Skip to main content

Liquid Crystalline Polymers - Structure and Dynamics

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Polymers and Polymeric Composites: A Reference Series

Abstract

This chapter presents a comprehensive review on the flow behavior of liquid crystalline polymers (LCPs). The work presented here covers the widely known synthetic LCPs and also its biological counterpart denominated as biological liquid crystalline polymers (BLCPs), which have been recently studied extensively due to their multi-functionality and their very interesting material properties. We focus on their flow behavior and the structure of these materials and its coupled dynamics. Theory, modelling, and simulation aspects are provided through two very well-known theories: (i) the Leslie-Ericksen (L-E) and (ii) the Landau – de Gennes (LdG) theory presenting the compatibility of both theories through the projection of the LdG to the L-E theory. Other aspects that are covered in this chapter are defects and textures since they are essential characteristics of these materials and they are known for affecting the flow behavior of liquid crystalline materials. An in-depth review of physical and rheo-physical defects is presented including defect nucleation and coarsening processes. A wide range of applications of the theory and simulations results are also covered which include transient shear responses, linear viscoelasticity, flow birefringence, banded patterns, and banded textures appearing after cessation of shear flow due to stress relaxation processes. Contrast and comparison with experimental data is also included in this chapter. Moreover, applications in the context new material design and development of BLCs based on reported in vivo and in vitro processes are also provided. The applied theory and simulations provide a new way to extract additional information from experimental rheological data and allow to distinguish the role of liquid crystalline properties such as viscoelasticity and anisotropy, flow-alignment, coupling between orientation, kinematics, and flow kinematics. This comprehensive chapter provides a state-of-the-art review in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams M, Dogic Z, Keller SL, Fraden S (1998) Colloids: ordering entropy. Nature 393:349–352

    Article  CAS  Google Scholar 

  • Belamie E, Mosser G, Gobeaux F, Giraud Guille MM (2006) Possible transient liquid crystal phase during the laying out of connective tissues: alpha-chitin and collagen as models. J Phys Condens Matter 18:S115–S129

    Article  CAS  Google Scholar 

  • Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13:2227–2234

    Article  CAS  Google Scholar 

  • Berret JF, Séréro Y, Winkelman B, Calvet D, Collet A, Viguier M (2001) Non-linear rheology of telechelic polymer networks. J Rheol 45:477–492

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1977) Dynamics of Polymeric Liquids. John Wiley & Sons, New York

    Google Scholar 

  • Bouligand Y (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4:189–217

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press, London

    Book  Google Scholar 

  • Davies JM, Viney C (1998) Water-mucin phases: conditions for mucus liquid crystallinity. Thermochim Acta 315:39–49

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Grecov D, Rey AD (2006a) Multiscale theory and simulation for carbon fiber precursors based on carbonaceous mesophases. Plast Rubber Compos 35:276–286

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey, AD (2006b) Back-flow in pulsatile flows of Leslie-Ericksen liquid crystals. Liq Cryst 33:711–712

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2006c) Linear viscoelasticity of textured carbanaceous mesophases. J Braz Chem Soc 17:1109–1116

    Article  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2006d) Pulsatile flows of liquid crystals. J Non-Newtonian Fluid Mech 133:32–45

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2006e) Superposition principles for small amplitude oscillatory shearing of nematic mesophases. Rheol Acta 45:1435–1528

    Google Scholar 

  • de Andrade Lima LRP, Rey AD (2005) Pulsatile flow of discotic mesophases. Chem Eng Sci 60:6622–6636

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2004a) Superposition and universality in the linear viscoelasticity of Leslie-Ericksen liquid crystals. J Rheol 48:1067–1084

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2004b) Assessing flow alignment of nematic liquid crystals through linear viscoelasticity. Phys Rev E 70:011701–0117013

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2004c) Linear viscoelasticity of discotic mesophases. Chem Eng Sci 59:3891–3905

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2004d) Computational modeling in processing flows of carbonaceous mesophases. Carbon 42:1263–1268

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2004e) Poiseuille flow of discotic nematic liquid crystals onion textures. J Non-Newtonian Fluid Mech 119:71–81

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2003a) Poiseuille flow of Leslie-Ericksen discotic liquid crystals: solution multiplicity, multistability, and non-Newtonian rheology. J Non-Newtonian Fluid Mech 110:103–142

    Article  CAS  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2003b) Computational modelling of ring textures in mesophase carbon fibbers. Mater Res 6:285–293

    Article  Google Scholar 

  • de Andrade Lima LRP, Rey AD (2003c) Linear and non-linear viscoelasticity of discotic nematics under transient Poiseuille flows. J Rheol 47:1261–1282

    Article  CAS  Google Scholar 

  • de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Dogic Z, Fraden S (2001) Ordered phases of filamentous viruses. Curr Opin Colloid Interface Sci 11:47–55

    Article  CAS  Google Scholar 

  • Doi M (2013) Soft matter physics. Oxford University Press, London

    Book  Google Scholar 

  • Donald AM, Windle AH, Hanna S (2006) Liquid crystalline polymers (2nd. Aufl.). Cambridge: Cambridge University Press

    Google Scholar 

  • Ericksen JL (1969) A boundary-layer effect in viscometry of liquid crystals. Trans Soc Rheol 13:9–15

    Article  CAS  Google Scholar 

  • Farhoudi Y, Rey AD (1993a) Shear flow of nematics polymers. I. Orienting modes, bifurcations, and steady state rheological predictions. J Rheol 37:289–314

    Article  CAS  Google Scholar 

  • Farhoudi Y, Rey AD (1993b) Shear flow of nematic polymers. II Stationary regimes and start-up dynamics. J Non-Newtonian Fluid Mech 49:175–204

    Article  CAS  Google Scholar 

  • Farhoudi Y, Rey AD (1993c) Ordering effects in shear flows of discotic polymers. Rheol Acta 32:207–217

    Article  CAS  Google Scholar 

  • Fratzl P (2003) Cellulose and collagen: from fibres to tissues. Curr Opin Colloid Interface Sci 8:32

    Article  CAS  Google Scholar 

  • Fratzl P, Giraud-Guille MM (2011) Hierarchy in natural materials. In: Su BL, Sanchez C, Yang XY (eds) Hierarchically Structured Porous Materials. Wiley-VCH, pp 29–39

    Google Scholar 

  • Giraud-Guille MM (1998) Plywood structures in natures. Curr Opin Solid State Mater Sci 3:221–227

    Article  CAS  Google Scholar 

  • Giraud-Guille MM (2005) Bone matrix-like assemblies of collagen: from liquid crystals to gels to biomimetic materials. Micron 36:602–608

    Article  CAS  PubMed  Google Scholar 

  • Grecov D, Rey AD (2003a) Shear-induced textural transitions in flow aligning liquid crystals polymers. Phys Rev E 68:061704–061724

    Article  CAS  Google Scholar 

  • Grecov D, Rey AD (2003b) Theoretical computational rheology for discotic nematic liquid crystals. Mol Cryst Liq Cryst 39:157–194

    Google Scholar 

  • Grecov D, Rey AD (2003c) Transient shear rheology of discotic mesophases. Rheol Acta 42:590–604

    Article  CAS  Google Scholar 

  • Grecov D, Rey AD (2004) Impact of textures on stress growth of thermotropic liquid crystals subjected to step-shear. Rheol Acta 44:135–149

    Article  CAS  Google Scholar 

  • Grecov D, Rey AD (2006) Texture control strategies for flow-aligning, liquid crystal polymers. J Non-Newtonian Fluid Mech 139:197–208

    Article  CAS  Google Scholar 

  • Gupta G, Rey AD (2005a) Texture rules for concentrated filled nematics. Phys Rev Lett 95:127805/1-4

    Google Scholar 

  • Gupta G, Rey AD (2005b) Texture modeling in carbon-carbon composites based on mesophase precursor matrices. Carbon 437:1400–1406

    Google Scholar 

  • Han WH, Rey AD (1994a) Orientation symmetry breakings in shear liquid-crystals. Phys Rev E 50:1688–1691

    Article  CAS  Google Scholar 

  • Han WH, Rey AD (1994b) Dynamic simulations of shear-flow-induced chirality and twisted textures in a nematic polymer. Phys Rev E 49:597–613

    Article  CAS  Google Scholar 

  • Han WH, Rey AD (1995a) Theory and simulation of optical banded textures of nematic polymers during shear flow. Macromolecules 28:8401–8405

    Article  CAS  Google Scholar 

  • Han WH, Rey AD (1995b) Simulation and validation of temperature effects on the nematorheology of aligning and non-aligning liquid crystals. J Rheol 39:301–323

    Article  CAS  Google Scholar 

  • Herrera-Valencia EE, Rey AD (2014) Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells. Phil Trans R Soc A 372:2013.0369

    Article  CAS  Google Scholar 

  • Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003) Microstructure, mechanical and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142:327–333

    Article  PubMed  Google Scholar 

  • Kirkwood JE, Fuller GG (2009) Liquid crystalline collagen: a self-assembled morphology for the orientation of mammalian cells. Langmuir 25:3200–3296

    Article  CAS  PubMed  Google Scholar 

  • Knight DP, Feng D (1994) Interaction of collagen with hydrophobic protein granules in the egg capsule of the dog fish Scyliorhinus canicula. Tissue Cell 26:155–167

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Grecov D, Ogale A, Rey AD (2009) Shear flow induced microstructure of a synthetic mesophase pitch. J Rheol 53:85–113

    Article  CAS  Google Scholar 

  • Kupchinov B, Ermakov S, Rodnenkov V, Bobrysheva S, Beloenko E, Kestelman V (1993) Role of liquid crystals in the lubrication of living joints. Smart Mater Struct 2:7–12

    Article  CAS  Google Scholar 

  • Larson R (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Larson RG, Doi M (1991) Mesoscopic domain theory for textured liquid crystalline polymers. J Rheol 35:539–563

    Article  CAS  Google Scholar 

  • Li J, Revol JF, Marchessault RH (1996) Rheological properties of aqueous suspensions of chitin crystallites. J Colloid Interface Sci 183:365–373

    Article  CAS  PubMed  Google Scholar 

  • Livolant F, Bouligand Y (1978) Double helical arrangement of spread dinoflagellate chromosomes. Chromosoma 68:21–44

    Article  Google Scholar 

  • Livolant F (1991) Ordered phases of DNA in vivo and in vitro. Physica A Stat Mech Appl 176:117–137

    Article  CAS  Google Scholar 

  • Lydon J (2006) Microtubules: nature smartest mesogens-a liquid crystal model for cell division. Liq Cryst Today 15:1–10

    Article  CAS  Google Scholar 

  • Martins AF (2001) Measurement of viscoelastic coefficients for nematic mesophases using magnetic resonance. In: Dunmur DA, Fukuda A, Luckhurst G (eds) Physical properties of liquid crystals: nematics. IEE Publishing, London, pp 405–413

    Google Scholar 

  • Miller AF, Donald AM (2003) Imaging of the isotropic/anisotropic surfaces of aqueous cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4:510–517

    Article  CAS  PubMed  Google Scholar 

  • Murugesan YK, Rey AD (2010) Structure and rheology of fiber–laden membranes via integration of nematodynamics and membranodynamics. J Non-Newtonian Fluid Mech 165:32–44

    Article  CAS  Google Scholar 

  • Murugesan YK, Rey AD (2011) Mechanics of fiber-laden membranes. Contin Mech Thermodyn 23:45–61

    Article  Google Scholar 

  • Murugesan YK, Pasini D, Rey AD (2011) Microfibril organization modes in plant cell walls of variable curvature: a model system for two dimensional anisotropic soft matter. Soft Matter 7:7078–7093

    Article  CAS  Google Scholar 

  • Neville AC (1993) Biology of fibrous composites: development beyond the cell membrane. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Neville AC, Luke BM (1971) A biological system producing a self-assembling cholesteric protein liquid crystal. J Cell Sci 8:93–109

    CAS  PubMed  Google Scholar 

  • Petrov AG (2002) Flexoelectricity of model and living membranes. Biochim Biophys Acta Biomembr 1561:1–25

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  PubMed  Google Scholar 

  • Rey AD (1993a) Analysis of shear-flow effects on liquid-crystalline textures. Mol Cryst Liq Cryst 225:313–335

    Article  CAS  Google Scholar 

  • Rey AD (1993b) Rheological prediction of a transversely isotropic fluid model with extensible microstructure. Rheol Acta 32:447–456

    Article  CAS  Google Scholar 

  • Rey AD, Tsuji T (1988) Recent advances in theoretical liquid crystals in rheology. Macromol Theory Simul 7:623–639

    Article  Google Scholar 

  • Rey AD, Denn MM (2002) Dynamical phenomena in liquid-crystalline materials. Annu Rev Fluid Mech 34:233–266

    Article  Google Scholar 

  • Rey AD (2005) Mechanics of soft solid-liquid crystals interfaces. Phys Rev E 72:011706

    Article  CAS  Google Scholar 

  • Rey AD (2006) Liquid crystals model of membrane flexoelectricity. Virtual J Biol Phys Res 12:011710

    Google Scholar 

  • Rey AD (2007) Capillary models for liquid crystals fibers, membranes, films and drops. Soft Matter 2:1349–1368

    Article  CAS  Google Scholar 

  • Rey AD (2008a) Nonlinear actuator model for flexoelectric membranes. Int J Des Nat Ecodyn 3:28–38

    Article  Google Scholar 

  • Rey AD (2008b) Linear viscoelastic model for bending and torsional modes in fluid membranes. Rheol Acta 47:861–871

    Article  CAS  Google Scholar 

  • Rey AD (2009) Flow and texture and modeling of liquid crystalline materials. Rheol Rev 2008:71–135

    Google Scholar 

  • Rey AD (2010) Liquid crystals model of biological materials and processes. Soft Matter 6:3402–3429

    Article  CAS  Google Scholar 

  • Rey AD, Herrera-Valencia EE (2012) Rheological theory and simulation of surfactant nematic liquid crystals. In: Garti N, Somasundaran P, Mezzenga R (eds) Self-assembled supramolecular architectures: lyotropic liquid crystals. John Wiley & Sons Inc. Hoboken, New Jersey USA

    Google Scholar 

  • Rey AD, Herrera-Valencia EE, Murugesan YK (2014) Structure and dynamics of biological liquid crystals. Liq Cryst 41:430–451

    Article  CAS  Google Scholar 

  • Rey AD, Tsuji T (1998) Recent advances in theoretical liquid crystals rheology. Macromol Theory Simul 7:623–639

    Article  CAS  Google Scholar 

  • Roland J, Reis D, Vian B, Satiat-Jeunemaitre B, Mosiniak M (1987) Morphogenesis of plant cell walls at the supramolecular level: internal geometry and versatility of helicoidal expression. Protoplasma 140:75–91

    Article  Google Scholar 

  • Roux DC, Berret JF, Porte G, Peuvrel-Disdier E, Lindner P (1995) Shear-induced orientation and textures of nematic living polymers. Macromolecules 28:1681–1687

    Article  CAS  Google Scholar 

  • Sharma V, Crne M, Park JO, Srinivasarao M (2009) Structural origin of circularly polarized iridescence in jeweled beetles. Science 325:449–451

    Article  CAS  PubMed  Google Scholar 

  • Soulé ER, Abukhdeir NM, Rey AD (2009) Thermodynamics, transition dynamics, and texturing in polymer-dispersed liquid crystals with mesogens exhibiting a direct isotropic/smectic A transition. Macromolecules 42:9486–9497

    Article  CAS  Google Scholar 

  • Tsuji T, Rey AD (1997) Effect of long range order on sheared liquid crystalline materials. Part I: compatibility between tumbling behaviour and fixed anchoring. J Non-Newtonian Fluid Mech 73:127–152

    Article  CAS  Google Scholar 

  • Tsuji T, Rey AD (1998) Orientation mode selection mechanisms for sheared nematic liquid crystalline materials. Phys Rev E 57:5609–5625

    Article  CAS  Google Scholar 

  • Tsuji T, Rey AD (2000) Effect of long range order on sheared liquid crystalline materials, transition and rheological phase diagrams. Phys Rev E 62:8141–8151

    Article  CAS  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Willcox PJ, Gido SP, Muller W, Kaplan DL (1996) Evidence of a cholesteric liquid crystalline phase in natural silk spinning processes. Macromolecules 29:5106–5110

    Article  CAS  Google Scholar 

  • Wright DC, Mermin ND (1989) Crystalline liquids: the blue phases. Rev Mod Phys 61:385–432

    Article  CAS  Google Scholar 

  • Yan J, Rey AD (2003) Modeling elastic and viscous effects on the texture of ribbon-shaped carbonaceous mesophase fibers. Carbon 41:105–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ADR was supported by the Natural Science and Engineering Research Council of Canada (NSERC), Compute Canada, Calcul Quebec, and McGill University. EEHV gratefully acknowledges financial support of PASPA for the sabbatical research at the Chemical Engineering Department, McGill University and PAPIIT, PAPIME projects IN115919, PE116519 from DGAPA/UNAM, respectively.

OFAG gratefully acknowledges financial support from CONACYT-MEXICO (Doctoral Grant no 313480). This research is dedicated to the memory of my beloved father Emilio Herrera Caballero.

Thank you so much for your help Dr. Edtson Emilio Herrera Valencia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro D. Rey .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rey, A.D., Herrera-Valencia, E.E., Aguilar Gutierrez, O.F. (2020). Liquid Crystalline Polymers - Structure and Dynamics. In: Polymers and Polymeric Composites: A Reference Series. Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_72-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_72-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37179-0

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Liquid Crystalline Polymers - Structure and Dynamics
    Published:
    03 June 2020

    DOI: https://doi.org/10.1007/978-3-642-37179-0_72-2

  2. Original

    Liquid Crystalline Polymers - Structure and Dynamics
    Published:
    11 December 2019

    DOI: https://doi.org/10.1007/978-3-642-37179-0_72-1