Skip to main content

The Family Nautiliaceae: The Genera Caminibacter, Lebetimonas, and Nautilia

  • Reference work entry
  • First Online:

Abstract

Phylogenetically diverse chemoautotrophic Epsilonproteobacteria occur dominantly in various redoxclines such as deep-sea hydrothermal vents, stratified ocean, terrestrial sulfidic caves, and oil fields. Except the order Nautiliales, the taxonomy of chemoautotrophic Epsilonproteobacteria has not been well established. Nautiliaceae, the sole family within the order Nautiliales, consists of the genera Caminibacter, Nautilia, and Lebetimonas. Members of the family form deeply branched lineages in the 16S rRNA-based phylogenetic tree of Epsilonproteobacteria. They are Gram-negative motile rods with one or more polar flagella and do not form endospores. All members of the family are exclusively found in the close proximity to deep-sea hydrothermal vents. Members of the family are moderate thermophiles growing optimally between 40 °C and 60 °C. Under autotrophic conditions, Nautiliaceae members have an ability to grow anaerobically via respiratory S0 reduction with H2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita M, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, Raguénes G, Cueff V, Cambon-Bonavita M (2002) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Anderson I, Sikorski J, Zeytun A, Nolan M, Lapidus A, Lucas S, Hammon N, Deshpande S, Cheng J, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Huntemann M, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla E, Ngatchou-Djao O, Rohde M, Tindall B, Göker M, Detter J, Woyke T, Bristow J, Eisen J, Markowitz V, Hugenholtz P, Klenk H, Kyrpides N (2011) Complete genome sequence of Nitratifractor salsuginis type strain (E9I37-1). Stand Genomic Sci 4:322–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balch W, Fox G, Magrum L, Woese C, Wolfe R (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell B, Jeanthon C, Kostka J, Luther C, Cary S (2001) Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell B, Smith J, Hanson T, Klotz M, Stein L, Lee C, Wu D, Robinson J, Khouri H, Eisen J, Cary S (2009) Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genet 5:e1000362

    Article  PubMed Central  PubMed  Google Scholar 

  • Corre E, Reysenbach A-L, Prieur D (2001) ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335

    CAS  PubMed  Google Scholar 

  • Giovannelli D, Ferriera S, Johnson J, Kravitz S, Pérez-Rodríguez I, Ricci J, O’Brien C, Voordeckers J, Bini E, Vetriani C (2011) Draft genome sequence of Caminibacter mediatlanticus strain TB-2, an epsilonproteobacterium isolated from a deep-sea hydrothermal vent. Stand Genomic Sci 5:135–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grote J, Schott T, Bruckner C, Glöckner F, Jost G, Teeling H, Labrenz M, Jürgens K (2012) Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA 109:506–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haddad A, Camacho F, Durand P, Cary S (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61:1679–1687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miroshnichenko M, Kostrikina N, L’Haridon S, Jeanthon C, Hippe H, Stackebrandt E, Bonch-Osmolovskaya E (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko M, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya E, Jeanthon C, Stackebrandt E (2004) Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45

    Article  CAS  PubMed  Google Scholar 

  • Moyer C, Dobbs F, Karl D (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount. Hawaii Appl Environ Microbiol 61:1555–1562

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Inagaki F, Takai K, Horikoshi K, Sako Y (2005a) Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:599–605

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005b) Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005c) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Takaki Y (2009) Nonpathogenic Epsilonproteobacteria. Encycl Life Sci a0021895. doi: 10.1002/9780470015902.a0021895

    Google Scholar 

  • Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 104:12146–12150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez I, Ricci J, Voordeckers J, Starovoytov V, Vetriani C (2010) Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 60:1182–1186

    Article  PubMed  Google Scholar 

  • Polz M, Cavanaugh C (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci USA 92:7232–7236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sievert S, Scott K, Klotz M, Chain P, Hauser L, Hemp J, Hügler M, Land M, Lapidus A, Larimer F, Lucas S, Malfatti S, Meyer F, Paulsen I, Ren Q, Simon J, The USF Genomics Class (2008) The genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol 74:1145–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sikorski J, Munk C, Lapidus A, Ngatchou Djao O, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Han C, Cheng J, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Sims D, Meincke L, Brettin T, Detter J, Chen A, Palaniappan K, Land M, Hauser L, Chang Y, Jeffries C, Rohde M, Lang E, Spring S, Göker M, Woyke T, Bristow J, Eisen J, Markowitz V, Hugenholtz P, Kyrpides N, Klenk H (2010) Complete genome sequence of Sulfurimonas autotrophica type strain (OK10). Stand Genomic Sci 3:194–202

    PubMed Central  PubMed  Google Scholar 

  • Smith J, Campbell B, Hanson T, Zhang C, Cary S (2008) Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 58:1598–1602

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur-reducing Archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551

    Article  CAS  PubMed  Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson K, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189

    Article  CAS  PubMed  Google Scholar 

  • Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson K, Horikoshi K (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174

    CAS  PubMed  Google Scholar 

  • Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson K, Horikoshi K (2004) Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voordeckers J, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nakagawa, S., Takai, K. (2014). The Family Nautiliaceae: The Genera Caminibacter, Lebetimonas, and Nautilia. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_276

Download citation

Publish with us

Policies and ethics