Skip to main content

Patterns of Diversification and Extinction

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

The history of life on Earth, from the earliest microscopic cells to the modern world populated by the rich variety of animals, plants, fungi, and microbes, is more than 3,500 Myr long. Documenting the diversity patterns through the Proterozoic and Phanerozoic has been a major task in the past decades and is fraught with many methodological problems. The emerging picture is one of a very irregular increase in diversity. The most significant episodes of diversification occurred during the Cambrian–Ordovician and throughout the Mesozoic–Cenozoic. In the Phanerozoic alone, 5 major and more than 15 smaller mass extinctions disrupted the diversification of life and sometimes drastically altered the way of evolution. There was no common cause for these events, but all were the consequence of large-scale environmental perturbations. There is growing concern that we are currently entering a “Sixth” major extinction, caused by human impact on nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberhan M, Kiessling W (2012) Phanerozoic marine biodiversity: a fresh look at data, methods, patterns and process. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Aboussalam ZS, Becker RT (2011) The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeogr Palaeoclimatol Palaeoecol 304:136–164

    Article  Google Scholar 

  • Adachi N, Ezaki Y, Liu J (2011) Early Ordovician shift in reef construction from microbial to metazoan reefs. Palaios 26:106–114

    Article  Google Scholar 

  • Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci 97:4453–4456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adrain JM, Westrop SR (2003) Paleobiodiversity: we need new data. Paleobiology 29:22–25

    Article  Google Scholar 

  • Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci 109:728–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc Lond B 353:113–130

    Article  Google Scholar 

  • Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 308:1–11

    Article  Google Scholar 

  • Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433:123–27

    Article  CAS  PubMed  Google Scholar 

  • Alroy J (1999) Putting North America’s end-Pleistocene megafaunal mass extinction in context: large-scale analyses of spatial patterns, extinction rates, and size distributions. In: MacPhee RDE (ed) Extinctions in near time: causes, contexts, and consequences. Plenum Press, New York, pp 105–143

    Chapter  Google Scholar 

  • Alroy J (2010) The shifting balance of diversity among major marine animal groups. Science 329:1191–1194

    Article  CAS  PubMed  Google Scholar 

  • Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fürsich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs DK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski JJ Jr, Sommers MG, Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci 98:6261–6266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Ferguson CA, Hanson VL, Jamet CM, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Peters SE, Sessa JA, Simpson C, Tomasovych A, Visaggi CC (2008) Phanerozoic trends in the diversity of marine invertebrates. Science 321:97–100

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater. Science 269:930–935

    Article  CAS  PubMed  Google Scholar 

  • Appel PWU, Moorbath S, Myers JS (2003) Isuasphaera isua (Pflug) revisited. Precambrian Res 126:309–312

    Article  CAS  Google Scholar 

  • Archibald JD (1996) Dinosaur extinction and the end of an era: what the fossils say. Columbia University Press, New York

    Google Scholar 

  • Archibald JD (2011) Extinction and radiation: how the fall of dinosaurs led to the rise of mammals. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Archibald JD, Fastovsky DE (2004) Dinosaur extinction. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. University of California Press, Berkeley, pp 672–684

    Chapter  Google Scholar 

  • Armstrong HA (1996) Biotic recovery after mass extinction: the role of climate and ocean-state in the post-glacial (Late Ordovician-Early Silurian) recovery of the conodonts. In: Hart MB (eds) Biotic recovery from mass extinction events. Geological Society London Special Publication 102. The Geological Society, London, pp 105–117

    Google Scholar 

  • Ausich WI, Bottjer DJ (1982) Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173–174

    Article  CAS  PubMed  Google Scholar 

  • Awramik SM, Sprinkle J (1999) Proterozoic stromatolites: the first marine evolutionary biota. Hist Biol 13:241–253

    Article  Google Scholar 

  • Bambach RK (1977) Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152–167

    Google Scholar 

  • Bambach RK (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities, vol 3, Topics in geobiology. Plenum Press, New York, pp 719–746

    Chapter  Google Scholar 

  • Bambach RK (1993) Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystems. Paleobiology 19:372–397

    Google Scholar 

  • Bambach RK, Knoll AH, Sepkoski JJ Jr (2002) Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci 99:6854–6859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–542

    Article  Google Scholar 

  • Bambach RK, Bush AM, Erwin DH (2007) Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:1–22

    Article  Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Baumiller TK, Salamon MA, Gorzelak P, Mooi R, Messing CG (2010) Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc Natl Acad Sci 107:5893–5896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  CAS  PubMed  Google Scholar 

  • Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible End-Permian impact crater offshore of Northwestern Australia. Science 304:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Becker RT, Gradstein FM, Hammer O (2012) The Devonian period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 559–601

    Chapter  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  CAS  PubMed  Google Scholar 

  • Bengtson S (1994) The advent of animal skeletons. In: Bengtson S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York, pp 412–425

    Google Scholar 

  • Bengtson S, Cunningham JA, Yin C, Donoghue PCJ (2012) A merciful death for the “earliest bilaterian”, Vernanimalcula. Evol Dev 14:421–427

    Article  PubMed  Google Scholar 

  • Benton MJ (1990) Scientific methodologies in collision: the history of the study of the extinction of the dinosaurs. Evol Biol 24:371–400

    Google Scholar 

  • Benton MJ (ed) (1993) The fossil record 2. Chapman & Hall, London

    Google Scholar 

  • Benton MJ (1994) Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern. In: Fraser NC, Sues H-D (eds) The shadow of dinosaurs. Cambridge University Press, Cambridge, pp 366–397

    Google Scholar 

  • Benton MJ (1995) Diversification and extinction in the history of life. Science 268:52–58

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ (1999) The history of life: large databases in palaeontology. In: Harper DAT (ed) Numerical palaeobiology. Wiley, Chichester, pp 249–283

    Google Scholar 

  • Benton MJ (2001) Biodiversity through time. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 211–220

    Chapter  Google Scholar 

  • Benton MJ (2003) When life nearly died: the greatest mass extinction of all times. Thames & Hudson, London

    Google Scholar 

  • Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365

    Article  Google Scholar 

  • Benton MJ, Ruta M, Dunhill AM, Sakamoto M (2013) The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeogr Palaeoclimatol Palaeoecol 372:18–41

    Article  Google Scholar 

  • Berggren WA, Prothero DR (1992) Eocene-Oligocene climatic and biotic evolution: an overview. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 1–28

    Chapter  Google Scholar 

  • Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304:397–437

    Article  CAS  Google Scholar 

  • Berner RA (1998) The carbon cycle and CO2 over Phanerozoic time: the role of land plants. Philos Trans R Soc Lond B 353:75–82

    Article  Google Scholar 

  • Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci 96:10955–10957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildmann RA Jr (2003) Phanerozoic atmospheric oxygen. Ann Rev Earth Planet Sci 31:105–134

    Article  CAS  Google Scholar 

  • Berry WBN, Boucot AJ (1973) Glacio-eustatic control of Late Ordovician-Early Silurian platform sedimentation and faunal changes. Geol Soc Am Bull 84:275–284

    Article  Google Scholar 

  • Bhattacharya D, Yoon HS, Hedges SB, Hackett JD (2009) Eukaryotes (Eukaryota). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 116–120

    Google Scholar 

  • Blair JE (2009) Animals (Metazoa). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 223–230

    Google Scholar 

  • Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:3.1–3.24

    Article  CAS  Google Scholar 

  • Bottjer DJ (2002) Enigmatic Ediacara fossils: ancestors or aliens? In: Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) Exceptional fossil preservation: a unique view on the evolution of marine life. Columbia University Press, New York, pp 11–33

    Google Scholar 

  • Bottjer DJ, Ausich WI (1986) Phanerozoic development of tiering in soft-substrata suspension-feeding communities. Paleobiology 12:400–420

    Google Scholar 

  • Bottjer DJ, Hagadorn JW, Dornbos SQ (2000) The Cambrian substrate revolution. GSA Today 10(9):1–7

    Google Scholar 

  • Bottjer DJ, Droser ML, Sheehan PM, McGhee GR Jr (2001) The ecological architecture of major events in the Phanerozoic history of marine invertebrate life. In: Allmon WD, Bottjer DJ (eds) Evolutionary paleoecology. Columbia University Press, New York, pp 35–61

    Google Scholar 

  • Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) (2002) Exceptional fossil preservation—a unique view on the evolution of marine life. Columbia University Press, New York

    Google Scholar 

  • Boucot AJ (1983) Does evolution take place in an ecological vacuum? J Paleontol 57:1–30

    Google Scholar 

  • Brack A (ed) (1998) The molecular origin of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge

    Google Scholar 

  • Brasier MD (1992) Nutrient-enriched waters and the early skeletal fossil record. J Geol Soc Lond 149:621–629

    Article  CAS  Google Scholar 

  • Brasier M, Antcliffe J (2004) Decoding the Ediacaran enigma. Science 305:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Brasier MD, Lindsay JF (2001) Did supercontinental amalgamation trigger the “Cambrian explosion”? In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 69–89

    Google Scholar 

  • Brasier MD, Green O, Lindsay J, Steele A (2004) Earth’s oldest (_3.5 Ga) fossils and the “Early Eden Hypothesis”: questioning the evidence. Orig Life Evol Biosph 34:257–269

    Article  PubMed  Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the End-Permian mass extinction. Science 325:1118–1121

    Article  CAS  PubMed  Google Scholar 

  • Brenchley PJ (2001) Late ordovician extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 220–223

    Chapter  Google Scholar 

  • Brenchley PJ, Marshall JD, Carden GAF, Robertson DBR, Long DGF, Meidla T, Hints L, Anderson TF (1994) Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–298

    Article  Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476

    Article  CAS  Google Scholar 

  • Brezinski DK, Cecil CB, Skema VW, Kertis CA (2009) Evidence for long-term climate change in Upper Devonian strata of the central Appalachians. Palaeogeogr Palaeoclimatol Palaeoecol 284:315–325

    Article  Google Scholar 

  • Bridgwater D, Allaart JH, Schopf JW, Klein C, Walter ES, Strother P, Knoll AH, Gorman BE (1981) Microfossil-like objects from the Archean of Greenland: a cautionary note. Nature 289:51–53

    Article  Google Scholar 

  • Briggs DEG (1985) Gigantism in Palaeozoic arthropods. Spec Pap Palaeontol 33:1–157

    Google Scholar 

  • Briggs DEG, Fortey RA, Wills MA (1992) Morphological disparity in the Cambrian. Science 256:1670–1673

    Article  CAS  PubMed  Google Scholar 

  • Briggs DEG, Erwin DH, Collier FJ (1994) The fossils of the Burgess Shale. Smithsonian Institution Press, Washington, p 238

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Brusatte SL (2012) Dinosaur paleobiology. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Buatois L, Mangano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Budd GE (2008) The earliest fossil record of the animals and its significance. Philos Trans R Soc B 363:1425–1434

    Article  Google Scholar 

  • Budd GE, Jensen S (2004) The limitations of the fossil record and the dating of the origin of the bilateria. In: Donoghue PCJ, Smith MP (eds) Telling the evolutionary time: molecular clocks and the fossil record. Taylor & Francis, London, pp 166–189

    Google Scholar 

  • Buick R (2001) Life in the Archean. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 13–21

    Chapter  Google Scholar 

  • Buick R, Des Marais DJ, Knoll AH (1995) Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia. Chem Geol 123:153–171

    Article  CAS  PubMed  Google Scholar 

  • Burney DA, Flannery TF (2005) Fifty millenia of catastrophic extinctions after human contact. Trends Ecol Evol 20:395–401

    Article  PubMed  Google Scholar 

  • Burzin MB, Debrenne F, Zhuravlev AY (2001) Evolution of shallow-water level-bottom communities. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 217–237

    Google Scholar 

  • Bush AM, Bambach RK (2004) Did alpha diversity increase through the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112:625–642

    Article  Google Scholar 

  • Bush AM, Bambach RK (2011) Paleoecologic megatrends in marine metazoa. Annu Rev Earth Planet Sci 39:241–269

    Article  CAS  Google Scholar 

  • Bush AM, Markey MJ, Marshall CR (2004) Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling standardization. Paleobiology 30:666–686

    Article  Google Scholar 

  • Bush AM, Bambach RK, Daley GM (2007) Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:76–97

    Article  Google Scholar 

  • Buss LW, Seilacher A (1994) The phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20:1–4

    Google Scholar 

  • Butterfield N (2001) Ecology and evolution of the Cambrian plankton. In: Zhuravlev AY, Riding R (eds) Ecology of the Cambrian radiation. Columbia University Press, New York, pp 200–216

    Google Scholar 

  • Butterfield N (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7

    Article  CAS  PubMed  Google Scholar 

  • Butterfield N (2011) Terminal developments in Ediacaran embryology. Science 334:1655–1656

    Article  CAS  PubMed  Google Scholar 

  • Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian traps and the Permian-Triassic boundary. Science 258:1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Campi MJ (2012) The Permian—a time of major evolutions and revolutions in the history of life. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 705–718

    Chapter  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  CAS  Google Scholar 

  • Caputo MV (1985) Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol 51:291–317

    Article  Google Scholar 

  • Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Chaloner WG (2003) The role of carbon dioxide in plant evolution. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth. Academic, Amsterdam, pp 65–83

    Chapter  Google Scholar 

  • Chan CX, Bhattacharya D (2010) The origin of plastids. Nat Educ 3(9):84

    Google Scholar 

  • Chandler MA, Sohl LE (2000) Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J Geophys Res 105:20737–20756

    Article  CAS  Google Scholar 

  • Chatterjee HJ, Ho SYW, Barnes I, Groves C (2009) Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 9(259):1–19

    Google Scholar 

  • Chen Z-Q, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383

    Article  CAS  Google Scholar 

  • Chen J-Y, Oliveri P, Li CW, Zhou GQ, Gao F, Hagadorn JW, Peterson KJ, Davidson EH (2000) Precambrian animal diversity: putative phosphatized embryos from the Doushantuo formation of China. Proc Natl Acad Sci U S A 97:4457–4462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J-Y, Bottjer DJ, Oliveri P, Dornbos SQ, Gao F, Ruffins S, Chi H, Li C-W, Davidson EH (2004) Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305:218–222

    Article  CAS  PubMed  Google Scholar 

  • Clapham ME, Payne JL (2011) Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:1059–1062

    Article  CAS  Google Scholar 

  • Clapham ME, Shen S, Bottjer DJ (2009) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:32–50

    Article  Google Scholar 

  • Conway Morris S (1993) Ediacaran-like fossils in the Cambrian Burgess Shale-type faunas of North America. Palaeontology 36:593–635

    Google Scholar 

  • Conway Morris S (1998) The crucible of creation. Oxford University Press, Oxford

    Google Scholar 

  • Conway Morris S (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci U S A 97:4426–4429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conway Morris S (2001) Significance of early shells. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 31–40

    Chapter  Google Scholar 

  • Conway Morris S (2003) Life’s solution: inevitable humans in a lonely universe. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cooper RA, Maxwell PA, Crampton JS, Beu AG, Jones CM, Marshall BA (2006) Completeness of the fossil record: estimating losses due to small body size. Geology 34:241–244

    Article  Google Scholar 

  • Copley S, Summons R (2012) Terran metabolism. The first billion years. In: Impey C, Lunine J, Funes J (eds) Frontiers of astrobiology. Cambridge University Press, Cambridge, pp 48–72

    Chapter  Google Scholar 

  • Copper P (1986) Frasnian/Famennian mass extinction and cold-water oceans. Geology 14:835–839

    Article  Google Scholar 

  • Copper P (1988) Ecological succession in Phanerozoic reefs: is it real? Palaios 3:136–152

    Article  Google Scholar 

  • Copper P, Scotese CR (2003) Megareefs in middle Devonian supergreenhouse climates. Geol Soc Am Spec Pap 370:209–230

    Google Scholar 

  • Courtillot V (1990) A volcanic eruption. Sci Am 263(4):53–60

    Article  Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinctions. Cambridge University Press, Cambridge

    Google Scholar 

  • Courtillot V, Gaudemer Y (1996) Effects of mass extinctions on biodiversity. Nature 381:146–148

    Article  CAS  Google Scholar 

  • Cowen R (2013) History of life, 5th edn. Blackwell, Malden

    Google Scholar 

  • Crimes TP (1992) The record of trace fossils across the Proterozoic-Cambrian boundary. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, vol 10, Topics in geobiology. Plenum Press, New York, pp 177–202

    Chapter  Google Scholar 

  • Crimes TP (2001) Evolution of the deep-water benthic community. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 275–297

    Google Scholar 

  • Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind: the Anthropocene. Nature 415:23

    Article  CAS  PubMed  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The Anthropocene. Global Change Newsl 41:17–18

    Google Scholar 

  • D’Hondt S (2005) Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu Rev Ecol Syst 36:295–317

    Article  Google Scholar 

  • Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC, Gordon GW, Knoll AH, Nielsen AT, Schovsbo NH, Canfield DE (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci 107:17011–17915

    Article  Google Scholar 

  • De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634

    Article  CAS  Google Scholar 

  • Deamer DW (2011) First life: discovering the connections between stars, cells, and how life began. University of California Press, Berkeley

    Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    Article  CAS  PubMed  Google Scholar 

  • Deenen MHL, Ruhl M, Krijgsman W, Kuerschner WM, Reitsma M, van Bergen MJ (2010) A new chronology for the end-Triassic mass extinction. Earth Planet Sci Lett 291:113–125

    Article  CAS  Google Scholar 

  • Delabroye A, Vecoli M (2010) The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about Late Ordovician event stratigraphy. Earth Sci Rev 98:269–282

    Article  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Article  CAS  PubMed  Google Scholar 

  • Dornbos SQ, Bottjer DJ (2000) Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution. Geology 28:839–842

    Article  Google Scholar 

  • Dornbos SQ, Bottjer DJ, Chen J-Y (2005) Paleoecology of benthic metazoans in the early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeogr Palaeoclimatol Palaeoecol 220:47–67

    Article  Google Scholar 

  • Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci 101:15386–15391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Droser ML, Bottjer DJ (1989) Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850–852

    Article  Google Scholar 

  • Droser ML, Bottjer DJ (1993) Trends and patterns of Phanerozoic ichnofabrics. Annu Rev Earth Planet Sci 21:205–225

    Article  Google Scholar 

  • Droser ML, Li X (2001) The Cambrian radiation and the diversification of sedimentary fabrics. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 137–169

    Google Scholar 

  • Droser ML, Bottjer DJ, Sheehan PM, McGhee GR Jr (2000) Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675–678

    Article  Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Exp Biol 201:1043–1050

    CAS  PubMed  Google Scholar 

  • Dudley R (2000) The evolutionary physiology of animal flight: paleobiological and present perspectives. Annu Rev Physiol 62:135–155

    Article  CAS  PubMed  Google Scholar 

  • Dyer BD, Obar RA (1994) Tracing the history of eukaryotic cells: the enigmatic smile. Columbia University Press, New York

    Google Scholar 

  • Dzik J (1993) Early metazoan evolution and the meaning of its fossil record. Evol Biol 27:339–386

    Article  Google Scholar 

  • Dzik J (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr Comp Biol (formerly Am Zool) 43:114–126

    Article  Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Article  Google Scholar 

  • Erwin DH (1990) The end-Permian mass extinction. Annu Rev Ecol Syst 21:69–91

    Article  Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis. Life and death in the Permian. Columbia University Press, New York, p 327

    Google Scholar 

  • Erwin DH (1996a) The mother of mass extinctions. Sci Am 275:72–78

    Article  Google Scholar 

  • Erwin DH (1996b) Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. The University of Chicago Press, Chicago, pp 398–418

    Google Scholar 

  • Erwin DH (2001a) Metazoan origins and early evolution. In: Briggs DEG, McCrowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 25–31

    Chapter  Google Scholar 

  • Erwin DH (2001b) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci 98:5399–5403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erwin DH (2003) Impact at the Permo-Triassic boundary: a critical evaluation. Astrobiology 3(1):67–74

    Article  PubMed  Google Scholar 

  • Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton

    Google Scholar 

  • Erwin DH (2007) Disparity: morphological pattern and developmental context. Palaeontology 50:57–73

    Article  Google Scholar 

  • Erwin DH (2009) Climate as a driver of evolutionary change. Curr Biol 19:R575–R583

    Article  CAS  PubMed  Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032

    CAS  PubMed  Google Scholar 

  • Erwin DH, Droser ML (1993) Elvis taxa. Palaios 8:623–624

    Article  Google Scholar 

  • Erwin DH, Valentine JW (2013) The Cambrian explosion: the construction of animal biodiversity. Roberts and Company, Greenwood Village

    Google Scholar 

  • Erwin DH, Bowring SA, Jin YG (2002) End-Permian mass extinctions: a review. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America special paper 356. pp 363–383

    Chapter  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23:967–970

    Article  Google Scholar 

  • Fagerstrom JA (1994) The history of Devonian- Carboniferous reef communities: extinctions, effects, recovery. Facies 30:177–192

    Article  Google Scholar 

  • Fedonkin MA, Waggoner BM (1997) The late Precambrian fossil Kimberella is a mollusk-like bilaterian organism. Nature 388:868

    Article  CAS  Google Scholar 

  • Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P (2007) The rise of animals: evolution and diversification of the kingdom Animalia. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Fenchel T (2002) The origin and early evolution of life. Oxford University Press, Oxford

    Google Scholar 

  • Finnegan S, McClain CM, Kosnik MA, Payne JL (2011) Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252–269

    Article  Google Scholar 

  • Fischer AG (1984) The two Phanerozoic supercycles. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton University Press, Princeton, pp 129–150

    Google Scholar 

  • Fischer WW (2008) Life before the rise of oxygen. Nature 455:1051–1052

    Article  CAS  PubMed  Google Scholar 

  • Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. In: Cook HE, Enos P (eds) Deep water carbonate environments. Society of Economic Paleontologists and Mineralogists special publication 25, SEPM, Tulsa, Oklahoma. pp 18–50

    Google Scholar 

  • Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM special publication 72, SEPM, Tulsa, Oklahoma. pp 691–733

    Google Scholar 

  • Foote M (1997) The evolution of morphological disparity. Annu Rev Ecol Syst 28:129–152

    Article  Google Scholar 

  • Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. Paleobiol Spec Issue 4:74–102

    Article  Google Scholar 

  • Fortey RA, Cocks RM (2005) Late Ordovician global warming—the Boda event. Geology 33:405–408

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic: the history of earth’s climate over the past 600 million years. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frese RRB, Potts LV, Wells SB, Leftwich TE, Kim HR, Kim JW, Golynsky AV, Hernandez O, Gaya-Piqué LR (2009) GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochem Geophys Geosyst 10(2):1–14

    Google Scholar 

  • Gargaud M, Martin H, López-García P, Montmerle T, Pascal R (2012) Young sun, early earth and the origins of life. Springer, Heidelberg

    Book  Google Scholar 

  • Giribet G (2002) Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Mol Phylogenet Evol 24:345–357

    Article  CAS  PubMed  Google Scholar 

  • Glaessner M (1983) The emergence of metazoa in the early history of life. Precambrian Res 290:427–441

    Article  Google Scholar 

  • Glaessner M (1984) The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge

    Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3(1-35):29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history. Norton, New York

    Google Scholar 

  • Gould SJ (1991) The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411–423

    Google Scholar 

  • Gould SJ (1996) Full house: the spread of excellence from Plato to Darwin. Norton, New York

    Book  Google Scholar 

  • Gould SJ (2001) Contingency. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 195–198

    Chapter  Google Scholar 

  • Graham JB, Dudley R, Aguilar N, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120

    Article  CAS  Google Scholar 

  • Greene SE, Martindale RC, Ritterbush KA, Bottjer DJ, Corsetti FA, Berelson WM (2012) Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth Sci Rev 113:72–93

    Article  CAS  Google Scholar 

  • Gregory JT (1955) Vertebrates in the geologic time scale. Geol Soc Am Spec Pap 62:593–608

    Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  CAS  PubMed  Google Scholar 

  • Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359

    Article  Google Scholar 

  • Hagadorn JW, Xiao S, Donoghue PCJ, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Chongyu Y, Zhou C, Yuan X, McFeely MB, Stampanoni M, Nealson KH (2006) Cellular and subcellular structure of Neoproterozoic animal embryos. Science 314:291–294

    Article  CAS  PubMed  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256

    Article  Google Scholar 

  • Hallam A (2002) How catastrophic was the end-Triassic extinction? Lethaia 35:147–157

    Article  Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford, p 320

    Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science 257:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hannisdal B, Peters SE (2011) Phanerozoic Earth system evolution and marine biodiversity. Science 334:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Harper EM (2003) The Mesozoic marine revolution. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator-prey interactions in the fossil record, vol 20, Topics in geobiology. Kluwer Academic/Plenum, New York, pp 433–455

    Chapter  Google Scholar 

  • Harper DAT (2006a) The Ordovician biodiversification: setting an agenda for marine life. Palaeogeogr Palaeoclimatol Palaeoecol 232:148–166

    Article  Google Scholar 

  • Harper EM (2006b) Dissecting post-Palaeozoic arms races. Palaeogeogr Palaeoclimatol Palaeoecol 232:322–343

    Article  Google Scholar 

  • Harrison JF, Kaiser A, VandenBrooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B 277:1937–1946

    Article  PubMed Central  PubMed  Google Scholar 

  • Hedges SB (2004) Molecular clocks and a biological trigger for Neoproterozoic snowball earth events and the Cambrian explosion. In: Donoghue PCJ, Smith MP (eds) Telling the evolutionary time: molecular clocks and the fossil record. Taylor & Francis, London, pp 27–40

    Google Scholar 

  • Hedges SB (2009) Life. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 89–98

    Google Scholar 

  • Hendy AJW (2009) The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:51–62

    Article  Google Scholar 

  • Heydari E, Arzani N, Hassanzadeh J (2008) Mantle plume: the invisible killer – application to the Permian-Triassic boundary mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 264:147–162

    Article  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobson SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Hoffman PF (2009) Pan-glacial – a third state in the climate system. Geol Today 25(3):100–107

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  CAS  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Shrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346

    Article  CAS  PubMed  Google Scholar 

  • Hofmann HJ (1994) Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In: Bengtson S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York, pp 342–357

    Google Scholar 

  • Hofmann HJ, Schopf JW (1983) Early Proterozoic microfossils. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 321–360

    Google Scholar 

  • Holland HD (1994) Early Proterozoic atmospheric change. In: Bengtson S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York, pp 237–244

    Google Scholar 

  • Hooker JJ, Collinson ME, Sille NP (2004) Eocene- oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. J Geol Soc Lond 161:161–172

    Article  Google Scholar 

  • Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth—the impact of the physical environment. Academic, Amsterdam, pp 237–244

    Google Scholar 

  • Hsu KJ, McKenzie JA (1985) A Strangelove ocean in the earliest Tertiary. In: Sundquist ET, Broecker W (eds) The carbon cycle and atmospheric CO2: natural variation Archean to present, vol 32, Geophys Monogr Series., American Geophysical Union, Washington, pp 487–492

    Chapter  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    Article  CAS  PubMed  Google Scholar 

  • Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial Late Permian extinctions. Science 308:398–401

    Article  CAS  PubMed  Google Scholar 

  • Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F, Donoghue PCJ, Bengtson S (2011) Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334:1696–1699

    Article  CAS  PubMed  Google Scholar 

  • Hurlbert S, Archibald JD (1995) No evidence of sudden (or gradual) dinosaur extinction at the K/T boundary. Geology 23:881–884

    Article  Google Scholar 

  • Huynh TT, Poulsen CJ (2004) Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 217:223–242

    Article  Google Scholar 

  • Ivany LC, Nesbitt EA, Prothero DR (2003) The marine Eocene-Oligocene transition: a synthesis. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene-Oligocene transition. Columbia University Press, New York, pp 522–534

    Google Scholar 

  • Jablonski D (1986) Causes and consequences of mass extinctions. In: Elliot DK (ed) Dynamics of extinction. Wiley, New York, pp 183–229

    Google Scholar 

  • Jablonski D (1994) Extinctions in the fossil record. Philos Trans R Soc Lond B 344:11–17

    Article  Google Scholar 

  • Jablonski D (2001) Lessons from the past: evolutionary impacts of mass extinctions. Proc Natl Acad Sci 98:5393–5398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jablonski D (2003) The interplay of physical and biotic factors in macroevolution. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth. Academic, Amsterdam, pp 235–252

    Chapter  Google Scholar 

  • Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS (2003) The impact of the pull of the recent on the history of marine diversity. Science 300:1133–1135

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RJF (1992) Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, vol 10, Topics in geobiology. Plenum Press, New York, pp 131–176

    Chapter  Google Scholar 

  • Jensen S, Droser ML, Gehling JG (2006) A critical look at the Ediacaran trace fossil record. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology, vol 27, Topics in geobiology., Springer, Dordrecht, pp 115–157

    Google Scholar 

  • Jia-Yu R, Xu C, Harper DAT (2002) The latest Ordovician Hirnantia fauna (Brachiopoda) in time and space. Lethaia 35:231–249

    Article  Google Scholar 

  • Johnson CN (2002) Determinants of loss of mammal species during the Late Quarternary “megafauna” extinctions: life history and ecology, but not body size. Proc R Soc Lond B 269:2221–2227

    Article  CAS  Google Scholar 

  • Kauffman EG, Erwin DH (1995) Surviving mass extinctions. Geotimes 40(3):14–17

    Google Scholar 

  • Keller G (2012) The Cretaceous-Tertiary mass extinction, Chicxulub impact, and Deccan volcanism. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 759–793

    Chapter  Google Scholar 

  • Keller G, Adatte T (2011) The end-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Spec Publ 100:1–313

    Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, Stüben D (2003) Multiple impacts across the Cretaceous-Tertiary boundary. Earth Sci Rev 62:327–363

    Article  Google Scholar 

  • Kelley SP (2003) Volcanic inputs. In: Skelton PW (ed) The cretaceous world, The Open University. Cambridge University Press, Cambridge, pp 209–248

    Google Scholar 

  • Kelley PH, Hansen TA (2001) Mesozoic marine revolution. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 94–97

    Chapter  Google Scholar 

  • Kennett JP, Exon NF (2004) Paleoceanographic evolution of the Tasmanian seaway and its climatic implications. In: Exon NF, Kennett JP, Malone M (eds) The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica, vol 151, Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp 345–367

    Chapter  Google Scholar 

  • Kenrick P, Wellman CH, Schneider H, Edgecombe GD (2012) A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos Trans R Soc Lond B 367:519–536

    Article  Google Scholar 

  • Kidwell SM (2005) Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914–917

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low latitude global glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  • Knoll AH (1994) Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Natl Acad Sci 91:6743–6750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knoll AH (1996) Breathing room for early animals. Nature 382:111–112

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH (2013) Systems paleobiology. GSA Bull 125:3–13

    Article  CAS  Google Scholar 

  • Knoll AH, Bambach RK (2000) Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective (supplement to paleobiology 26(4)). Paleontological Society/Allen Press, Lawrence, pp 1–14

    Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Walter MR, Narbonne GM, Christie-Blick N (2004) A new period for the geologic time scale. Science 305:621–622

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B 361:1023–1038

    Article  CAS  Google Scholar 

  • Koch PL, Barnosky AD (2006) Late Quarternary extinctions: state of the debate. Annu Rev Ecol Evol Syst 37:215–250

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climatic disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:11131–11136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Korb KB, Dorin A (2011) Evolution unbound: releasing the arrow of complexity. Biol Philos 26:317–338

    Article  Google Scholar 

  • Kosnik MA, Alroy J, Behrensmeyer AK, Fürsich FT, Gastaldo RA, Kidwell SM, Kowalewski M, Plotnick RE, Rogers RR, Wagner PJ (2011) Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303–331

    Article  Google Scholar 

  • Kouchinsky A, Bengtson S, Runnegar B, Skovsted C, Steiner M, Vendrasco M (2012) Chronology of early Cambrian biomineralization. Geol Mag 149:221–251

    Article  Google Scholar 

  • Kramers JD (2007) Hierarchical Earth accretion and the Hadean Eon. J Geol Soc (Lond) 164:3–17

    Article  CAS  Google Scholar 

  • Krug AZ, Jablonski D, Valentine JW, Roy K (2009) Generation of Earth’s first-order biodiversity pattern. Astrobiology 9:113–124

    Article  PubMed  Google Scholar 

  • Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheehan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 152:173–187

    Article  Google Scholar 

  • Kump LR, Kasting JF, Crane RG (2004) The earth system, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397–400

    Article  CAS  Google Scholar 

  • Labandeira CC (1999) Insects and other hexapods. In: Singer R (ed) Encyclopedia of paleontology, vol 1. Fitzroy Dearborn Publishers, Chicago, pp 603–624

    Google Scholar 

  • Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  CAS  PubMed  Google Scholar 

  • Lamb DM, Awramik SM, Chapman DJ, Zhu S (2009) Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res 173:93–104

    Article  CAS  Google Scholar 

  • Lane A, Janis CM, Sepkoski JJ Jr (2005) Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:21–34

    Article  Google Scholar 

  • Lazcano A (2001) Origin of life. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 3–8

    Chapter  Google Scholar 

  • Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the RNA world, and time. Cell 85:793–796

    Article  CAS  PubMed  Google Scholar 

  • Legendre S, Hartenberger J-L (1992) Evolution of mammalian faunas in Europe during the Eocene and Oligocene. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 516–528

    Google Scholar 

  • Lenton TM (2003) The coupled evolution of life and atmospheric oxygen. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth. Academic, Amsterdam, pp 35–53

    Chapter  Google Scholar 

  • Lenton TM, Crouch M, Johnson M, Pires N, Dolan L (2012) First plants cooled the Ordovician. Nat Geosci 5:86–89

    Article  CAS  Google Scholar 

  • Lieberman BS (2003) Taking the pulse of the Cambrian radiation. Integr Comp Biol (formerly Am Zool) 43:229–237

    Article  Google Scholar 

  • Lilley DMJ, Sutherland J (2011) The chemical origins of life and ist early evolution: an introduction. Philos Trans R Soc Lond B 366:2853–2856

    Article  CAS  Google Scholar 

  • Lloyd GT, Friedman M (2013) A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeogr Palaeoclimatol Palaeoecol 372:5–17

    Article  Google Scholar 

  • Lo C-H, Chung S-L, Lee T-Y, Wu G (2002) Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet Sci Lett 198:449–458

    Article  CAS  Google Scholar 

  • Longrich NR, Bhullar B-AS, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci 109:21396–21401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford, p 324

    Google Scholar 

  • Lucas SG (1994) Triassic tetrapod extinctions and the compiled correlation effect. Can Soc Petrol Geol Mem 17:869–875

    Google Scholar 

  • MacLeod N (1998) Impacts and marine invertebrate extinctions. In: Grady MM, Hutchinson R, McGall GJH, Rotherby DA (eds) Meteorites: flux with time and impact effects. Geological Society of London special paper 140. The Geological Society, London, pp 217–246

    Google Scholar 

  • MacLeod N (2003) The causes of Phanerozoic extinctions. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth. Academic, Amsterdam, pp 253–277

    Chapter  Google Scholar 

  • MacLeod N (2013) The great extinctions: what causes them and how they shape life. Natural History Museum, London

    Google Scholar 

  • MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffrey C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc Lond 154:265–292

    Article  Google Scholar 

  • Madin JS, Alroy J, Aberhan M, Fürsich FT, Kiessling W, Kosnik MA, Wagner PJ (2006) Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science 312:897–900

    Article  CAS  PubMed  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution: life and its environment on the early earth. W. H. Freeman, San Francisco

    Google Scholar 

  • Marshall CR (1990) Confidence intervals on stratigraphic ranges. Paleobiology 16:1–10

    Google Scholar 

  • Marshall CR (2006) Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci 34:355–384

    Article  CAS  Google Scholar 

  • Marshall CR (2010) Marine biodiversity dynamics over deep time. Science 329:1156–1157

    Article  CAS  PubMed  Google Scholar 

  • Martin PS (1984) Prehistoric overkill: a global model. In: Martin PS, Klein RG (eds) Quarternary extinctions. University of Arizona Press, Tucson, pp 354–403

    Google Scholar 

  • Martin F (1993) Acritarchs: a review. Biol Rev Camb Philos Soc 68:475–538

    Article  Google Scholar 

  • Martin RE (1996) Secular increase in nutrient levels through the phanerozoic: implications for productivity, biomass and diversity of the marine biosphere. Palaios 11:209–219

    Article  Google Scholar 

  • Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL (2000) Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288:841–845

    Article  CAS  PubMed  Google Scholar 

  • Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200- million-year-old continental flood basalts of the Central Atlantic magmatic province. Science 284:616–618

    Article  CAS  PubMed  Google Scholar 

  • Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24

    Article  CAS  PubMed  Google Scholar 

  • May RM, Lawton JH, Stork NE (1995) Assessing extinction rates. In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford, pp 1–24

    Google Scholar 

  • McCall GJH (2006) The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion. Earth Sci Rev 77:1–229

    Article  Google Scholar 

  • McClendon JH (1999) The origin of life. Earth Sci Rev 47:71–93

    Article  CAS  Google Scholar 

  • McCollom TM (2013) Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Planet Sci 401:10.1–10.23

    Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557

    Article  PubMed  Google Scholar 

  • McGhee GR Jr (1996) The Late Devonian mass extinction. Columbia University Press, New York

    Google Scholar 

  • McGhee GR Jr (2001) Late Devonian extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 223–226

    Chapter  Google Scholar 

  • McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeoclimatol Palaeoecol 211:289–297

    Article  Google Scholar 

  • McGlone M (2012) The hunters did it. Science 335:1452–1453

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • McKinney ML (2001) Selectivity during extinctions. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 198–202

    Chapter  Google Scholar 

  • McMenamin MAS, McMenamin DLS (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New York

    Google Scholar 

  • McRoberts CA, Krystyn L, Hautmann M (2012) Macrofaunal response to the End-Triassic mass extinction in the West-Tethyan Kössen Basin, Austria. Palaios 27:607–616

    Article  Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s First Law: the tendency for diversity and complexity to increase in evolutionary systems. Chicago University Press, Chicago

    Book  Google Scholar 

  • Melott AL, Bambach RK (2011a) A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology 37:92–112

    Article  Google Scholar 

  • Melott AL, Bambach RK (2011b) A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37:383–408

    Article  Google Scholar 

  • Melott AL, Bambach RK, Petersen KD, McArthur JM (2012) An 62-million-year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? J Geol 120:217–226

    Article  CAS  Google Scholar 

  • Mendelson CV, Schopf JW (1992) Proterozoic and selected Early Cambrian microfossils and microfossil-like objects. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 865–951

    Chapter  Google Scholar 

  • Miller AI (1997) Dissecting global diversity patterns: examples from the Ordovician radiation. Annu Rev Ecol Syst 28:85–104

    Article  CAS  PubMed  Google Scholar 

  • Miller AI (1998) Biotic transitions in global marine diversity. Science 281:1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Miller AI (2000) Conversations about Phanerozoic global diversity. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective (supplement to Paleobiology 26(4)). Paleontological Society/Allen Press, Lawrence, pp 53–73

    Google Scholar 

  • Miller AI (2001) Ordovician radiation. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 49–52

    Chapter  Google Scholar 

  • Miller AI (2003) On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology 29:15–18

    Article  Google Scholar 

  • Miller AI (2004) The Ordovician radiation: towards a new global synthesis. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 380–388

    Google Scholar 

  • Miller AI (2012) The Ordovician radiation: macroevolutionary crossroads of the Phanerozoic. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 49–52

    Google Scholar 

  • Miller SL, Lazcano A (2002) Formation of the building blocks of life. In: Schopf JW (ed) Life’s origin: the beginnings of biological evolution. University of California Press, Berkeley, pp 78–112

    Google Scholar 

  • Monroe JB, Wicander R (2011) The changing earth: exploring geology and evolution, 7th edn. Brooks/Cole, Belmont

    Google Scholar 

  • Mooers AØ, Redfield RJ (1996) Digging up the roots of life. Nature 379:587–588

    Article  CAS  PubMed  Google Scholar 

  • Narbonne GM (2004) Modular construction of early Ediacaran complex life forms. Science 305:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442

    Article  CAS  Google Scholar 

  • Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31:27–30

    Article  Google Scholar 

  • Nedin C (1995) The Emu Bay Shale, a Lower Cambrian fossil Lagerstätte, Kangaroo Island, South Australia. Mem Assoc Australas Palaeontol 18:31–40

    Google Scholar 

  • Nelson DR (2004) Earths formation and first billion years. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 3–27

    Google Scholar 

  • Newell ND (1967) Revolutions in the history of life. Geol Soc Am Spec Pap 89:63–91

    Google Scholar 

  • Nichols DJ, Johnson KR (2008) Plants and the K-T boundary. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2004) Computer models of early land plant evolution. Annu Rev Earth Planet Sci 32:47–66

    Article  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Nisbet EG, Sleep NH (2003) The physical setting for early life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth. Academic, Amsterdam, pp 3–24

    Chapter  Google Scholar 

  • Norris RD (2001) Impact of K-T boundary events on marine life. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 229–231

    Chapter  Google Scholar 

  • Nott MP, Rogers E, Pimm S (1995) Modern extinctions in the kilo-death range. Curr Biol 5(1):14–17

    Article  CAS  PubMed  Google Scholar 

  • Ogg JG, Hinov LA (2012a) Jurassic. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 731–791

    Chapter  Google Scholar 

  • Ogg JG, Hinov LA (2012b) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–854

    Chapter  Google Scholar 

  • Ohmoto O, Watanabe Y, Kumazawa K (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before ∼ 1.8 billion years ago. Nature 429:395–399

    Article  CAS  PubMed  Google Scholar 

  • Olsen PE, Fowell SJ, Cornet B (1990) The Triassic/Jurassic boundary in continental rocks of eastern North America; a progress report. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history: an international conference on impacts, volcanism, and mass mortality. Geological Society of America special paper 247, Boulder, Colorado. pp 585–593

    Google Scholar 

  • Olsen PE, Koeberl C, Huber H, Montanari A, Fowell SJ, Et- Touhani M, Kent DV (2002) The continental Triassic-Jurassic boundary in central Pangea: recent progress and preliminary report of an Ir anomaly. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America special paper 356. Boulder, Colorado, pp 505–522

    Google Scholar 

  • Oró J, Miller SL, Lazcano A (1990) The origin and early evolution of life on earth. Annu Rev Earth Planet Sci 18:317–356

    Article  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  • Pälike H, Norris RD, Herrle JO, Wilson PA, Coxall HK, Lear CH, Shackleton NJ, Tripati AK, Wade BS (2006) The heartbeat of the Oligocene climate system. Science 314:1894–1898

    Article  PubMed  CAS  Google Scholar 

  • Parker A (2003) In the blink of an eye: the cause of the most dramatic event in the history of life. Free Press, London

    Google Scholar 

  • Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111

    Article  CAS  Google Scholar 

  • Payne JL, Lehrmann DJ, Wie J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Babcock LE, Cooper RA (2012) The Cambrian period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 437–487

    Chapter  Google Scholar 

  • Pennisi E (2003) Modernizing the tree of life. Science 300:1692–1697

    Article  PubMed  Google Scholar 

  • Peretó J (2011) Origin and evolution of metabolisms. In: Gargaud M, López-García, Martin H (eds) Origins and evolution of life. An astrobiological perspective. Cambridge University Press, Cambridge, pp 270–287

    Google Scholar 

  • Peters SE (2008) Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–630

    Article  CAS  PubMed  Google Scholar 

  • Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583–601

    Article  Google Scholar 

  • Peterson KJ, Butterfield NJ (2005) Origin of the eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci 102:9547–9552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, McPeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci 101:6536–6541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc Lond B 363:1435–1443

    Article  Google Scholar 

  • Pflug HD (1978) Früheste bisher bekannte Lebewesen: Isuasphaera isua n. gen. n. spec. aus der Isua-Serie von Grönland (ca. 3800 Mio. J.). Oberhess Naturwiss Zeitschr 44:131–145

    Google Scholar 

  • Phillips J (1860) Life on the Earth. Macmillan Press, Cambridge

    Google Scholar 

  • Pierrehumbert RT, Abbot DS, Voigt A, Knoll D (2011) Climate of the Neoproterozoic. Annu Rev Earth Planet Sci 39:417–460

    Article  CAS  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  PubMed  Google Scholar 

  • Poag CW, Mankinen E, Norris RD (2003) Late Eocene impacts: geologic record, correlation, and paleoenvironmental consequences. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene-Oligocene transition. Columbia University Press, New York, pp 495–510

    Google Scholar 

  • Porter S (2011) The rise of predators. Geology 39:607–608

    Article  Google Scholar 

  • Poulsen CJ (2003) Absence of runaway ice-albedo feedback in the Neoproterozoic. Geology 31:473–476

    Article  Google Scholar 

  • Prokoph A, Bilali HE, Ernst R (2013) Periodicities in the emplacement of large igneous provinces through the Phanerozoic: relations to ocean chemistry and marine biodiversity evolution. Geosci Front 4:263–276

    Article  CAS  Google Scholar 

  • Prothero DR (1994) The Eocene-Oligocene transition: paradise lost. Columbia University Press, New York

    Google Scholar 

  • Prothero DR (2006) After the dinosaurs: the age of mammals. Indiana University Press, Bloomington

    Google Scholar 

  • Racki G (2005) Toward understanding Late Devonian extinction hypotheses: few answers, many questions. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach. Elsevier, Amsterdam, pp 5–36

    Chapter  Google Scholar 

  • Racki G (2012) The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Acta Palaeontol Pol 57:681–702

    Article  Google Scholar 

  • Rasmussen CMØ, Harper DAT (2011) Did the amalgamation of continents drive the end Ordovician mass extinctions? Palaeogeogr Palaeoclimatol Palaeoecol 311:48–62

    Article  Google Scholar 

  • Raup DM (1972) Taxonomic diversity during the Phanerozoic. Science 177:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Raup DM (1976a) Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279–288

    Google Scholar 

  • Raup DM (1976b) Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289–297

    Google Scholar 

  • Raup DM (1991a) A kill curve for Phanerozoic marine species. Paleobiology 17:37–48

    CAS  PubMed  Google Scholar 

  • Raup DM (1991b) Extinction: bad genes or bad luck? Norton, New York, p 210

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Article  CAS  PubMed  Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci 81:801–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raven J, Skene K (2003) Chemistry of the early oceans: the environment of early life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth—the impact of the physical environment. Academic, Amsterdam, pp 55–64

    Chapter  Google Scholar 

  • Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS III, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339:684–687

    Article  CAS  PubMed  Google Scholar 

  • Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92

    Article  PubMed  CAS  Google Scholar 

  • Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci 102:18497–18501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ridgwell A (2005) A mid-Mesozoic revolution in the regulation of ocean chemistry. Mar Geol 217:339–357

    Article  CAS  Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 21–51

    Chapter  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(suppl 1):179–214

    Article  CAS  Google Scholar 

  • Riding R (2006a) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238

    Article  Google Scholar 

  • Riding R (2006b) Cyanobacterial calcification, carbon dioxide concentrating mechanism, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  CAS  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    Article  CAS  PubMed  Google Scholar 

  • Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210

    Article  CAS  PubMed  Google Scholar 

  • Ronov AB (1983) The earth’s sedimentary shell: quantitative patterns of its structure, composition, and evolution. American Geological Institute (AGI Reprint series 5), Alexandria, pp 1–80

    Google Scholar 

  • Rosslenbroich B (2006) The notion of progress in evolutionary biology – the unresolved problem and an empirical suggestion. Biol Philos 21:41–70

    Article  Google Scholar 

  • Roy K (2001) Pleistocene extinctions. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 234–237

    Chapter  Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2000) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54:349–392

    Article  Google Scholar 

  • Rozanov AY, Zhuravlev AY (1992) The lower Cambrian fossil record of the Soviet Union. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, vol 10, Topics in geobiology. Plenum Press, New York, pp 205–282

    Chapter  Google Scholar 

  • Ruddiman WF (2013) The Anthropocene. Annu Rev Earth Planet Sci 41:4.1–4.24

    Article  CAS  Google Scholar 

  • Sahney S, Benton MJ (2008) Recovery from the most profound mass extinction of all time. Proc R Soc B 275:759–765

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandberg CA, Morrow JR, Ziegler W (2002) Late Devonian sea-level changes, catastrophic events, and mass extinctions. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond, Geological Society of America Special Paper 356, Boulder, Colorad, pp 473–487

    Google Scholar 

  • Schmitz BD, Harper AT, Peucker-Ehrenbrink B, Stouge S, Alwmark C, Cronholm A, Bergstrom SM, Tassinari M, Xiaofeng WF (2008) Asteroid breakup linked to the great Ordovician biodiversification event. Nat Geosci 1:49–53

    Article  CAS  Google Scholar 

  • Schopf JW (1992a) The oldest fossils and what they mean. In: Schopf JW (ed) Major events in the history of life. Jones & Bartlett, Boston, pp 29–63

    Google Scholar 

  • Schopf JW (1992b) Atlas of representative Proterozoic microfossils. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 1055–1117

    Chapter  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (1999) Cradle of life: the discovery of earth’s earliest fossils. Princeton University Press, Princeton

    Google Scholar 

  • Schopf JW (2002) When did life begin? In: Schopf JW (ed) Life’s origin: the beginnings of biological evolution. University of California Press, Berkeley, pp 158–179

    Google Scholar 

  • Schopf JW (2004) Earth’s earliest biosphere: status of the hunt. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 516–539

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archean life. Philos Trans R Soc Lond B 361:869–885

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771

    Article  Google Scholar 

  • Schubert JK, Bottjer DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886

    Article  Google Scholar 

  • Schulte P, Alegret L, Arenilla I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218

    Article  CAS  PubMed  Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239

    Article  Google Scholar 

  • Seilacher A (1992) Vendobionta and psammocorallia: lost constructions of Precambrian evolution. J Geol Soc Lond 149:607–613

    Article  Google Scholar 

  • Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86–93

    Article  Google Scholar 

  • Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:80–83

    Article  CAS  PubMed  Google Scholar 

  • Seldon P, Nudds J (2012) Evolution of fossil ecosystems, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sepkoski JJ Jr (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222–251

    Google Scholar 

  • Sepkoski JJ Jr (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53

    Google Scholar 

  • Sepkoski JJ Jr (1982) A compendium of fossil marine families. Milwaukee Public Mus Contrib Biol Geol 51:1–125

    Google Scholar 

  • Sepkoski JJ Jr (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–267

    Google Scholar 

  • Sepkoski JJ Jr (1990) Periodicity. In: Briggs DEG, Crowther PR (eds) Palaeobiology—a synthesis. Blackwell Scientific, Oxford, pp 171–179

    Google Scholar 

  • Sepkoski JJ Jr (1992) A compendium of fossil marine families, 2nd edn. Milwaukee Public Mus Contrib Biol Geol 83:1–156

    Google Scholar 

  • Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 31–51

    Google Scholar 

  • Sepkoski JJ Jr (1997) Biodiversity: past, present, and future. J Paleontol 71:533–539

    PubMed  Google Scholar 

  • Sepkoski JJ Jr (2002) A compendium of fossil marine animal genera. In: Jablonski D, Foote M (eds). Bull Am Paleontol 363:1–563.

    Google Scholar 

  • Sepkoski JJ Jr, Bambach RK, Raup DM, Valentine JW (1981) Phanerozoic marine diversity and the fossil record. Nature 293:435–437

    Article  Google Scholar 

  • Servais T, Harper DAT, Li J, Munnecke A, Owen AW, Sheehan PM (2009) Understanding the Great Ordovician Biodiversification Event (GOBE): influences of paleogeography, paleoclimate, or paleoecology? GSA Today 19:4–10

    Article  Google Scholar 

  • Servais T, Owen AW, Harper DAT, Kröger B, Munnecke A (2010) The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeogr Palaeoclimatol Palaeoecol 294:99–119

    Article  Google Scholar 

  • Sheehan PM (1996) A new look at ecological evolutionary unites (EEUs). Palaeogeogr Palaeoclimatol Palaeoecol 127:21–32

    Article  Google Scholar 

  • Sheehan PM (2001a) History of marine biodiversity. Geol J 36:231–249

    Article  Google Scholar 

  • Sheehan PM (2001b) The Late Ordovician mass extinction. Annu Rev Ecol Syst 29:331–364

    CAS  Google Scholar 

  • Sheehan PM, Harris MT (2004) Microbialite resurgence after the Late Ordovician extinction. Nature 430:75–78

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao C, Jin Y (2011) Calibrating the end-Permian mass extinction. Science 334:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20:1–14

    Article  CAS  Google Scholar 

  • Shields-Zhou G, Och L (2011) The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 21(3):4–11

    Article  Google Scholar 

  • Shu D-G, Conway Morris S, Han J, Li Y, Zhang X-L, Hua H, Zhang Z-F, Liu J-N, Guo J-F, Yasui K (2006) Lower Cambrian Vendobionts from China and early diploblast evolution. Science 312:731–734

    Article  CAS  PubMed  Google Scholar 

  • Signor PW (1985) Real and apparent trends in species richness through time. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, pp 129–150

    Google Scholar 

  • Signor PW (1990) The geologic history of diversity. Annu Rev Ecol Syst 21:509–539

    Article  Google Scholar 

  • Signor PW, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap 190:291–296

    Google Scholar 

  • Simonson BM (2003) Origin and evolution of large Precambrian iron formations. Geol Soc Am Spec Pap 370:231–244

    Google Scholar 

  • Simpson GG (1960) The history of life. In: Tax S (ed) Evolution after Darwin. vol I: the evolution of life: its origin, history and future. University of Chicago Press, Chicago, pp 117–180

    Google Scholar 

  • Skelton PW (2003) Changing climate and biota—the marine record. In: Skelton PW (ed) The cretaceous world, The Open University. Cambridge University Press, Cambridge, pp 163–184

    Google Scholar 

  • Sleep NH, Bird DK (2007) Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology 5:101–117

    Article  CAS  Google Scholar 

  • Smith AB (2001) Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos Trans R Soc Lond B 356:351–367

    Article  CAS  Google Scholar 

  • Smith AB (2003) Getting the measure of diversity. Paleobiology 29:34–36

    Article  Google Scholar 

  • Smith AB (2007) Marine diversity through the Phanerozoic: problems and prospects. J Geol Soc (Lond) 164:731–745

    Article  Google Scholar 

  • Smith AB, McGowan AJ (2011) The ties linking rock and fossil records and why they are important for paleobiodiversity studies. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil record: implications for biodiversity studies. Geological Society of London special paper 358. The Geological Society, London, pp 1–7

    Google Scholar 

  • Song H, Wignall PB, Tong J, Yin H (2013) Two pulses of extinction during the Permian–Triassic crisis. Nat Geosci 6:52–56

    CAS  Google Scholar 

  • Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Natl Acad Sci 70:1486–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanley SM (1977) Trends, rates, and patterns of evolution in the Bivalvia. In: Hallam A (ed) Patterns of evolution as illustrated by the fossil record, vol 5, Developments in Palaeontology and Stratigraphy. Elsevier, Amsterdam, pp 209–250

    Chapter  Google Scholar 

  • Stanley SM (1988) Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. Am J Sci 288:334–352

    Article  Google Scholar 

  • Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems, vol 17, Topics in geobiology. Academic/Plenum, New York, pp 1–39

    Chapter  Google Scholar 

  • Stanley SM (2009) Earth system history, 3rd edn. Freeman, New York

    Google Scholar 

  • Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical perspectives. Philos Trans R Soc Lond A 369:842–867

    Article  Google Scholar 

  • Stehlin HG (1909) Remarques sur les faunules de mammifères des couches éocènes et oligocènes du Bassin de Paris. Bull Soc Geol Fr 4(9):488–520

    Google Scholar 

  • Steiper ME, Young NM (2009) Primates (Primates). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 482–486

    Google Scholar 

  • Stigall AL (2012) Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22:4–9

    Article  Google Scholar 

  • Stokstad E (2004) Controversial fossil could shed light on early animals’ blueprint. Science 304:1425

    Article  CAS  PubMed  Google Scholar 

  • Storch V, Welsch U, Wink M (2013) Evolutionsbiologie, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the early Triassic greenhouse. Science 338:366–370

    Article  CAS  PubMed  Google Scholar 

  • Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65:103–139

    Article  CAS  Google Scholar 

  • Taylor PD (2004) Extinction and the fossil record. In: Taylor PD (ed) Extinctions in the history of life. Cambridge University Press, Cambridge, pp 1–34

    Chapter  Google Scholar 

  • Taylor WR (2005) Stirring the primordial soup. RNA world: does changing the direction of replication make RNA life viable? Nature 434:705

    Article  CAS  PubMed  Google Scholar 

  • Taylor SR (2007) The formation of the earth and moon. In: Van Kranendonk MJ, Smithies RH, Bennett V (eds) Earth’s Oldest Rocks. Developments in Precambrian Geology 15:21–30. Elsevier, Amsterdam

    Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany. The biology and evolution of fossil plants, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Teichert C (1990) The Permian-Triassic boundary revisited. In: Kauffman EG, Walliser OH (eds) Extinction events in earth history. Springer, Berlin, pp 199–238

    Chapter  Google Scholar 

  • Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities, vol 3, Topics in geobiology. Plenum Press, New York, pp 479–595

    Chapter  Google Scholar 

  • Theobald DL (2010) A formal test of the theory of universal common ancestry. Nature 465:219–222

    Article  CAS  PubMed  Google Scholar 

  • Trotter JA, Williams IS, Barnes CR, Lecuyer C, Nicoll RS (2008) Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550–554

    Article  CAS  PubMed  Google Scholar 

  • Twitchett RJ (1999) Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 154:27–37

    Article  Google Scholar 

  • Twitchett RJ (2006) The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 232:190–213

    Article  Google Scholar 

  • Upchurch P, Mannion PD, Benson RBL, Butler RJ, Carrano MT (2011) Geological and anthropogenic controls on the sampling of the terrestrial fossil record: case study from the Dinosauria. In: McGowan AJ, Smith AB (eds) Comparing the rock and fossil records: implications for biodiversity studies, Geological Society Special Publication 358. The Geological Society, London, pp 209–240

    Google Scholar 

  • Valentine JW (1969) Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Paleobiology 12:684–709

    Google Scholar 

  • Valentine JW (ed) (1985) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton

    Google Scholar 

  • Valentine JW (2002) Prelude to the Cambrian explosion. Annu Rev Earth Planet Sci 30:285–306

    Article  CAS  Google Scholar 

  • Valentine JW (2004) On the origin of phyla. Chicago University Press, Chicago

    Google Scholar 

  • Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development 126:851–859

    CAS  PubMed  Google Scholar 

  • Van Kranendonk MJ (2012) A chronostratigraphic division of the Precambrian. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 1. Elsevier, Amsterdam, pp 299–392

    Chapter  Google Scholar 

  • Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124

    Article  CAS  Google Scholar 

  • Vandenberghe N, Hilgen FJ, Speijer RP (2012) The Paleogene period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 855–921

    Chapter  Google Scholar 

  • Vaughan APM (2007) Climate and geology – a Phanerozoic perspective. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society, Special Publications. The Geological Society, London, pp 5–59

    Google Scholar 

  • Ver Straeten CA, Brett CE, Sageman BB (2011) Mudrock sequence stratigraphy: a multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeogr Palaeoclimatol Palaeoecol 304:54–73

    Article  Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258

    Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton

    Google Scholar 

  • Vermeij GJ (1995) Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125–152

    Google Scholar 

  • Vermeij GJ (2004) Nature: an economic history. Princeton University Press, Princeton

    Google Scholar 

  • Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci 93:2155–2158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wacey D (2009) Early life on earth. A practical guide, vol 31, Topics in geobiology. Springer, Heidelberg

    Book  Google Scholar 

  • Wacey D, McLoughlin N, Brasier MD (2009) Looking through windows onto the earliest history of life on Earth and Mars. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Heidelberg, pp 41–68

    Google Scholar 

  • Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289:1307–1308

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B 361:1787–1808

    Article  CAS  Google Scholar 

  • Wade M (1972a) Dickinsonia: Polychaete worms from the late Precambrian Ediacara fauna, South Australia. Mem Qld Mus 16:171–190

    Google Scholar 

  • Wade M (1972b) Hydrozoa and scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology 15:197–225

    Google Scholar 

  • Walliser OH (1996) Global events in the Devonian and carboniferous. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 225–250

    Chapter  Google Scholar 

  • Walter MR (1983) Archaean stromatolites: evidence of the earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 187–213

    Google Scholar 

  • Walter MR (2001) Stromatolites. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 376–379

    Chapter  Google Scholar 

  • Wang SC (2003) On the continuity of background and mass extinction. Paleobiology 29:455–467

    Article  Google Scholar 

  • Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96–100

    Google Scholar 

  • Ward PD (1983) The extinction of ammonites. Sci Am 249:136–147

    Article  Google Scholar 

  • Ward PD (1990) The Cretaceous/Tertiary extinction in the marine realm: a 1990 perspective. Geol Soc Am Spec Pap 247:425–432

    Google Scholar 

  • Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709–714

    Article  CAS  PubMed  Google Scholar 

  • Webby BD (2004) Introduction. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 1–37

    Google Scholar 

  • Westall F (2012) The early earth. In: Impey C, Lunine J, Funes J (eds) Frontiers of astrobiology. Cambridge University Press, Cambridge, pp 89–114

    Chapter  Google Scholar 

  • Westrop SR, Adrain JM (1998) Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:1–16

    Google Scholar 

  • White RV (2002) Earth’s biggest “whodunnit”: unraveling the clues in the case of the end-Permian mass extinction. Philos Trans R Soc Lond A 360:2963–2985

    Article  Google Scholar 

  • Wignall PB (2001a) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  CAS  Google Scholar 

  • Wignall PB (2001b) End-Permian extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 226–229

    Chapter  Google Scholar 

  • Wignall PB (2004) Causes of mass extinction. In: Taylor PD (ed) Extinctions in the history of life. Cambridge University Press, Cambridge, pp 119–150

    Chapter  Google Scholar 

  • Wignall PB (2008) The end-Permian crisis, aftermath and subsequent recovery. In: Okada H, Mawatari SF, Suzuki N, Gautam P (eds) Origin and evolution of natural diversity. Sapporo, Hokkaido University, Hokkaido, pp 43–8

    Google Scholar 

  • Wignall PB, Bond DPG (2008) The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proc Geol Assoc 119:73–84

    Article  Google Scholar 

  • Wignall PB, Hallam A (1999) Lazarus taxa and fossil abundance at times of biotic crisis. J Geol Soc Lond 156:453–456

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end-Permian mass extinction. Science 272:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  CAS  PubMed  Google Scholar 

  • Williams BA, Kay RF, Kirk EC (2010) New perspectives on anthropoid origins. Proc Natl Acad Sci 107:4797–4804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, Oxford

    Google Scholar 

  • Wills MA (2001) Morphological disparity: a primer. In: Adrain JM, Edgecombe GD, Lieberman BS (eds) Fossils, phylogeny, and form, vol 19, Topics in geobiology. Kluwer Academic/Plenum, New York, pp 55–144

    Chapter  Google Scholar 

  • Wills MA, Briggs DEG, Fortey RA (1994) Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology 20:93–130

    Google Scholar 

  • Wilson EO (1994) The diversity of life. Penguin Books, London

    Google Scholar 

  • Wilson MA, Palmer TJ (2001) The Ordovician bioerosion revolution. Geol Soc Am Abstr Prog 33(6):A248

    Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci 95:6854–6859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci 95:8742–8747

    Article  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposals for the domains of Archaea, bacteria, and eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfe AP, Hobbs WO, Birks HH, Briner JP, Holmgren SU, Ingolfsson O, Kaushal SS, Miller GH, Pagani M, Saros JE, Vinebrooke RD (2013) Stratigraphic expressions of the Holocene–Anthropocene transition revealed in sediments from remote lakes. Earth Sci Rev 116:17–34

    Article  CAS  Google Scholar 

  • Wood R, Zhuravlev AY (2012) Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth Sci Rev 115:249–261

    Article  CAS  Google Scholar 

  • Xian-guang H, Aldridge RJ, Bergström J, Siveter DJ, Xiang-hong F (2004) The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell, Malden, p 233

    Google Scholar 

  • Xiao S (2013) Muddying the waters. Nature 493:28–29

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40

    Article  PubMed  Google Scholar 

  • Xiao SH, Zhang Y, Knoll AH (1998) Three dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558

    Article  CAS  Google Scholar 

  • Young GM (2004) Earth’s two great Precambrian glaciations: aftermath of the “snowball earth” hypothesis. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 440–448

    Google Scholar 

  • Zachos J, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:61–64

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  CAS  PubMed  Google Scholar 

  • Zalasiewicz J, Crutzen PJ, Steffen W (2012) The Anthropocene. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 1033–1040

    Chapter  Google Scholar 

  • Zambito JJ, Brett CE, Baird GC (2012) The Late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 677–703

    Chapter  Google Scholar 

  • Zhuravlev AY, Riding R (eds) (2001) The ecology of the Cambrian radiation. Columbia University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Etter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Etter, W. (2015). Patterns of Diversification and Extinction. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39979-4_16

Download citation

Publish with us

Policies and ethics