Skip to main content

The Family Phaselicystidaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Phaselicystidaceae belong to the suborder Sorangiineae in the order Myxococcales and are comprised of the monotypic genus Phaselicystis and the monotypic species P. flava. So far, all strains in this family have been isolated from soil samples and decomposing plant materials. The family is morphologically and chemo-physiologically distinct within Sorangiineae, with Polyangiaceae and Sandaracinaceae being closely related families based on 16S rRNA gene phylogenetic analysis. Phaselicystidaceae have a high GC content, typical for myxobacteria. Members of this family are bacteriolytic and non-cellulolytic. The family’s interesting and compelling application includes the production of the polyunsaturated fatty acid omega-6 arachidonic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behrens J, Flossdorf J, Reichenbach H (1976) Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). Int J Syst Bacteriol 26:561–562

    Article  Google Scholar 

  • Bode H, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 33:577–588

    Article  CAS  PubMed  Google Scholar 

  • Bode H, Müller R (2008) Secondary metabolism in myxobacteria. In: Whitworth DE (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC, pp 259–282

    Chapter  Google Scholar 

  • Calder P (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36:1007–1024

    Article  CAS  PubMed  Google Scholar 

  • Drews G (1974) Mikrobiologisches Praktikum, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Fan YY, Chapkin R (1998) Importance of dietary γ-linolenic acid in human health and nutrition. J Nutr 128:1411–1414

    CAS  PubMed  Google Scholar 

  • Fudou R, Jojima Y, Iizuka T, Yamanaka S (2002) Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol 48:109–116

    Article  CAS  PubMed  Google Scholar 

  • Garcia RO, Krug D, Müller R (2009a) Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. In: Hopwood D (ed) Methods in enzymology: complex enzymes in microbial natural product biosynthesis, part A, vol 458. Academic, Burlington, pp 59–91

    Google Scholar 

  • Garcia RO, Reichenbach H, Ring MW, Müller R (2009b) Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 59:1524–1530

    Article  CAS  PubMed  Google Scholar 

  • Garcia R, Gerth K, Stadler M, Dogma IJ Jr, Müller R (2010) Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol 57:878–887

    Article  PubMed  Google Scholar 

  • Garcia R, Pistorius D, Stadler M, Müller R (2011) Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 193:1930–1942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    Article  CAS  PubMed  Google Scholar 

  • Horrocks L, Yeo Y (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  CAS  PubMed  Google Scholar 

  • Kopp M, Irschik H, Gross F, Perlova O, Sandmann A, Gerth K, Müller R (2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107:29–40

    Article  CAS  PubMed  Google Scholar 

  • Mohr KI, Garcia R, Gerth K, Irschik H, Müller R (2012) Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int J Syst Evol Microbiol 62:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H, Höfle G (1993) Biologically active secondary metabolites from myxobacteria. Biotechnol Adv 11:219–277

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H, Höfle G (1999) Myxobacteria as producers of secondary metabolites. In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Berlin, pp 149–179

    Google Scholar 

  • Ringel SM, Greenough RC, Roemer S, Connor D, von Strandtmann M (1977) Abruticin (W7783), a new antifungal antibiotic. J Antibiot 30:371–375

    Article  CAS  PubMed  Google Scholar 

  • Shimkets L, Dworkin M, Reichenbach H (2006) The myxobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn. Springer, Berlin, pp 31–115

    Chapter  Google Scholar 

  • Singh BN (1947) Myxobacteria in soils and compost: their distribution, number and lytic action on bacteria. J Gen Microbiol 1:1–10

    Article  CAS  PubMed  Google Scholar 

  • Spröer C, Reichenbach H, Stackebrandt E (1999) The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255–1262

    Article  PubMed  Google Scholar 

  • Stadler M, Roemer E, Müller R, Garcia RO, Pistorius D, Brachmann A (2010) Production of omega-3 fatty acids by myxobacteria. International Patent WO 2010, 063451A2

    Google Scholar 

  • Warude D, Joshi K, Harsulkar A (2006) Polyunsaturated fatty acids: biotechnology. Crit Rev Biotechnol 26:83–93

    Article  CAS  PubMed  Google Scholar 

  • Weissman KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2135

    Article  CAS  PubMed  Google Scholar 

  • Weissman KJ, Müller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27:1276–1295

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SC, Müller R (2009) The biosynthetic potential of myxobacteria and their impact on drug discovery. Curr Opin Drug Discov Devel 12:220–230

    CAS  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Garcia, R., Müller, R. (2014). The Family Phaselicystidaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_307

Download citation

Publish with us

Policies and ethics