Skip to main content

Land Surface Hydrological Models

  • Reference work entry
  • First Online:
Handbook of Hydrometeorological Ensemble Forecasting
  • 2205 Accesses

Abstract

The details of land-surface models (LSMs) are presented here from the perspective of providing the proper boundary condition to and interaction with a “parent” atmospheric model. Topics include atmospheric forcing to LSMs, land data sets, surface-layer turbulence, surface fluxes and energy and water budgets, land-surface physics, and the role of the land states and surface fluxes in local land-atmosphere interaction. Connections of LSMs with hydrological models (e.g., saturated zone or groundwater, and streamflow or river-routing) and land data assimilation are outside the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G. Al Nakshabandi, H. Kohnke, Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. Meteorol. 2, 271–279 (1965)

    Article  Google Scholar 

  • M. Barlage, X. Zeng, H. Wei, K.E. Mitchell, A global 0.05 maximum albedo dataset of snow-covered land based on MODIS observations. Geophys. Res. Lett. 32(17), 8851 (2005). https://doi.org/10.1029/2005GL022881

    Article  Google Scholar 

  • A.C.M. Beljaars, F.C. Bosveld, Cabauw data for the validation of land surface parameterization schemes. J. Clim. 10, 1172–1193 (1997)

    Article  Google Scholar 

  • A.C.M. Beljaars, A.A.M. Holtslag, Flux parmeterization over land surfaces for atmospheric models. J. Appl. Meteorol. 30, 327–341 (1991)

    Article  Google Scholar 

  • A.K. Betts, Non-precipitating cumulus convection and its parameterization. Q. J. R. Meteorol. Soc. 99, 178–196 (1973)

    Article  Google Scholar 

  • A. Boone, P. Etchevers, An inter-comparison of three snow schemes of varying complexity coupled to the same land-surface model: Local scale evaluation at an Alpine site, J. Hydrometeorol. 2, 374–394 (2001)

    Article  Google Scholar 

  • A. Boone, V. Masson, T. Meyers, J. Noilhan, The influence of the inclusion of soil freezing on simulations by a soil-vegetation-atmosphere transfer scheme. J. Appl. Meteorol. 39, 1544–1569 (2000)

    Article  Google Scholar 

  • J.A. Businger, J.C. Wyngaard, Y. Izumi, E.F. Bradley, Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189 (1971)

    Article  Google Scholar 

  • S. Chang, D. Hahn, C.-H. Yang, D. Norquist, M. Ek, Validation study of the CAPS model land surface scheme using the 1987 Cabauw/PILPS dataset. J. Appl. Meteorol. 38, 405–422 (1999)

    Article  Google Scholar 

  • F. Chen, K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.Y. Duan, M. Ek, A. Betts, Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. 101, 7251–7268 (1996)

    Article  Google Scholar 

  • R.B. Clapp, G.M. Hornberger, Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978)

    Article  Google Scholar 

  • B.J. Cosby, G.M. Hornberger, R.B. Clapp, T.R. Ginn, A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984)

    Article  Google Scholar 

  • R.H. Cuenca, M. Ek, L. Mahrt, Impact of soil water property parameterization on atmospheric boundary-layer simulation. J. Geophys. Res. 101, 7269–7277 (1996)

    Article  Google Scholar 

  • H.A.R. De Bruin, A model for the Priestley-Taylor parameter α. J. Clim. Appl. Meteorol. 22, 572–578 (1983)

    Article  Google Scholar 

  • P.A. Dirmeyer et al., Verification of land-atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeorol. (2018). https://doi.org/10.1175/JHM-D-17-0152.1

    Article  Google Scholar 

  • M. Ek, R.H. Cuenca, Variation in soil parameters: implications for modeling surface fluxes and atmospheric boundary-layer development. Bound.-Layer Meteorol. 70, 369–383 (1994)

    Article  Google Scholar 

  • M. Ek, A.A.M. Holtslag, Influence of soil moisture on boundary-layer cloud development. J. Hydrometeorol. 5, 86–99 (2004)

    Article  Google Scholar 

  • M. Ek, L. Mahrt, Daytime evolution of relative humidity at the boundary-layer top. Mon. Weather Rev. 122, 2709–2721 (1994)

    Article  Google Scholar 

  • M. Ek, K.E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, J.D. Tarpley, Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res. 108(D22), 8851 (2003). https://doi.org/10.1029/2002JD003296

    Article  Google Scholar 

  • M.A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, X. Huang, MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010). https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  • G. Gutman, On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. J. Geophys. Res. 104, 62416255 (1999). https://doi.org/10.1029/1998JD200106

    Article  Google Scholar 

  • M.C. Hansen, R.S. DeFries, J.R.G. Townshend, R. Sohlberg, Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 21, 13311364 (2000)

    Google Scholar 

  • A.A.M. Holtslag, A.C.M. Beljaars, Surface flux parameterization schemes; developments and experiences at KNMI, in Proceedings of Workshop on Parameterization of Fluxes and Land Surfaces, 24–26 Oct 1988 (ECMWF, Reading, 1989), pp. 121–147. (Also available as KNMI Sci. Rep. 88-06, 27 pp, 1988, De Bilt, Netherlands.)

    Google Scholar 

  • A.A.M. Holtslag, H.A.R. de Bruin, Applied modeling of the night-time surface energy balance over land. J. Appl. Meteorol. 27, 689–704 (1988)

    Article  Google Scholar 

  • A.A.M. Holtslag, M. Ek, Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY. J. Appl. Meteorol. 35, 202–213 (1996)

    Article  Google Scholar 

  • C.M.J. Jacobs, E.J. Moors, H.W. Ter Maat, A.J. Teuling, G. Balsamo, K. Bergaoui, J. Ettema, M. Lange, B.J.J.M. van den Hurk, P. Viterbo, W. Wergen, Evaluation of European Land Data Assimilation system (ELDAs) products using in situ observations. Tellus. 60A(5), 1023–1037 (2008)

    Google Scholar 

  • P.G. Jarvis, The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B 273, 593–610 (1976)

    Article  Google Scholar 

  • P.G. Jarvis, K.G. McNaughton, Stomata1 control of transpiration: scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49 (1986)

    Article  Google Scholar 

  • O. Johansen, Thermal Conductivity of Soils (in Norwegian), Ph.D. thesis, Publ. ADA 044002, Trondheim, 1975. (English translation 637, Cold Reg. Res and Eng. Lab., Hanover, N.H., 1977)

    Google Scholar 

  • V. Koren, J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, J. Baker, A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. 104(D16), 19,569–19,585 (1999)

    Article  Google Scholar 

  • J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteorol. 17, 187–202 (1979)

    Article  Google Scholar 

  • J.-F. Louis, M. Tiedke, J.F. Geleyn, A short history of the operational PBL-parmeterization at ECMWF, in Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parmeterisation, European Centre for Medium-Range Weather Forecasts, Reading, 25–27 Nov 1981 (1982), pp. 59–80

    Google Scholar 

  • V.J. Lunardini, Heat Transfer in Cold Climates (Van Nostrand Reinhold Co., New York, 1981), 731 pp

    Google Scholar 

  • L. Mahrt, Grid-averaged surface fluxes. Mon. Weather. Rev. 115, 1550–1560 (1987)

    Article  Google Scholar 

  • L. Mahrt, M. Ek, The influence of atmospheric stability on potential evaporation. J. Clim. Appl. Meteorol. 23, 222–234 (1984)

    Article  Google Scholar 

  • L. Mahrt, H.-L. Pan, A two-layer model of soil hydrology. Bound.-Layer Meteorol. 29, 1–20 (1984)

    Article  Google Scholar 

  • C.H. Marshall, K.C. Crawford, K.E. Mitchell, D.J. Stensrud, The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: evaluation and testing using Oklahoma Mesonet data. Weather Forecast. 18, 748–768 (2003)

    Article  Google Scholar 

  • M.C. McCumber, R.A. Pielke, Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. 1. Soil layer. J. Geophys. Res. 86(C10), 9929–9938 (1981)

    Article  Google Scholar 

  • J.L. Monteith, Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234 (1965)

    Google Scholar 

  • G.-Y. Niu et al., The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 116, D12109 (2011). https://doi.org/10.1029/2010JD015139

    Article  Google Scholar 

  • J. Noilhan, S. Planton, A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 117, 536–549 (1989)

    Article  Google Scholar 

  • H.-L. Pan, L. Mahrt, Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteorol. 38, 185–202 (1987)

    Article  Google Scholar 

  • C.A. Paulson, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861 (1970)

    Article  Google Scholar 

  • H.L. Penman, Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. Lond. A193, 120–146 (1948)

    Google Scholar 

  • C.D. Peters-Lidard, M.S. Zion, E.F. Wood, A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J. Geophys. Res. 102(D4), 4303–4324 (1997)

    Article  Google Scholar 

  • C.D. Peters-Lidard, E. Blackburn, X. Liang, E.F. Wood, The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci. 55, 1209–1224 (1998)

    Article  Google Scholar 

  • J. Santanello, P.A. Dirmeyer, et al., Land-atmosphere interactions: the LoCo perspective. Bull. Am. Meteorol. Soc. (2017). https://doi.org/10.1175/BAMS-D-17-0001.1

    Article  Google Scholar 

  • J.C. Schaake, V.I. Koren, O.-Y. Duan, K. Mitchell, F. Chen, Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. 101, 7461–7475 (1996)

    Article  Google Scholar 

  • G.E. Schwarz, R.B. Alexander, Soils Data for the Conterminous United States Derived from the NRCS State Soil Geographic (STATSGO) Data Base. Edition: 1.1 (U.S. Geological Survey, Reston, 1995). Publication Date: 19950901

    Google Scholar 

  • T.G. Smirnova, J.M. Brown, S.G. Benjamin, D. Kim, Parameterization of cold season processes in the MAPS land-surface scheme. J. Geophys. Res. 105 (D3) 4077–4086 (2000)

    Article  Google Scholar 

  • J.B. Stewart, Modeling surface conductance of pine forest. Agric. For. Meteorol. 43, 19–35 (1988)

    Article  Google Scholar 

  • H. Tennekes, A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci. 30, 558–567 (1973)

    Article  Google Scholar 

  • USDA (United States Department of Agriculture), Natural Resources Conservation Service, Soil Survey Staff. Web Soil Survey (1995). Available online at http://websoilsurvey.nrcs.usda.gov

  • B.J.J.M. van den Hurk, A.C.M. Beljaars, Impact of some simplifying assumptions in the new ECMWF surface scheme. J. Appl. Meteorol. 35, 1333–1343 (1996)

    Article  Google Scholar 

  • B.J.J.M. van den Hurk, A.A.M. Holtslag, On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Bound.-Layer Meteorol. 82, 119–134 (1997)

    Article  Google Scholar 

  • B.J.J.M. van den Hurk, A. Verhoef, A.R. van den Berg, H.A.R. de Bruin, An intercomparison of three vegetation/soil models for a sparse vineyard canopy. Q. J. R. Meteorol. Soc. 121, 1867–1889 (1995)

    Article  Google Scholar 

  • B.J.J.M. van den Hurk, P. Viterbo, A.C.M. Beljaars, A.K. Betts, Offline validation of the ERA40 surface scheme, European Centre for Medium-Range Weather Forecasts, Technical memorandum No. 295 (ECMWF, Reading, 2000)

    Google Scholar 

  • M.Th. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).

    Google Scholar 

  • A.P. van Ulden, A.A.M. Holtslag, Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Meteorol. 24, 1198–1207 (1985)

    Google Scholar 

  • P. Viterbo, A.C.M. Beljaars, An improved land surface parameterization scheme in the ECMWF model and its validation. J. Clim. 8, 2716–2748 (1995)

    Article  Google Scholar 

  • P. Viterbo, A.C.M. Beljaars, J.-F. Mahfouf, J. Teixeira, The representation of soil moisture freezing and its impact on the stable boundary layer. Q. J. R. Meteorol. Soc. 125, 2401–2426 (1999)

    Article  Google Scholar 

  • E.K. Webb, Profile relationships: the log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 96, 67–90 (1970)

    Article  Google Scholar 

  • P.J. Wetzel, J.-T. Chang, Concerning the relationship between evaporation and soil moisture. J. Clim. Appl. Meteorol. 26, 18–27 (1987)

    Article  Google Scholar 

  • Z.-L. Yang et al., The community Noah land surface model with multi-parameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. 116, D12110 (2011). https://doi.org/10.1029/2010JD015140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Ek .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ek, M.B. (2019). Land Surface Hydrological Models. In: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39925-1_24

Download citation

Publish with us

Policies and ethics