Skip to main content

Physiology and Pathophysiology of Microcirculation

  • Reference work entry
  • First Online:
PanVascular Medicine
  • 1196 Accesses

Abstract

Microcirculation is the vascular compartments corresponding to vessels, the bore of which ranges from about five to a few hundred μm. Microcirculation possesses four main categories of conduits: arterioles, capillaries, venules, and terminal lymphatic vessels.

Microcirculatory driving pressure decreases from about 10.5–16 kPa (80–120 mmHg) in a supplying arteriole (bore 120 μm) to about 2.7 kPa (20 mmHg) in a draining venule (bore 120 μm).

Microcirculation regulates blood flow distribution within organs, nutrient delivery, transcapillary exchanges, and removal of cell wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Active hyperemia:

Local increase in blood flow rate caused by augmented activity of the perfused tissue.

Apparent viscosity (μ app) or effective viscosity :

Viscosity of heterogeneous, non-Newtonian fluid that refers to the computation of the viscosity using the equations derived to calculate the viscosity of a homogeneous, Newtonian fluid (that remains invariant with changing shear rate at constant temperature and pressure). The viscosity is calculated from the Poiseuille law for a given flow rate and tube diameter. The apparent viscosity of blood, a concentrated suspension of mainly red blood capsules, decreases in microvessels (Fahraeus–Lindqvist effect), as the volume fraction close to the tube wall is reduced and the suspended particles do not contact the microvessel wall. This lubrification layer is less viscous than the suspension in the flow core. This phenomenon becomes stronger when the vascular caliber decreases relative to the particle size (i.e., in capillaries).

Autoregulation:

Maintenance of the local blood flow rate despite changes in driving pressure over a limited pressure range.

Fahraeus effect (local Ht < global Ht):

Phenomenon that describes an attenuated average hematocrit (Ht; relative red blood capsule [RBC] concentration) in a steady blood flow in small straight tubes, the diameter of which is lower than 300 μm with respect to that in the upstream reservoir. This effect is generated in the concentration entry length of the tube, as red blood capsules move inside the central region of the tube lumen.

Fahraeus–Lindqvist effect (μ b (d h )):

Effect that describes the apparent blood viscosity dependence on the microvessel hydraulic radius. This effect is observed when the characteristic dimension of a conduit approaches the size of seeded particles such as red blood capsules (7–8 μm) in suspension in the plasma (solvent), which is a tube diameter lower than 300 μm.

Glomerulus:

A capillary network between afferent and efferent arterioles surrounded by the Bowman’s capsule that filters blood with a given glomerular filtration rate. A glomerulus and its Bowman’s capsule constitute a renal corpuscle, the basic renal filtration unit.

Lymphatic capillary:

Conduit that carries interstitial materials back to the blood circulation. Interstitial materials enter lymphatic lumen through loose junctions between adjacent endotheliocytes. Lymphatic capillary localizes close to the blood capillary.

Metabolic response:

Adaptation of the local blood flow to the tissular metabolic rate. Any increase in cell activity elevates the temperature and liberates vasodilators (e.g., adenosine, bradykinin, histamine, and nitric oxide) that, together with a transient decrease in oxygen content and increase in carbon dioxide level, raise locally blood flow. The O2 uptake is correlated with the local microvascular blood flow. The messenger ATP is released in microvessels by red blood capsules at a rate proportional to the decrease in oxygen saturation triggering a conducted response that propagates upstream from the collecting venule through capillaries to the supplying arteriole to raise its caliber and, hence, local blood flow.

Metarteriole:

Short vessel that links an arteriole to a venule, hence shunting the capillary bed.

Myogenic response:

Adjustment of the vasomotor tone that adapts the vascular lumen size, hence the flow resistance, to keep the local blood flow constant, whatever the sensed transmural pressure in an autoregulation range, independently of endothelial influence.

Particle flow:

Flow characterized by a train of particles between which a solvent bolus is entrapped. In capillaries, red blood capsules surrounded by a lubricating plasma layer flow behind each other. When the particle concentration (that refers to the mass of particle per unit volume of solvent, whereas the particle density is the particle mass per unit volume of the particle) is high enough so that interactions between solvent and solute influence flow, only the average motion, and not individual particle movement, is explored. At a constant temperature, the quantities of interest for the solvent and particle are the pressure and the concentration, in addition to the velocity of both phases.

Plasma skimming:

Distributive process in branching sites of a capillary network associated with a core region with flowing red blood capsules and peripheral (near-wall) lubricating plasma layer. It is mainly observed in the kidney. Red blood capsules flow in larger capillaries, whereas only plasma flows in tiny capillaries (bore ~5 μm).

Precapillary sphincter:

Muscular diaphragm at the capillary entrance close to the arteriole that regulates blood flow through the capillary.

Reactive hyperemia:

Increase in supplying blood flow rate associated with the vasodilation occurring after a sudden occlusion of the irrigating artery.

References

  • Agre P, Brown D, Nielsen S (1995) Aquaporin water channels: unanswered questions and unresolved controversies. Curr Opin Cell Biol 7:472–483

    Article  CAS  PubMed  Google Scholar 

  • Anderson JL, Malone DM (1974) Mechanism of osmotic flow in porous membranes. Biophys J 14:957–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arciero JC, Carlson BE, Secomb TW (2008) Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol 295:H1562–H1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aris R (1956) On the dispersion of a solute in a fluid through a tube. Proc R Soc Lond A Math Phys Sci 235:67–77

    Article  Google Scholar 

  • Arkin H, Xu LX, Holmes KR (1994) Recent developments in modeling heat transfer in blood perfused tissues. IEEE T Bio-Med Eng 41:97–107

    Article  CAS  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Bagher P, Beleznai T, Kansui Y, Mitchell R, Garland CJ, Dora KA (2012) Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone. Proc Natl Acad Sci U S A 109:18174–18179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barman SA, Taylor AE (1990) Effect of pulmonary venous pressure elevation on vascular resistance and compliance. Am J Physiol Heart Circ Physiol 258:H1164–H1170

    CAS  Google Scholar 

  • Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss W (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beard DA, Bassingthwaighte JB (2000) Advection and diffusion of substances in biological tissues with complex vascular networks. Ann Biomed Eng 28:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47

    Article  CAS  PubMed  Google Scholar 

  • Bolz SS, Vogel L, Sollinger D, Derwand R, Boer C, Pitson SM, Spiegel S, Pohl U (2003) Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation 108:342–347

    Article  CAS  PubMed  Google Scholar 

  • Caro CG, Nerem RM (1973) Transport of C4-cholesterol between serum and wall in perfused dog common carotid artery. Circ Res 32:187–205

    Article  CAS  PubMed  Google Scholar 

  • Caro CG, Lever MJ, Laver-Rudich Z, Meyer F, Liron N, Ebel W, Parker KH, Winlove CP (1980) Net albumin transport across the wall of the rabbit common carotid artery perfused in situ. Atherosclerosis 37:497–511

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Liu KM, Wagner RC (1998) Three-dimensional analysis of vacuoles and surface invaginations of capillary endothelia in the eel rete mirabile. Anat Rec 252:546–553

    Article  CAS  PubMed  Google Scholar 

  • Chlopicki S, Nilsson H, Mulvany MJ (2001) Initial and sustained phases of myogenic response of rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 281:H2176–H2183

    CAS  PubMed  Google Scholar 

  • Cohn HI, Harris DM, Pesant S, Pfeiffer M, Zhou RH, Koch WJ, Dorn GW 2nd, Eckhart AD (2008) Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances alpha1D-adrenergic receptor constriction. Am J Physiol Heart Circ Physiol 295:H1695–H1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coomber BL, Stewart PA (1985) Morphometric analysis of CNS microvascular endothelium. Microvasc Res 30:99–115

    Article  CAS  PubMed  Google Scholar 

  • Curry FE (1984) Mechanism and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds) Microcirculation, handbook of physiology. The Cardiovascular System, American Physiological Society, Bethesda

    Google Scholar 

  • Curry FRE, Adamson RH (2010) Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 87:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry FRE, Noll T (2010) Spotlight on microvascular permeability. Cardiovasc Res 87:195–197

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood- brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis MJ (2012) Perspective: physiological role(s) of the vascular myogenic response. Microcirculation 19:99–114

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    CAS  PubMed  Google Scholar 

  • Dawson CA, Rickaby DA, Linehan JH (1986) Location and mechanisms of pulmonary vascular volume changes. J Appl Physiol 60:402–409

    CAS  PubMed  Google Scholar 

  • Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol Heart Circ Physiol 258:647–654

    Google Scholar 

  • Durán WN, Breslin JW, Sánchez FA (2010) The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res 87:254–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Ethier CR (2002) Computational modeling of mass transfer and links to atherosclerosis. Ann Biomed Eng 30:461–471

    Article  PubMed  Google Scholar 

  • Fahraeus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    CAS  Google Scholar 

  • Feng J, Weinbaum S (2000) Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J Fluid Mech 422:281–317

    Article  CAS  Google Scholar 

  • Fischell TA, Bausback KN, McDonald TV (1990) Evidence for altered epicardial coronary artery autoregulation as a cause of distal coronary vasoconstriction after successful percutaneous transluminal coronary angioplasty. J Clin Invest 86:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisbee JC, Roman RJ, Krishna UM, Falck JR, Lombard JH (2001) 20-HETE modulates myogenic response of skeletal muscle resistance arteries from hypertensive Dahl-SS rats. Am J Physiol Heart Circ Physiol 280:H1066–H1074

    CAS  PubMed  Google Scholar 

  • Fry DL (1987) Mass transport, atherogenesis, and risk. Arteriosclerosis 7:88–100

    Article  CAS  PubMed  Google Scholar 

  • Garon A, Jullien S, Manseau J (2001) Numerical simulation of local mass transfer from an endovascular device. In: ASME-AIChE-AIAA 35th national heat transfer conference, Anaheim

    Google Scholar 

  • Grant J (2004) Modélisation du transport de macromolécules à travers la paroi artérielle (Modeling of the macromolecule transport through the arterial wall). MSc thesis, Ecole Polytechnique de Montréal

    Google Scholar 

  • Hanson WL, Emhardt JD, Bartek JP, Latham LP, Checkley LL, Capen RL, Wagner WW (1989) Site of recruitment in the pulmonary microcirculation. J Appl Physiol 66:2079–2083

    Article  CAS  PubMed  Google Scholar 

  • Harder DR, Roman RJ, Gebremedhin D, Birks EK, Lange AR (1998) A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites. Acta Physiol Scand 164:527–532

    Article  CAS  PubMed  Google Scholar 

  • He P (2010) Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res 87:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MA, Trippe KM, Li QX, Meininger GA (1992) Arteriolar arcades and pressure distribution in cremaster muscle microcirculation. Microvasc Res 44:117–124

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Sun Z, Li Z, Mesquitta WT, Trzeciakowski JP, Meininger GA (2012) Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovasc Res 96:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang ZJ, Tarbell JM (1997) Numerical simulation of mass transfer in porous media of blood vessel walls. Am J Physiol Heart Circ Physiol 273:464–477

    Google Scholar 

  • Huang Y, Rumschitzki D, Chien S, Weinbaum S (1994) A fiber matrix model for the growth of macromolecule leakage spots in the arterial intima. J Biomech Eng 116:430–445

    Article  CAS  PubMed  Google Scholar 

  • Jäger W, Mikelić A (2000) On the interface boundary conditions by Beavers, Joseph and Saffman. SIAM J Appl Math 60:1111–1127

    Article  Google Scholar 

  • Kaazempur-Mofrad MR, Ethier CR (2001) Mass transport in an anatomically realistic human right coronary artery. Ann Biomed Eng 29:121–127

    Article  CAS  PubMed  Google Scholar 

  • Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210

    Article  CAS  PubMed  Google Scholar 

  • Lidington D, Schubert R, Bolz SS (2013) Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. Cardiovasc Res 97:404–412

    Article  CAS  PubMed  Google Scholar 

  • Manseau J (2002) Étude numérique d'un modèle de transport de macromolécules à travers la paroi artérielle (Numerical study of a macromolecule transport model through the arterial wall). MSc thesis, Ecole Polytechnique de Montréal

    Google Scholar 

  • Martinez-Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ, Meininger GA (2003) Integrins as unique receptors for vascular control. J Vasc Res 40:211–233

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Lemus LA, Crow T, Davis MJ, Meininger GA (2005) αV β3- and α5 β1-integrin blockade inhibits myogenic constriction of skeletal muscle resistance arterioles. Am J Physiol Heart Circ Physiol 289:H322–H329

    Article  CAS  PubMed  Google Scholar 

  • McCullough WT, Collins DM, Ellsworth ML (1997) Arteriolar responses to extracellular ATP in striated muscle. Am J Physiol Heart Circ Physiol 272:H1886–H1891

    CAS  Google Scholar 

  • Mederos y, Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    Article  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    CAS  PubMed  Google Scholar 

  • Moore JA, Ethier CR (1997) Oxygen mass transfer calculations in large arteries. J Biomech Eng 119:469–475

    Article  CAS  PubMed  Google Scholar 

  • Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    Article  CAS  PubMed  Google Scholar 

  • Ngok SP, Geyer R, Liu M, Kourtidis A, Agrawal S, Wu C, Seerapu HR, Lewis-Tuffn LJ, Moodie KL, Huveldt D, Marx R, Baraban JM, Storz P, Horowitz A, Anastasiadis PZ (2012) VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. J Cell Biol 199:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  • Obara K, Koide M, Nakayama K (2002) 20-Hydroxyeicosatetraenoic acid potentiates stretch-induced contraction of canine basilar artery via PKC alpha-mediated inhibition of KCa channel. Br J Pharmacol 137:1362–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    Article  CAS  PubMed  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122

    CAS  PubMed  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perktold K, Prosi M, Zunino P (2009) Mathematical models of mass transfer in the vascular walls (Chap. 7). In: Formaggia L, Quarteroni A, Veneziani A (eds) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Milano

    Google Scholar 

  • Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol Heart Circ Physiol 273:2272–2279

    Google Scholar 

  • Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J Biomech 38:903–917

    Article  CAS  PubMed  Google Scholar 

  • Quarteroni A, Veneziani A, Zunino P (2002a) Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM J Numer Anal 39:1488–1511

    Article  Google Scholar 

  • Quarteroni A, Veneziani A, Zunino P (2002b) A domain decomposition method for advection–diffusion processes with application to blood solutes. SIAM J Sci Comput 23:1959–1980

    Article  Google Scholar 

  • Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E (1996) Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 16:488–496

    Article  CAS  PubMed  Google Scholar 

  • Rappitsch G, Perktold K, Pernkopf E (1997) Numerical modelling of shear-dependent mass transfer in large arteries. Int J Numer Methods Fluids 25:847–857

    Article  Google Scholar 

  • Reed RK, Rubin K (2010) Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res 87:211–217

    Article  CAS  PubMed  Google Scholar 

  • Ryan JW, Ryan US, Schultz DR, Whitaker C, Chung A (1975) Subcellular localization of pulmonary angiotensin-converting enzyme (kininase II). Biochem J 146:497–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid-Schönbein GW (2012) The integrin-cortex complex under control of GPCRs. Cardiovasc Res 96:7–8

    Article  PubMed  Google Scholar 

  • Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 87:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    CAS  PubMed  Google Scholar 

  • Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–253

    Article  CAS  PubMed  Google Scholar 

  • Sriram K, Salazar Vázquez BY, Tsai AG, Cabrales P, Intaglietta M, Tartakovsky DM (2012) Autoregulation and mechanotransduction control the arteriolar response to small changes in hematocrit. Am J Physiol Heart Circ Physiol 303:H1096–H1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stangeby DK, Ethier CR (2002) Computational analysis of coupled blood-wall arterial LDL transport. J Biomech Eng 124:1–8

    Article  PubMed  Google Scholar 

  • Storch U, Schnitzler MM, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol Heart Circ Physiol 302:H1241–H1249

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Martinez-Lemus LA, Trache A, Trzeciakowski JP, Davis GE, Pohl U, Meininger GA (2005) Mechanical properties of the interaction between fibronectin and α5 β1-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Heart Circ Physiol 289:H2526–H2535

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Wu MH, Guo M, Day ML, Lee ES, Yuan SY (2010) ADAM15 regulates endothelial permeability and neutrophil migration via Src/ERK1/2 signalling. Cardiovasc Res 87:348–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM (2003) Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng 5:79–118

    Article  CAS  PubMed  Google Scholar 

  • Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87:320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM, Demaio L, Zaw MM (1999) Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress. J Appl Physiol 87:261–268

    CAS  PubMed  Google Scholar 

  • Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond A Math Phys Sci 219:186–203

    Article  CAS  Google Scholar 

  • Taylor GI (1954) Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc R Soc Lond A Math Phys Sci 225:473–477

    Article  CAS  Google Scholar 

  • Tedgui A, Lever MJ (1985) The interaction of convection and diffusion in the transport of 131I- albumin within the media of the rabbit thoracic aorta. Circ Res 57:856–863

    Article  CAS  PubMed  Google Scholar 

  • Tsay R, Weinbaum S, Pfeffer R (1989) A new model for capillary filtration based on recent electron microscopic studies of endothelial junctions. Chem Eng Commun 82:67–102

    Article  CAS  Google Scholar 

  • Valvano JW, Bioheat transfer. users.ece.utexas.edu/~valvano/research/jwv.pdf

  • VanTeeffelen JWGE, Brands J, Vink H (2010) Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc Res 87:311–319

    Article  CAS  PubMed  Google Scholar 

  • Wagner WW, Latham LP (1975) Pulmonary capillary recruitment during airway hypoxia in the dog. J Appl Physiol 39:900–905

    PubMed  Google Scholar 

  • Wang DM, Tarbell JM (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J Biomech Eng 117:358–363

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum S, Curry FE (1995) Modelling the structural pathways for transcapillary exchange. Symp Soc Exp Biol 49:323–345

    CAS  PubMed  Google Scholar 

  • Werner J, Brinck H (2001) A three-dimensional vascular model and its application to the determination of the spatial variations in the arterial, venous, and tissue temperature distribution. In: Leondes C (ed) Biofluid methods in vascular and pulmonary systems. CRC Press, Boca Raton

    Google Scholar 

  • Wissler EH (1998) Pennes’ 1948 paper revisited. J Appl Physiol 85:35–41

    CAS  PubMed  Google Scholar 

  • Yeon DS, Kim JS, Ahn DS, Kwon SC, Kang BS, Morgan KG, Lee YH (2002) Role of protein kinase C- or RhoA-induced Ca2+ sensitization in stretch-induced myogenic tone. Cardiovasc Res 53:431–438

    Article  CAS  PubMed  Google Scholar 

  • Zaugg M, Schaub MC (2004) Cellular mechanisms in sympatho-modulation of the heart. Br J Anaesth 93:34–52

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, He P (2010) Endothelial [Ca2+]i and caveolin-1 antagonistically regulate eNOS activity and microvessel permeability in rat venules. Cardiovasc Res 87:340–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou H, Ratz PH, Hill MA (2000) Temporal aspects of Ca2+ and myosin phosphorylation during myogenic and norepinephrine-induced arteriolar constriction. J Vasc Res 37:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    Article  CAS  PubMed  Google Scholar 

  • Zunino P (2004) Multidimensional pharmacokinetic models applied to the design of drug eluting stents. Cardiovasc Eng 4:181–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thiriet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Thiriet, M. (2015). Physiology and Pathophysiology of Microcirculation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics