Skip to main content

Vascular Magnetic Resonance Imaging

  • Reference work entry
  • First Online:
PanVascular Medicine

Abstract

Magnetic resonance imaging (MRI) and angiography (MRA) are powerful tools in the noninvasive diagnosis of vascular disease. MRA confers unique advantages over CT in that it is without ionizing radiation or nephrotoxic iodinated contrast. Modern sequences can be used to obtain functional information, which is particularly useful given the pathophysiology of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Gadolinium-Based Contrast Agent (GBCA):

A gadolinium chelate used as a contrast agent in MRI for its T1-relaxivity properties.

Magnetic Resonance Angiography (MRA):

Oninvasive imaging modality utilizing the principles of magnetic resonance to evaluate vessels.

Time-of-Flight MRA:

A non-contrast MRA technique that utilizes differences in proton excitation between stationary and flowing protons.

Time-Resolved MRA:

Technique whereby a given region of interest is imaged repeatedly as contrast enters the body.

References

  • Aco R (2013) ACR manual on contrast media http://www.acr.org/quality-safety/resources/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdf/

  • Angeretti MG, Lumia D, Cani A, Barresi M, Nocchi Cardim L, Piacentino F, Maresca AM, Novario R, Genovese EA, Fugazzola C (2013) Non-enhanced MR angiography of renal arteries: comparison with contrast-enhanced MR angiography. Acta Radiol 54(7):749–756

    Article  CAS  PubMed  Google Scholar 

  • Anzidei M, Napoli A, Zaccagna F, Di Paolo P, Saba L, Cavallo Marincola B, Zini C, Cartocci G, Di Mare L, Catalano C, Passariello R (2012) Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients. Radiol Med 117(1):54–71

    Article  CAS  PubMed  Google Scholar 

  • Bernstein MA, Huston J 3rd, Ward HA (2006) Imaging artifacts at 3.0 T. J Magn Reson Imaging 24(4):735–746

    Article  PubMed  Google Scholar 

  • Bernstein EJ, Schmidt-Lauber C, Kay J (2012) Nephrogenic systemic fibrosis: a systemic fibrosing disease resulting from gadolinium exposure. Best Pract Res Clin Rheumatol 26(4):489–503

    Article  CAS  PubMed  Google Scholar 

  • Cohen EI, Weinreb DB, Siegelbaum RH, Honig S, Marin M, Weintraub JL, Lookstein RA (2008) Time-resolved MR angiography for the classification of endoleaks after endovascular aneurysm repair. J Magn Reson Imaging 27(3):500–503

    Article  PubMed  Google Scholar 

  • Collidge TA, Thomson PC, Mark PB, Traynor JP, Jardine AG, Morris ST, Simpson K, Roditi GH (2007) Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology 245(1):168–175

    Article  PubMed  Google Scholar 

  • Daftari Besheli L, Aran S, Shaqdan K, Kay J, Abujudeh H (2014) Current status of nephrogenic systemic fibrosis. Clin Radiol 69(7):661–668

    Google Scholar 

  • Fischer A, Maderwald S, Johst S, Orzada S, Ladd ME, Umutlu L, Lauenstein TC, Kniemeyer HW, Nassenstein K (2014) Initial evaluation of non-contrast-enhanced magnetic resonance angiography in patients with peripheral arterial occlusive disease at 7 T. Invest Radiol 49(5):331–338

    Article  CAS  PubMed  Google Scholar 

  • Holden A, Merrilees S, Mitchell N, Hill A (2008) Magnetic resonance imaging of popliteal artery pathologies. Eur J Radiol 67(1):159–168

    Article  PubMed  Google Scholar 

  • Kim JK, Farb RI, Wright GA (1998) Test bolus examination in the carotid artery at dynamic gadolinium-enhanced MR angiography. Radiology 206(1):283–289

    Article  CAS  PubMed  Google Scholar 

  • Kluge A, Luboldt W, Bachmann G (2006) Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol 187(1):W7–W14

    Article  PubMed  Google Scholar 

  • Menke J (2009) Diagnostic accuracy of contrast-enhanced MR angiography in severe carotid stenosis: meta-analysis with metaregression of different techniques. Eur Radiol 19(9):2204–2216

    Article  PubMed  PubMed Central  Google Scholar 

  • Mordasini P, El-Koussy M, Schmidli J, Bonel HM, Ith M, Gralla J, Schroth G, Hoppe H (2012) Preoperative mapping of arterial spinal supply using 3.0-T MR angiography with an intravasal contrast medium and high-spatial-resolution steady-state. Eur J Radiol 81(5):979–984

    Article  PubMed  Google Scholar 

  • Munn Z, Jordan Z (2013) Interventions to reduce anxiety, distress and the need for sedation in adult patients undergoing magnetic resonance imaging: a systematic review. Int J Evid Based Healthc 11(4):265–274

    Article  PubMed  Google Scholar 

  • Nael K, Ruehm SG, Michaely HJ, Saleh R, Lee M, Laub G, Finn JP (2007) Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR Am J Roentgenol 188(2):529–539

    Article  PubMed  Google Scholar 

  • Nielsen YW, Thomsen HS (2012) Contrast-enhanced peripheral MRA: technique and contrast agents. Acta Radiol 53(7):769–777

    Article  PubMed  Google Scholar 

  • Penfield JG, Reilly RF (2008) Nephrogenic systemic fibrosis risk: is there a difference between gadolinium-based contrast agents? Semin Dial 21(2):129–134

    Article  PubMed  Google Scholar 

  • Pereles FS, McCarthy RM, Baskaran V, Carr JC, Kapoor V, Krupinski EA, Finn JP (2002) Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology 223(1):270–274

    Article  PubMed  Google Scholar 

  • Pleszewski B, Chartrand-Lefebvre C, Qanadli SD, Dery R, Perreault P, Oliva VL, Prenovault J, Belblidia A, Soulez G (2006) Gadolinium-enhanced pulmonary magnetic resonance angiography in the diagnosis of acute pulmonary embolism: a prospective study on 48 patients. Clin Imaging 30(3):166–172

    Article  PubMed  Google Scholar 

  • Pride GL Jr, Kowal J, Mendelsohn DB, Chason DP, Fleckenstein JL (2000) Safety of MR scanning in patients with nonferromagnetic aneurysm clips. J Magn Reson Imaging 12(1):198–200

    Article  PubMed  Google Scholar 

  • Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191(1):155–164

    Article  CAS  PubMed  Google Scholar 

  • Prince MR, Zhang H, Morris M, MacGregor JL, Grossman ME, Silberzweig J, DeLapaz RL, Lee HJ, Magro CM, Valeri AM (2008) Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 248(3):807–816

    Article  PubMed  Google Scholar 

  • Razek AA, Gaballa G, Megahed AS, Elmogy E (2013) Time resolved imaging of contrast kinetics (TRICKS) MR angiography of arteriovenous malformations of head and neck. Eur J Radiol 82(11):1885–1891

    Article  PubMed  Google Scholar 

  • Schiebler ML, Nagle SK, Francois CJ, Repplinger MD, Hamedani AG, Vigen KK, Yarlagadda R, Grist TM, Reeder SB (2013) Effectiveness of MR angiography for the primary diagnosis of acute pulmonary embolism: clinical outcomes at 3 months and 1 year. J Magn Reson Imaging 38(4):914–925

    Article  PubMed  PubMed Central  Google Scholar 

  • Strovski E, Liu D, Scudamore C, Ho S, Yoshida E, Klass D (2013) Magnetic resonance venography and liver transplant complications. World J Gastroenterol 19(36):6110–6113

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasian A, Salamon N, Lohan DG, Jalili M, Villablanca JP, Finn JP (2008) Supraaortic arteries: contrast material dose reduction at 3.0-T high-spatial-resolution MR angiography – feasibility study. Radiology 249(3):980–990

    Article  PubMed  Google Scholar 

  • Wentland AL, Grist TM, Wieben O (2013) Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol 20(6):699–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheaton AJ, Miyazaki M (2012) Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 36(2):286–304

    Article  PubMed  Google Scholar 

  • Yamada N, Okita Y, Minatoya K, Tagusari O, Ando M, Takamiya M, Kitamura S (2000) Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoracoabdominal aortic aneurysms. Eur J Cardiothorac Surg 18(1):104–111

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Rubin GD, Rofsky NM (2008) CT and MR angiography: comprehensive vascular assessment. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Lookstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Patil, V.V., Lookstein, R.A. (2015). Vascular Magnetic Resonance Imaging. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics