Skip to main content

Light-Sensitive Azobenzene-Containing Liquid Crystalline Polymers

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Polymers and Polymeric Composites: A Reference Series

Abstract

Photoresponsive Liquid Crystalline Polymers bear light sensitive units that reversibly undergo transformations between their isomer forms when exposed to light in their absorption bands. These transformations, taking place at the molecular level, influence the electronic molecular structure and as a result the optical absorption of the molecule, a phenomenon that is known as photochromism. This light-induced change of the color of the material is of great interest in the preparation of systems such as optical memories and switches. Besides, the isomerization of the chromophores can lead to motions at the molecular level that can be amplified through cooperative effects typical in liquid crystalline materials resulting in photoinduced effects and properties.

Besides fulgides, diarylethenes, spiropyrans, and spirooxazines, azobenzene molecules have drawn a great deal of attention in combination with liquid crystalline polymers since their synthetic versatility and the promesogenic shape of the thermodinamically stable trans isomer that allows to keep the liquid crystalline phase of the material, in which they are incorporated. The bent shape shown by the light-induced cis isomer strongly distorts the liquid crystalline character of the polymer in which the chromophore is incorporated and can lead to important changes of the material morphology and macroscopic properties.

Rational design of the liquid crystalline polymeric photoresponsive materials has been carried out to exploit their potential in very diverse fields of application. Photoresponsive systems have been optimized due to their potential in (holographic) optical storage. Photoinduced generated surface relief structures with interest in photonic applications have been explored. Photoalignment is being studied as a tool to generate periodic patterns at the nanoscale with interest in nanolithography. Finally, macroscopic motions of film of these materials have shown their potential to generate new robotic functions for soft actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andruzzi L, Altomare A, Ciardelli F, Solaro R, Hvilsted S, Ramanujam PS (1999) Holographic gratings in azobenzene side-chain polymethacrylates. Macromolecules 32:448–454

    Article  CAS  Google Scholar 

  • Bamfield P, Hutchings MG (2010) Chromic phenomena: technological applications of colour chemistry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Bieringer T, Wuttke R, Haarer D, Geßner U, Rübner J (1995) Relaxation of holographic gratings in liquid-crystalline side chain polymers with azo chromophores. Macromol Chem Phys 196:1375–1390

    Google Scholar 

  • Berges C, Gimeno N, Oriol L, Piñol M, Forcén P, Sánchez C, Alcalá R (2012) Photoinduced optical anisotropy in azobenzene containing block copolymer–homopolymer blends. Influence of microstructure and molecular weight. Eur Polym J 48:613–620

    Article  CAS  Google Scholar 

  • Berges C, Javakhishvili I, Hvilsted S, Sánchez-Somolinos C, Alcalá R (2013) Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms. Appl Phys Lett 102:193303

    Article  CAS  Google Scholar 

  • Blasco E, Piñol M, Berges C, Sánchez-Somolinos C, Oriol L (2014) Smart polymers for optical data storage. In: Aguilar MR, San Román JS (eds) Smart polymers and their applications. Elsevier, Cambridge, pp 510–548

    Chapter  Google Scholar 

  • Broer DJ, Boven J, Mol GN, Challa G (1989) In-situ photopolymerization of oriented liquid-crystalline acrylates, 3. Oriented polymer networks from a mesogenic diacrylate. Makromol Chem 190:2255–2268

    Article  CAS  Google Scholar 

  • Camacho-López M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307–310

    Article  PubMed  CAS  Google Scholar 

  • Cviklinski J, Tajbakhsh AR, Terentjev EM (2002) UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E 9:427–434

    Article  CAS  PubMed  Google Scholar 

  • de Haan LT, Sánchez-Somolinos C, Bastiaansen CMW, Schenning APHJ, Broer DJ (2012) Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew Chem Int Ed 51:12469–12472

    Article  CAS  Google Scholar 

  • de Haan LT, Schenning APHJ, Broer DJ (2014) Programmed morphing of liquid crystal networks. Polymer 55:5885–5896

    Article  CAS  Google Scholar 

  • Eich M, Wendorff JH, Reck B, Ringsdorf H (1987) Reversible digital and holographic optical storage in polymeric liquid crystals. Makromol Chem Rapid Commun 8:59–63

    Article  CAS  Google Scholar 

  • Eisenbach CD (1980) Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer 21:1175–1179

    Article  CAS  Google Scholar 

  • Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  CAS  Google Scholar 

  • Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501–015504

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann EK, Zentel R (2013) Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed 52:8810–8827

    Article  CAS  Google Scholar 

  • Frenz C, Fuchs A, Schmidt HW, Theissen U, Haarer D (2004) Diblock copolymers with azobenzene side-groups and polystyrene matrix: synthesis, characterization and photoaddressing. Macromol Chem Phys 205:1246–1258

    Article  CAS  Google Scholar 

  • Häckel M, Kador L, Kropp D, Frenz C, Schmidt HW (2005) Holographic gratings in diblock copolymers with azobenzene and mesogenic side groups in the photoaddressable dispersed phase. Adv Funct Mater 15:1722–1727

    Article  CAS  Google Scholar 

  • Häckel M, Kador L, Kropp D, Schmidt HW (2007) Polymer blends with azobenzene-containing block copolymers as stable rewritable volume holographic media. Adv Mater 19:227–231

    Google Scholar 

  • Hagen R, Bieringer T (2001) Photoaddressable polymers for optical data storage. Adv Mater 13(23):1805–1810

    Article  CAS  Google Scholar 

  • Holme NCR, Nikolova L, Hvilsted S, Rasmussen PH, Berg RH, Ramanujam PS (1999) Optically induced surface relief phenomena in azobenzene polymers. Appl Phys Lett 74:519–521

    Article  CAS  Google Scholar 

  • Hvilsted S, Andruzzi F, Kulinna C, Siesler HW, Ramanujam PS (1995) Novel side-chain liquid crystalline polyester architecture for reversible optical storage. Macromolecules 28:2172–2183

    Article  CAS  Google Scholar 

  • Hvilsted S, Sánchez C, Alcalá R (2009) The volume holographic optical storage potential in azobenzene containing polymers. J Mater Chem 19:6641–6648

    Article  CAS  Google Scholar 

  • Iamsaard S, Aßhoff SJ, Matt B, Kudernac T, Cornelissen JJLM, Fletcher SP, Katsonis N (2014) Conversion of light into macroscopic helical motion. Nat Chem 6:229–235

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Nakano M, Yu Y, Tsutsumi O, Kanazawa A (2003) Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater 15:201–205

    Article  CAS  Google Scholar 

  • Ikeda T, Mamiya JI, Yu Y (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46:506–528

    Article  CAS  Google Scholar 

  • Kim DY, Tripathy SK, Li L, Kumar J (1995) Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl Phys Lett 66:1166–1168

    Article  CAS  Google Scholar 

  • Li MH, Keller P, Li B, Wang X, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:569–572

    Article  CAS  Google Scholar 

  • Liu D, Bastiaansen CWM, den Toonder JMJ, Broer DJ (2012) Photo-switchable surface topologies in chiral nematic coatings. Angew Chem Int Ed 51:892–896

    Article  CAS  Google Scholar 

  • Matharu AS, Jeeva S, Ramanujam PS (2007) Liquid crystals for holographic optical data storage. Chem Soc Rev 36:1868–1813

    Article  CAS  PubMed  Google Scholar 

  • McConney ME, Martinez A, Tondiglia VP, Lee KM, Langley D, Smalyukh II, White TJ (2013) Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv Mater 25:5880–5885

    Article  CAS  PubMed  Google Scholar 

  • Modes CD, Bhattacharya K, Warner M (2010) Disclination-mediated thermo-optical response in nematic glass sheets. Phys Rev E 81:060701–060704

    Article  CAS  Google Scholar 

  • Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T (2006) Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv Mater 18:883–886

    Article  CAS  Google Scholar 

  • Morikawa Y, Kondo T, Nagano S, Seki T (2007) Photoinduced 3D ordering and patterning of microphase-separated nanostructure in polystyrene-based block copolymer. Chem Mater 19:1540–1542

    Article  CAS  Google Scholar 

  • Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4175

    Article  CAS  PubMed  Google Scholar 

  • Okano K, Tsutsumi O, Shishido A, Ikeda T (2006) Azotolane liquid-crystalline polymers: huge change in birefringence by photoinduced alignment change. J Am Chem Soc 128:15368–15369

    Article  CAS  PubMed  Google Scholar 

  • Priimagi A, Shevchenko A (2013) Azopolymer-based micro- and nanopatterning for photonic applications. J Polym Sci B Polym Phys 52:163–182

    Article  CAS  Google Scholar 

  • Priimagi A, Cattaneo S, Ras RHA, Valkama S, Ikkala O, Kauranen M (2005) Polymer−dye complexes: a facile method for high doping level and aggregation control of dye molecules. Chem Mater 17:5798–5802

    Article  CAS  Google Scholar 

  • Priimagi A, Barrett CJ, Shishido A (2014) Recent twists in photoactuation and photoalignment control. J Mater Chem C 2:7155–7162

    Article  CAS  Google Scholar 

  • Rau H (1990) Photoisomerization of azobenzenes. In: Rabeck FJ (ed) Photochemistry and Photophysics. CRC, Boca Raton, pp 119–141

    Google Scholar 

  • Rochon P, Batalla E, Natansohn A (1995) Optically induced surface gratings on azoaromatic polymer films. Appl Phys Lett 66:136–138

    Article  CAS  Google Scholar 

  • Saishoji A, Sato D, Shishido A, Ikeda T (2007) Formation of bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers. Langmuir 23:320–326

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Alcala R, Hvilsted S, Ramanujam PS (2000) Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects. Appl Phys Lett 77:1440–1442

    Article  CAS  Google Scholar 

  • Schnabel W (2007) Polymers and light, fundamentals and technical applications. Wiley, Weinheim

    Book  Google Scholar 

  • Seki T (2014) Meso- and microscopic motions in photoresponsive liquid crystalline polymer films. Macromol Rapid Commun 35:271–290

    Article  CAS  PubMed  Google Scholar 

  • Serak S, Tabiryan N, Vergara R, White TJ, Vaia RA, Bunning TJ (2010) Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6:779–783

    Article  CAS  Google Scholar 

  • Shibaev V, Bobrovsky A, Boiko N (2003) Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog Polym Sci 28:729–836

    Article  CAS  Google Scholar 

  • Tabiryan N, Serak S, Dai X, Bunning T (2005) Polymer film with optically controlled form and actuation. Opt Express 13:7442–7448

    Google Scholar 

  • van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8:677–682

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan NK, Kim DY, Bian S, Williams J, Liu W, Li L, Samuelson L, Kumar J, Tripathy SK (1999) Surface relief structures on azo polymer films. J Mater Chem 9:1941–1955

    Article  CAS  Google Scholar 

  • Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ (2015) Voxelated liquid crystal elastomers. Science 347:982–984

    Article  CAS  PubMed  Google Scholar 

  • Yager KG, Barrett CJ (2009) Azobenzene polymers for photonic applications. In: Zhao Y, Ikeda T (eds) Smart light-responsive materials. Wiley, Hoboken, pp 1–27

    Google Scholar 

  • Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  CAS  Google Scholar 

  • Yu H (2014) Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J Mater Chem C 2:3047–3054

    Article  CAS  Google Scholar 

  • Yu H, Ikeda T (2011) Photocontrollable liquid-crystalline actuators. Adv Mater 23:2149–2180

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Iyoda T, Ikeda T (2006) Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J Am Chem Soc 128:11010–11011

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ikeda T (2009) Smart light-responsive materials. Azobenzene-containing polymers and liquid crystals. Wiley, Hoboken

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Sánchez-Somolinos .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sánchez-Somolinos, C. (2020). Light-Sensitive Azobenzene-Containing Liquid Crystalline Polymers. In: Polymers and Polymeric Composites: A Reference Series. Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_63-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_63-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37179-0

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Light-Sensitive Azobenzene-Containing Liquid Crystalline Polymers
    Published:
    05 June 2020

    DOI: https://doi.org/10.1007/978-3-642-37179-0_63-2

  2. Original

    Light-Sensitive Azobenzene-Containing Liquid Crystalline Polymers
    Published:
    15 October 2019

    DOI: https://doi.org/10.1007/978-3-642-37179-0_63-1