Skip to main content

New Stimuli-Response Liquid Crystalline Polymer Architectures

  • Living reference work entry
  • First Online:
  • 155 Accesses

Abstract

We put together this entry to present a novel liquid crystalline brushlike block copolymer (LCBBC) architecture consisting of norbornenyl functionalized magnetically responsive liquid crystalline (LC) side chains in one block and brushlike semicrystalline PEG side chains in another block. At asymmetric LC block composition (73 wt%), LCBBCs show cylindrical PEG domains embedded in the major matrix having LC order. Molecular, thermal and microstructural characterizations are carried out to gain understanding of polymer structure, hierarchical self-assembly, and PEG crystallization. In order to get more insights on the role of PEG topology in different architectures, LCBBCs are compared with previously reported linear counterparts. LCBBC architecture presents a strong case to obtain magnetically aligned amorphous PEG domains in the LC major matrix for anisotropic ion transport (Li+) to develop electrochemical devices and batteries. Furthermore, norbornene backbones can be UV cross-linked in aligned states by using thiol-ene chemistry to attain robust platform with amorphous PEG domains for the ion transport to envision solid-state electrolyte membranes.

This is a preview of subscription content, log in via an institution.

References

  • Bae J, Kim J-K, Oh N-K, Lee M (2005) Organization of Rigid Wedge-Flexible Coil Block Copolymers into liquid crystalline assembly. Macromolecules 38:4226–4230

    Article  CAS  Google Scholar 

  • Choo Y, Mahajan LH, Gopinadhan M, Ndaya D, Deshmukh P, Kasi RM, Osuji CO (2015) Phase behaviour of Polylactide-based liquid crystalline brush-like block copolymers. Macromolecules 48:8315–8322

    Article  CAS  Google Scholar 

  • Deshmukh P, S-k A, Gopinadhan M, Osuji CO, Kasi RM (2013a) Hierarchically self-assembled photonic materials from liquid crystalline random brush copolymers. Macromolecules 46:4558–4566

    Article  CAS  Google Scholar 

  • Deshmukh P, Ahn SK, Ludovic GM, Kasi RM (2013b) Interplay between liquid crystalline order and microphase segregation on the self-assembly of side-chain liquid crystalline brush block copolymers. Macromolecules 46:8245–8252

    Article  CAS  Google Scholar 

  • Deshmukh P, Gopinadhan M, Choo Y, Ahn SK, Majewski PW, Yoon YS, Bakajin O, Elimelech M, Osuji CO, Kasi RM (2014) Molecular Design of Liquid Crystalline Brush-like Block Copolymers for magnetic field directed self-assembly: a platform for functional materials. Macro Lett 3:462–466

    Article  CAS  Google Scholar 

  • Gopinadhan M, Majewski PW, Osuji CO (2010) Facile alignment of amorphous poly(ethylene oxide) microdomains in a liquid crystalline block copolymer using magnetic fields:toward ordered electrolyte membranes. Macromolecules 43(7):3286–3293

    Article  CAS  Google Scholar 

  • Gopinadhan M, Deshmukh P, Choo Y, Majewski PW, Bakajin O, Elimelech M, Kasi RM, Osuji CO (2014) Thermally switchable aligned Nanopores by magnetic-field directed self-assembly of block copolymers. Adv Mater 26(30):5148–5154

    Article  CAS  Google Scholar 

  • Hamley IW, Castelletto V, Lu ZB, Imrie CT, Itoh T, Al-Hussein M (2004) Interplay between Smectic ordering and microphase separation in a series of side-group liquid-crystal block copolymers. Macromolecules 37:4798–4807

    Article  CAS  Google Scholar 

  • Hammond MR, Mezzenga R (2008) Supramolecular routes towards liquid crystalline side-chain polymers. Soft Matter 4:952–961

    Article  CAS  Google Scholar 

  • He X, Sun W, Yan D, Liang L (2008) Novel ABC2-type liquid-crystalline block copolymers with azobenzene moieties prepared by atom transfer radical polymerization. Eur Polym J 44:42–49

    Article  CAS  Google Scholar 

  • Jia L, Cao A, Levy D, Xu B, Albouy PA, Xing X, Bowick MJ, Li MH (2009) Smectic polymer vesicles. Soft Matter 5:3446–3451

    Article  CAS  Google Scholar 

  • Lee H, Pietrasik J, Sheiko S, Matyjaszewski K (2010) Stimuli-Responsive Molecular Brushes. Prog Polym Sci 35:24–44

    Article  CAS  Google Scholar 

  • Li M, Keller P (2006) Artificial muscles based on liquid crystal elastomers. Phil Trans R Soc A 364:2763–2777

    Article  CAS  Google Scholar 

  • Love JA, Morgan JP, Trnka TM, Grubbs RH (2002) A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. Angew Chem Int Ed 41:4035–4037

    Article  CAS  Google Scholar 

  • Mahajan LH, Ndaya D, Deshmukh P, Peng X, Gopinadhan M, Osuji CO, Kasi RM (2017) Optically active elastomers from liquid crystalline comb copolymers with dual physical and chemical cross-links. Macromolecules 50:5929–5939

    Article  CAS  Google Scholar 

  • Majewski PW, Gopinadhan M, Jang W, Lutkenhaus JL, Osuji CO (2010) Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J Am Chem Soc 132:17516–17522

    Article  CAS  Google Scholar 

  • Mao G, Ober CK (1997) Block copolymers containing liquid crystalline segments. Acta Polym 48:405–422

    Article  CAS  Google Scholar 

  • Rzayev J (2009) Synthesis of polystyrene-polylactide bottlebrush block copolymers and their melt self-assembly into large domain nanostructures. Macromolecules 42:2135–2141

    Article  CAS  Google Scholar 

  • Rzayev J (2012) Molecular bottlebrushes: new opportunities in nanomaterials fabrication. J ACS Macro Lett 1:1146–1149

    Article  CAS  Google Scholar 

  • Schneider A, Zanna J, Yamada M, Finkelmann H, Thomann R (2000) Competition between liquid crystalline phase symmetry and microphase morphology in a chiral smectic liquid crystalline-isotropic block copolymer. Macromolecules 33(3):649–651

    Article  CAS  Google Scholar 

  • Tao YF, Zohar H, Olsen BD, Segalman RA (2007) Hierarchical nanostructure control in rod-coil block copolymers with magnetic fields. Nano Lett 7:2742–2746

    Article  CAS  Google Scholar 

  • Tenneti K, Chen XF, Li CY, Wan XH, Fan XH, Zhou QF, Rong LX, Hsiao BS (2008) Competition between liquid crystallinity and block copolymer self-assembly in core-shell rod-coil block copolymers. Soft Matter 4:458–461

    Article  CAS  Google Scholar 

  • Tenneti K, Chen X, Li CY, Shen Z, Wan X, Fan X, Zhou Q-F, Rong L, Hsiao BS (2009) Influence of LC content on the phase structures of side-chain liquid crystalline block copolymers with bent-Core Mesogens. Macromolecules 42:3510–3517

    Article  CAS  Google Scholar 

  • Verploegen E, Zhang T, Jung YS, Ross C, Hammond PT (2008) Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content. Nano Lett 8:3434–3440

    Article  CAS  Google Scholar 

  • Wu B, Mu B, Wang S, Duan J, Fang J, Cheng R, Chen D (2013) Triphenylene-based side chain liquid crystalline block copolymers containing a peg block: controlled synthesis, microphase structures evolution and their interplay with discotic mesogenic orders. Macromolecules 46:2916–2929

    Article  CAS  Google Scholar 

  • Xu B, Piñol R, Nono-Djamen M, Pensec S, Keller P, Albouy P-A, Lévy D, Li M-H (2009) Self-assembly of liquid crystal block copolymer PEG-b-smectic polymer in pure state and in dilute aqueous solution. Faraday Discuss 143:235–250

    Article  CAS  Google Scholar 

  • Yang J, Piñol R, Gubellini F, Lévy D, Albouy P-A, Keller P, Li M-H (2006) Formation of polymer vesicles by liquid crystal amphiphilic block copolymers. Langmuir 22:7907–7911

    Article  CAS  Google Scholar 

  • Yu H, Kobayashi T (2009) Fabrication of stable Nanocylinder arrays in highly birefringent films of an amphiphilic liquid-crystalline Diblock copolymer. ACS Appl Mater Interfaces 1:2755–2762

    Article  CAS  Google Scholar 

  • Zhang M, Müller AH (2005) Cylindrical polymer brushes. J Polym Sci A Polym Chem 43:3461–3481

    Article  CAS  Google Scholar 

  • Zhou Y, Ahn S-K, Lakhman RK, Gopinadhan M, Osuji CO, Kasi RM (2011) Tailoring crystallization behavior of PEO-based liquid crystalline block copolymers through variation in liquid crystalline content. Macromolecules 44:3924–3934

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chinedum Osuji and Dr. Manesh Gopinadhan for their insightful comments. This work was supported by NSF under CMMI-1246804 and NSF under DMR-1507045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeswari Kasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahajan, L., Ndaya, D., Deshmukh, P., Kasi, R. (2019). New Stimuli-Response Liquid Crystalline Polymer Architectures. In: Palsule, S. (eds) Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37179-0

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics