africa? Science 297:26–27

    Article  CAS  PubMed  Google Scholar 

  • Barton RA (2001) The coordinated structure of mosaic brain evolution (commentary). Behav Brain Sci 24:281–282

    Article  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structures in mammals. Nature 405:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Phil Trans R Soc Lond B 348:381–392

    Article  CAS  Google Scholar 

  • Bauchot R, Stephan H (1966) Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30:160–196

    Article  Google Scholar 

  • Bauchot R, Stephan H (1969) Encephalisation et niveau evolutif chez les simiens. Mammalia 33:235–275

    Article  Google Scholar 

  • Bear D, Schiff D, Saver J, Greenberg M, Freeman R (1986) Quantitative analysis of cerebral asymmetries. Fronto-occipital correlation, sexual dimorphism and association with handedness. Arch Neurol 43:598–603

    Article  CAS  PubMed  Google Scholar 

  • Brown B, Walker A, Ward CV, Leakey RE (1993) New Australopithecus boisei calvaria from East Lake Turkana. Am J Phys Anthropol 91:137–159

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko, Saptomo EW, Due RA (2004) A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  PubMed  Google Scholar 

  • Byrne RW (2000) Evolution of primate cognition. Cogn Sci 24:543–570

    Article  Google Scholar 

  • Cantalupo C, Hopkins WD (2001) Asymmetric Broca’s area in great apes. Nature 414:505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool 190:309–323

    Article  Google Scholar 

  • Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:1392–1401

    CAS  PubMed  Google Scholar 

  • Connolly CJ (1950) External morphology of the primate brain. Charles C Thomas, Springfield

    Google Scholar 

  • Conroy GC, Vannier MW (1985) Endocranial volume determination of matrix-filled fossil skulls using high-resolution computed tomography. In: Tobias PV (ed) Hominid evolution: past, present and future. Alan R. Liss, New York, pp 419–426

    Google Scholar 

  • Conroy GC, Vannier MW, Tobias PV (1990) Endocranial features of Australopithecus africanus revealed by 2- and 3-D computed tomography. Science 247:838–841

    Article  CAS  PubMed  Google Scholar 

  • Conroy GC, Weber GW, Seidler H, Tobias PV, Kane A, Brunsden B (1998) Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. Science 280:1730–1731

    Article  CAS  PubMed  Google Scholar 

  • Crosby EC, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. The Macmillan, New York

    Google Scholar 

  • Dart RA (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115:195–199

    Article  Google Scholar 

  • de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–714

    Article  PubMed  CAS  Google Scholar 

  • Deacon TW (1992) Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Res 573:8–26

    Article  CAS  PubMed  Google Scholar 

  • Deaner RO, Isler K, Burkhart J, Van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70:115–124

    Article  PubMed  Google Scholar 

  • Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384:159–161

    Article  CAS  PubMed  Google Scholar 

  • Dunbar RIM (1998) The evolution of the social brain. Evol Anthropol 6:178–190

    Article  Google Scholar 

  • Dunbar RIM (2003) The social brain: mind, language, and society in evolutionary perspective. Annu Rev Anthropol 32:163–181

    Article  Google Scholar 

  • Falk D (1978) Brain evolution in Old World monkeys. Am J Phys Anthropol 48:315–319

    Article  CAS  PubMed  Google Scholar 

  • Falk D (1980a) A reanalysis of the South African australopithecine natural endocasts. Am J Phys Anthropol 53:525–539

    Article  CAS  PubMed  Google Scholar 

  • Falk D (1980b) Hominid brain evolution: the approach from paleoneurology. Yearb Phys Anthropol 23:93–107

    Article  Google Scholar 

  • Falk D (1981) Comparative study of the endocranial casts of New and Old World monkeys. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 275–292

    Google Scholar 

  • Falk D (1982) Mapping fossil endocasts. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 217–226

    Chapter  Google Scholar 

  • Falk D (1983) A reconsideration of the endocast of Proconsul africanus. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum Press, New York, pp 239–248

    Chapter  Google Scholar 

  • Falk D (1985) Hadar AL 162-28 endocast as evidence that brain enlargement preceded cortical reorganization in hominid evolution. Nature 313:45–47

    Article  CAS  PubMed  Google Scholar 

  • Falk D (1986) Endocranial casts and their significance for primate brain evolution. Comparative primate biology, vol 1, Systematics, evolution, and anatomy. Alan R. Liss, New York, pp 477–490

    Google Scholar 

  • Falk (1987a) Brain lateralization in primates. Yearb Phys Anthropol 30:107–125

    Article  Google Scholar 

  • Falk D (1987b) Hominid paleoneurology. Yearb Phys Anthropol 16:13–30

    Google Scholar 

  • Falk D (1990) Brain evolution in Homo: the “radiator” theory (target article, commentaries and author’s response). Behav Brain Sci 13:333–381

    Article  Google Scholar 

  • Falk D (1997) Brain evolution in females: an answer to Mr. Lovejoy. In: Hager (ed) Women in human evolution. Routledge, London, pp 114–136

    Google Scholar 

  • Falk D (1998) Hominid brain evolution: looks can be deceiving. Science 280:1714

    Article  CAS  PubMed  Google Scholar 

  • Falk D (2000a) Hominid brain evolution and the origins of music. In: Wallin NL, Merker B, Brown S (eds) The origins of music. MIT Press, Cambridge, pp 197–216

    Google Scholar 

  • Falk D (2000b) Primate diversity. WW Norton, New York

    Google Scholar 

  • Falk D (2001) The evolution of sex differences in primate brains. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 98–112

    Chapter  Google Scholar 

  • Falk D (2004a) Braindance, revised and expanded edition. University Press of Florida, Gainesville

    Google Scholar 

  • Falk D (2004b) Hominin brain evolution: new century, new directions. Coll Antropol 28:59–64

    PubMed  Google Scholar 

  • Falk D (2004c) Prelinguistic evolution in early hominins: whence motherese? (target article). Behav Brain Sci 27:491–503

    PubMed  Google Scholar 

  • Falk D (2004d) The “Putting the baby down” hypothesis: bipedalism, babbling, and baby slings (response to commentaries). Behav Brain Sci 27:526–541

    Google Scholar 

  • Falk D (2007) Constraints on brain size: the radiator hypothesis. In: Kaas JH (ed) The evolution of nervous systems. Academic, Oxford, pp 347–354

    Chapter  Google Scholar 

  • Falk D (2009) The natural endocast of Taung (Australopithecus africanus): insights from the unpublished papers of Raymond Arthur Dart. Yearb Phys Anthropol 52:49–65

    Article  Google Scholar 

  • Falk D (2011) The fossil chronicles: how two controversial discoveries changed our view of human evolution. University of California Press, Berkeley

    Google Scholar 

  • Falk D (2012) Hominin paleoneurology: where are we now? In: Hofman MA, Falk D (eds) Evolution of the primate brain: from neuron to behavior, vol 195, Progress in brain research. Elsevier, Amsterdam/New York, pp 255–272

    Chapter  Google Scholar 

  • Falk D (2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front Hum Neurosci 8, 134, doi:10.3389/fnhum.2014.00134

    Google Scholar 

  • Falk D, Dudek B (1993) Mosaic evolution of the neocortex (commentary). Behav Brain Sci 16:701–702

    Article  Google Scholar 

  • Falk D, Gibson KR (2001) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Falk D, Froese N, Sade D, Dudek B (1999) Sex differences in brain/body relationships of rhesus monkeys and humans. J Hum Evol 36:233–238

    Article  CAS  PubMed  Google Scholar 

  • Falk D, Redmond JC Jr, Guyer J, Conroy GC, Recheis W, Weber GW, Seidler H (2000) Early hominid brain evolution: a new look at old endocasts. J Hum Evol 38:695–717

    Article  CAS  PubMed  Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, Prior F (2005) The brain of LB1, Homo floresiensis. Science 308:242–245

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16:13–15

    Article  CAS  PubMed  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  CAS  PubMed  Google Scholar 

  • Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:283–308

    Article  Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (1997) Human brain function. Academic, San Diego

    Google Scholar 

  • Gabunia L, Vekua A, Lordkipanidze D, Swisher CC, Ferring R, Justus A, Nioradze M, Tvalchrelidze M, Anton SC, Bosinski G, Joris O, de Lumley MA, Majsuradze G, Mouskhelishvili A (2000) Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, Pandya DN (1982) Role of architectonics and connections in the study of primate brain evolution. In: Falk D, Armstrong E (eds) Primate brain evolution: methods and concepts. Plenum Press, New York, pp 203–216

    Chapter  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: human like pattern of Wernicke’s brain language area homology. Science 279:220–222

    Article  CAS  PubMed  Google Scholar 

  • Gannon PJ, Kheck NM, Hof PR (2001) Language areas of the hominoid brain: a dynamic communicative shift on the upper east side planum. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 216–240

    Chapter  Google Scholar 

  • Garber PA (2004) New perspectives in primate cognitive ecology. Am J Primatol 62:133–137

    Article  PubMed  Google Scholar 

  • Gibson KR (1986) Cognition, brain size and the extraction of embedded food resources. In: Else JG, Lee PC (eds) Primate ontogeny, cognition, and social behaviour. Cambridge University Press, Cambridge, pp 93–103

    Google Scholar 

  • Gibson KR (2001) Bigger is better; primate rain size in relationship to cognition. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 79–97

    Chapter  Google Scholar 

  • Gould SJ (2001) Size matters and function counts. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp xii–xvii

    Google Scholar 

  • Gurche JA (1982) Early primate brain evolution. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 227–246

    Chapter  Google Scholar 

  • Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142

    Article  CAS  PubMed  Google Scholar 

  • Heffner HE, Heffner RS (1984) Temporal lobe lesions and perception of species-specific vocalizations by macaques. Science 226:75–76

    Article  CAS  PubMed  Google Scholar 

  • Heffner HE, Heffner RS (1986) Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalization by Japanese macaques. J Neurophysiol 56:683–701

    CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Herculano-Houzel S (2012) Neuronal scaling rules for primate brains: the primate advantage. In: Hofman MA, Falk D (eds) Evolution of the primate brain: from neuron to behavior, vol 195, Progress in brain research. Elsevier, Amsterdam/New York, pp 325–340

    Chapter  Google Scholar 

  • Hofman MA (1983) Encephalization in hominids: evidence for the model of punctuationalism. Brain Behav Evol 22:102–117

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA (2001) Brain evolution in hominids: are we at the end of the road? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 113–127

    Chapter  Google Scholar 

  • Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. In: Hofman MA, Falk D (eds) Evolution of the primate brain: from neuron to behavior, vol 195, Progress in brain research. Elsevier, Amsterdam/New York, pp 373–390

    Chapter  Google Scholar 

  • Hofman MA, Falk D (eds) (2012) Evolution of the primate brain: from neuron to behavior, vol 195, Progress in brain research. Elsevier, Amsterdam/New York, pp 2–478

    Google Scholar 

  • Holloway RL (1974) On the meaning of brain size. A review of H.J. Jerison’s 1973 evolution of the brain and intelligence. Science 184:677–679

    Article  Google Scholar 

  • Holloway RL (1979) Brain size, allometry, and reorganization: toward a synthesis. In: Hahn ME, Jensen G, Dudek BC (eds) Development and evolution of brain size: behavioral implications. Academic, New York, pp 59–88

    Chapter  Google Scholar 

  • Holloway RL, Post DG (1982) The relativity of relative brain measures and hominid mosaic evolution. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 57–76

    Chapter  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record volume three brain endocasts the paleoneurological evidence. Wiley-Liss, New York

    Book  Google Scholar 

  • Huffman O (2001) Geologic context and age of the Perning/Mojokerto Homo erectus, East Java. J Hum Evol 40:353–362

    Article  CAS  PubMed  Google Scholar 

  • Jackson WJ, Reite ML, Buxton DF (1969) The chimpanzee central nervous system: a comparative review. Primates Med 4:1–51

    CAS  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jerison HJ (1982) Allometry, brain size, cortical surface, and convolutedness. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 77–84

    Chapter  Google Scholar 

  • Jerison HJ (2001) The study of primate brain evolution: where do we go from here? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 305–337

    Chapter  Google Scholar 

  • Jones KE, MacLarnon AM (2004) Affording larger brains: testing hypotheses of mammalian brain evolution on bats. Am Nat 164:E20–E31

    Article  PubMed  Google Scholar 

  • Kaas JH (1987) The organization and evolution of neocortex. In: Wise SP (ed) Higher brain function: recent explorations of the brain’s emergent properties. Wiley, New York, pp 347–378

    Google Scholar 

  • Kaas JH (1995) The evolution of isocortex. Brain Behav Evol 46:187–196

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Preuss TM (2008) Human brain evolution. In: Squire LR (ed) Fundamental neuroscience. Academic, San Diego, pp 1017–1038

    Google Scholar 

  • Kaskan PM, Finlay BL (2001) Encephalization and its developmental structure: how many ways can a brain get big? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 14–29

    Chapter  Google Scholar 

  • Leigh SR (1992) Cranial capacity evolution in Homo erectus and early Homo sapiens. Am J Phys Anthropol 87:1–13

    Article  CAS  PubMed  Google Scholar 

  • Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Phys Anthropol 62:139–164

    CAS  Google Scholar 

  • LeMay M (1977) Asymmetries of the skull and handedness. Phrenology revisited. J Neurol Sci 32:243–253

    Article  CAS  PubMed  Google Scholar 

  • LeMay M, Billig MS, Geschwind N (1982) Asymmetries of the brains and skulls of nonhuman primates. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 263–277

    Chapter  Google Scholar 

  • MacLeod C (2012) The missing link: evolution of the primate cerebellum. In: Hofman MA, Falk D (eds) Evolution of the primate brain: from neuron to behavior, vol 195, Progress in brain research. Elsevier, Amsterdam/New York, pp 165–187

    Chapter  Google Scholar 

  • Martin RD (1982) Allometric approaches to the evolution of the primate nervous system. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 39–56

    Chapter  Google Scholar 

  • Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Chapman & Hall, London

    Google Scholar 

  • Martin RD (1996) Scaling of the mammalian brain: the maternal energy hypothesis. News Physiol Sci 11:149–156

    Google Scholar 

  • Matano S, Hirasaki E (1997) Volumetric comparisons in the cerebellar complex of anthropoids, with special reference to locomotor types. Am J Phys Anthropol 103:173–183

    Article  CAS  PubMed  Google Scholar 

  • Matano S, Baron G, Stephan H, Frahm H (1985) Volume comparisons in the cerebellar complex of primates II. Cerebellar nuclei. Folia Primatol 44:182–203

    Article  CAS  PubMed  Google Scholar 

  • Milton K (1988) Foraging behavior and the evolution of primate intelligence. In: Byrne R, Whiten A (eds) Machiavellian intelligence. Clarendon, Oxford, pp 285–305

    Google Scholar 

  • Montgomery SH, Capellini I, Barton RA, Mundy NI (2010) Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biol 8(1):9

    Article  PubMed Central  PubMed  Google Scholar 

  • Morwood MJ, Soejono RP, Roberts RG, Sutikna T, Turney CSM, Westaway KE, Rink WJ, Zhao JX, van den Bergh Due RA, Hobbs DR, Moore MW, Bird MI, Fifield LK (2004) Archaeology and age of a new hominin from Flores in Eastern Indonesia. Nature 431:1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Muller RA, Courchesne E, Allen G (1998) The cerebellum: so much more. Science 282:879–880

    Article  CAS  PubMed  Google Scholar 

  • Oxnard CE (2004) Brain evolution: mammals, primates, chimpanzees, and humans. Int J Primatol 25:1127–1158

    Article  Google Scholar 

  • Passingham RE (1973) Anatomical differences between the brain of man and other primates. Brain Behav Evol 7:337–359

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE (1975a) Changes in the size and organization of the brain in man and his ancestors. Brain Behav Evol 11:73–90

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE (1975b) What’s so special about man’s brain? New Sci 68:510–511

    Google Scholar 

  • Passingham RE, Ettlinger G (1974) A comparison of cortical functions in man and the other primates. In: Pfeiffer C, Smythies J (eds) International review of neurobiology. Academic, New York, pp 233–299

    Google Scholar 

  • Petersen M, Beecher M, Zoloth S, Moody D, Stebbins W (1978) Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). Science 202:324–327

    Article  CAS  PubMed  Google Scholar 

  • Petersen MR, Beecher MD, Zoloth SR, Green S, Marler PR, Moody DB, Stebbins WC (1984) Neural lateralization of vocalizations by Japanese macaques: communicative significance is more important than acoustic structure. Behav Neurosci 98:779–790

    Article  CAS  PubMed  Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM (2000) What’s human about the human brain? In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, pp 1219–1234

    Google Scholar 

  • Preuss TM (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 138–164

    Chapter  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310:475–506

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Qi H-X, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci U S A 96:11601–11606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radinsky LB (1972) Endocasts and studies of primate brain evolution. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine, Chicago, pp 175–184

    Google Scholar 

  • Radinsky LB (1974) The fossil evidence of anthropoid brain evolution. Am J Phys Anthropol 41:15–27

    Article  Google Scholar 

  • Radinsky LB (1975) Primate brain evolution. Am Sci 63:656–663

    CAS  PubMed  Google Scholar 

  • Radinsky LB (1979) The fossil record of primate brain evolution (49th James Arthur Lecture). American Museum of Natural History, New York

    Google Scholar 

  • Radinsky LB (1982) Some cautionary notes on making inferences about relative brain size. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 29–37

    Chapter  Google Scholar 

  • Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:1–6

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141

    Article  CAS  Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176

    Article  CAS  PubMed  Google Scholar 

  • Schenker NM, Buxhoeveden DP, Blackmon WL, Amunts K, Zilles K, Semendeferi K (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neurol 510:117–128

    Article  PubMed  Google Scholar 

  • Schultz AH (1956) Postembryonic age changes. In: Hofer H, Schultz AH, Starck D (eds) Primatologia handbook of primatology. S Karger, New York, pp 887–964

    Google Scholar 

  • Semendeferi K (2001) Advances in the study of hominoid rain evolution: magnetic resonance imaging (MRI) and 3-D reconstruction. In: Falk D, Gibson (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 257–289

    Chapter  Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic imaging. J Hum Evol 38:317–332

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Armstrong A, Schleicher A, Zilles K, Van Hoesen GW (1998) Limbic frontal cortex in hominoids: a comparative study of area 13. Am J Phys Anthropol 106:129–155

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224–241

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5:272–276

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K et al (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 5:1485–1497

    Article  Google Scholar 

  • Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR (2003) Variability of Broca’s area homologue in African great apes: implications for language evolution. Anat Rec 271A:276–285

    Article  Google Scholar 

  • Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212:426–454

    Article  PubMed Central  PubMed  Google Scholar 

  • Spoor F, Jeffery N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197:61–76

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan H (1972) Evolution of primate brains: a comparative anatomical investigation. In: Tuttle R (ed) Evolutionary biology of primates. Aldine, Chicago, pp 55–174

    Google Scholar 

  • Stephan H, Bauchot R, Andy OJ (1970) Data on size of the brain and of various brain parts in insectivores and primates. In: Noback CR, Montagna W (eds) Advances in primatology, vol 1, The primate brain. Appleton, New York, pp 289–297

    Google Scholar 

  • Swisher C, Curtis G et al (1994) Age of the earliest known hominids in Java, Indonesia. Science 263:1118–1121

    Article  CAS  PubMed  Google Scholar 

  • Vekua A, Lordkipanidze D, Rightmire GP, Agusti J, Ferring R, Maisuradze G, Mouskhelishvili A, Nioradze M, Ponce de León M, Tappen M, Tvalchrelidze M, Zollikofer C (2002) A new skull of early Homo from Dmanisi, Georgia. Science 297:85–89

    Article  CAS  PubMed  Google Scholar 

  • von Bonin G (1949) Architecture of the precentral motor cortex and some adjacent areas. In: Bucy PC (ed) The precentral motor cortex. University of Illinois Press, Urbana-Champaign, pp 7–82

    Google Scholar 

  • Walker A, Leakey R (1993) The Nariokotome Homo erectus skeleton. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Walker A, Falk D, Smith R, Pickford M (1983) The skull of Proconsul africanus; reconstruction and cranial capacity. Nature 305:525–527

    Article  Google Scholar 

  • Walker AC, Leakey RE, Harris JM, Brown FH (1986) 2.5-Myr Australopithecus boisei from West of Lake Turkana, Kenya. Nature 322:517–522

    Article  Google Scholar 

  • Weidenreich F (1943) The skull of Sinanthropus pekinensis: a comparative study on a primitive hominid skull. Paleontol Sin New Ser D 10:1–485

    Google Scholar 

  • Wood B, Collard M (1999) The human genus. Science 284:65–71

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Schepartz LA, Falk D, Liu W (2005) Endocranial cast of Hexian Homo erectus from South China. Am J Phys Anthropol 130:445–454

    Google Scholar 

  • Zilles K, Armstrong E, Schlaug G, Schleicher A (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Falk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Falk, D. (2015). Evolution of the Primate Brain. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39979-4_37

Download citation

Publish with us

Policies and ethics