Skip to main content

Hemodynamics: An Introduction

  • Reference work entry
  • First Online:
PanVascular Medicine
  • 581 Accesses

Abstract

The cardiovascular transport circuit is involved in both mass and heat transfer. It carries blood cells as well as oxygen and nutrients to cells of the body’s organs through the perfusing systemic arterial bed and wastes produced by working cells to their final destinations through draining veins. Blood flows throughout the body in the vasculature due to a pressure difference between the ventricular outlet and atrial inlet. Blood is propelled in the systemic and pulmonary circulation by the synchronized action of the left and right apposed cardiac pumps, respectively. Hemodynamics is related to the flow features in the heart and blood vessels, in normal and pathological conditions, in particular the pressure–flow relations and transport of substances by blood to given target organs. It can be required in therapy planning and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From German Windkessel: air chamber and hence compliant reservoir analogous to an electrical capacitor

Abbreviations

Augmentation index (Alx):

Is the ratio of pressure difference between the shoulder (automatically determined from the time derivative of the pressure wave) of the ascending pressure phase and peak pressure to the pulse pressure used to assess the wave reflection effect.

Boundary layer:

Is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. This near-wall layer of a flowing fluid is characterized by a more or less strong spatial velocity gradient at a given time that decays from the wall to the flow core (vessel axis). The pressure gradient varies nonlinearly in the vessel entrance segment, in which the boundary layer grows, and linearly when the flow becomes fully developed, i.e., downstream from the station in which the cross-sectional distribution of the velocity becomes invariant, whatever the tube shape and local curvature.

The Blasius boundary layer refers to the similarity solution near a semi-infinite flat plate in a unidirectional flow. Within the boundary layer, viscous effects are balanced by convective inertia.

The Stokes boundary layer, or oscillatory boundary layer, refers to the thin shear layer that develops close to a solid wall in a laminar oscillatory flow of a viscous fluid or to a plate wetted by a viscous fluid at rest oscillating in the direction of its plane. A unidirectional motion of a wetted plate (boundary tangential velocity \( u(t)=\widehat{U} \cos \left(\omega\;t\right) \)) causes a fluid streaming. In heat and mass transfer, the temperature and mass transition from the wall surface to the free stream occur across a very thin region close to the wetted wall, in the so-called thermal and massic boundary layer.

Steady Two-Dimensional Boundary Layer Equations. The boundary layer theory states that ν x and ν y change much more rapidly with the normal direction y than with the streamwise direction x. Hence, |∂ y υ x | ≫ |∂ x υ x |, that is, using the length (L), pressure (P), and velocity (V x and V y in the x- and y-directions) scales, V x /δ ≫ V x /L, and δ ≪ L. The equation of mass conservation yields

$$ \frac{\partial {\upsilon}_x}{\partial x}+\frac{\partial {\upsilon}_y}{\partial y}=0. $$
(1)

Hence, V x /L ∼ V y /δ and V y  ≪ V x . Moreover, ∂ 2 x υ x  ≪ ∂ 2 y υ x .

The x-velocity component obeys the equation of momentum conservation:

$$ {\upsilon}_x\frac{\partial {\upsilon}_x}{\partial x}+{\upsilon}_y\frac{\partial {\upsilon}_x}{\partial y}=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu {\partial}^2{\upsilon}_x\partial {x}^2+\nu {\partial}^2{\upsilon}_x\partial {y}^2, $$
(2)

the terms of which are proportional to V 2 x /L, P/ρL, νV x /L 2, and νV x /δ 2, respectively.

The y-velocity component obeys the corresponding equation of momentum conservation:

$$ {\upsilon}_x\frac{\partial {\upsilon}_y}{\partial x}+{\upsilon}_y\frac{\partial {\upsilon}_y}{\partial y}=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu {\partial}^2{\upsilon}_y\partial {x}^2+\nu {\partial}^2{\upsilon}_y\partial {y}^2, $$
(3)

the terms of which are proportional to V 2 x δ/L 2, P n /ρδ, νV x δ/L 3 and νV x /(L δ), respectively. In addition, P/ρL ∼ P n /ρδ and P n  ≪ P. Therefore, the y-component of the equation of momentum conservation in a boundary layer can be neglected. Therefore, the equation of momentum conservation is

$$ {\upsilon}_x\frac{\partial {\upsilon}_x}{\partial x}+{\upsilon}_y\frac{\partial {\upsilon}_x}{\partial y}=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu {\partial}^2{\upsilon}_x\partial {y}^2. $$
(4)
The boundary layer thickness (δ):

Is the distance normal to the wall from it to a point where the flow velocity reaches the free-stream velocity (u w = 0.99 u core ). Using the abovementioned phenomenological analysis, as the convection balances the viscous dissipation, that is, V 2 x /L ∼ νV x /δ 2, thus (δ/L)2, ∼ 1/Re.

In laminar boundary layers over a flat plate at length ℓ, the Blasius solution gives

$$ {\delta}_{\mathrm{B}}\approx 4.91{\left(\frac{\nu z}{u_{core}}\right)}^{1/2}\approx 4.91\frac{\ell }{{\mathrm{Re}}_{\ell}^{1/2}}, $$
(5)

where Re  = u core /ν is the Reynolds number associated with the tube length.

The Stokes boundary layer thickness induced by a unidirectional oscillatory plate is given by

$$ {\delta}_{\mathrm{S}}\propto {\left(\frac{2\nu }{\omega}\right)}^{1/2} $$
(6)
Bulk modulus (B):

Parameter quantifies the reaction of a material to a volume change when it is subjected to a given load (B = p/(dV/V)). Its physical magnitude is homogeneous to a pressure.

Complex viscoelastic shear modulus (G ):

Parameter is related to a sinusoidal shear (strain e and stress c ) applied on a material:

$$ \begin{array}{c}{e}^{\ast }=\widehat{e} \exp \left\{\iota \left(\omega t\right)\right\}={C}^{*}\left(\omega \right){c}^{*}(t),\\ {}\hfill {c}^{*}=\widehat{c} \exp \left\{\iota \left(\omega t+\varphi \right)\right\}={G}^{*}\left(\omega \right){e}^{*}(t),\hfill \\ {}\hfill {G}^{*}\left(\omega \right)=\mathrm{\Re}\mathrm{e}\left[G\left(\omega \right)\right]+\iota \mathfrak{F}\mathrm{m}\left[G\left(\omega \right)\right]={G}^{\prime}\left(\omega \right)+\iota {G}^{{\prime\prime}}\left(\omega \right),\hfill \end{array} $$

where G′(ω) is the storage modulus and G″(ω) the loss modulus.

Compliance (C):

Property of a deformable vessel refers to variations of cross-sectional surface area (A) of the vascular lumen due to changes in transmural pressure (p) at a given vessel station:

$$ \mathrm{C}(p)=\frac{\partial A}{\partial p} $$
(7)
Darcy friction factor (f D):

Coefficient corresponds to the flow coefficient (Λ), or friction head loss coefficient, and depends on the conduit features and fluid flow velocity:

$$ {f}_{\mathrm{D}}={H}_f\frac{d}{L}\frac{2g}{V_q^2}, {f}_{\mathrm{D}}=\Delta p\frac{d}{L}\frac{2}{\rho {V}_q^2}, $$
(8)

where H f is the frictional head loss, Δp = ρgH f the pressure loss, d and L the pipe length and hydraulic diameter, g the gravitational acceleration, ρ the fluid density, and V q the cross-sectional average fluid velocity (volumetric flow rate per unit cross-sectional wetted area).

The Darcy friction factor is 4 times the dimensionless Fanning friction factor (f F ; aka friction coefficient and skin friction coefficient) that is related to the wall shear stress:

$$ {f}_{\mathrm{F}}={c}_w\frac{2}{\rho {V}_q^2}={H}_f\frac{d}{L}\frac{g}{2{V}_q^2} $$
(9)

hence,

$$ {f}_{\mathrm{D}}=\frac{8{c}_w}{\rho {V}_q^2}. $$
(10)

In laminar flow through ducts of circular cross section, the Darcy friction factor is given by

$$ {f}_{\mathrm{D}}=\frac{64}{\mathrm{Re}}, $$
(11)

where Re is the Reynolds number.

Darcy–Weisbach equation:

Is a phenomenological equation that relates the head loss, or pressure loss, due to friction along a given pipe length to the average fluid flow velocity. It yields the dimensionless Darcy friction factor:

$$ {H}_f={f}_{\mathrm{D}}\frac{L}{d}\frac{V_q^2}{2g}, \Delta p={f}_{\mathrm{D}}\frac{L}{d}\frac{\rho {V}_q^2}{2}. $$
(12)

Resistance to motion of a solid in a fluid increases with fluid density and viscosity and solid surface area and shape.

Distensibility property:

Also called specific compliance refers to deformation of the cross-sectional surface area of the vascular lumen (A i) in the range of positive transmural pressures:

$$ D=\frac{1}{A_{ref}}\frac{\partial A}{\partial p}=C/A $$
(13)
Drag coefficient (C d):

In a steady motion of a Newtonian incompressible fluid is given by C d = F d/(πR 2p )(ρν 2/2) (F d: Stokes drag force on a rigid spherical particle).

Dynamic viscosity (μ):

Is the ratio of shearing stress to shear rate.

Elastic modulus (E):

Coefficient of the stress–strain relation is obtained using different types of loading (traction, bending, and torsion). A material is linearly elastic in a given loading range if the elastic modulus remains constant, the stress being proportional to the strain (“ut tensio, sic vis”; the Hooke law): E = C ii /E ii . The elastic modulus is then a measure of recoverable deformation when a force is applied; the deformation reverses when the force is removed.

Friction:

Is a resistive force that opposes the motion of an object in contact with another one.

Impedance (Z):

Is the ratio between the pressure drop and flow rate. It measures opposition to motion of a fluid subjected to a pressure, that is, the strength with which the fluid resists motion. It depends on the frequency (ω) of the applied pressure.

Incremental elastic modulus (E inc):

Is a modulus that is considered constant in small loading range, as the nonlinear stress–strain relation is decomposed into small intervals (piecewise constant elastic modulus). For a point of the outer surface of the vessel wall, which is easy to observed experimentally, Bergel (1961) proposed the following formula:

$$ {E}_{\mathrm{i}\mathrm{nc}}\left({R}_{\mathrm{i}}\right)=\frac{2\left(1-{\nu}_{\mathrm{P}}\right){R}_{\mathrm{i}}^2{R}_{\mathrm{e}}}{R_{\mathrm{e}}^2-{R}_{\mathrm{i}}^2}\frac{\Delta p}{\Delta {R}_{\mathrm{e}}}, $$
(14)

and for a point of the wetted surface, which is easy to target by medical imaging,

$$ {E}_{\mathrm{i}\mathrm{nc}}\left({R}_{\mathrm{e}}\right)=\frac{\left(1+{\nu}_{\mathrm{P}}\right){R}_{\mathrm{i}}}{R_{\mathrm{e}}^2-{R}_{\mathrm{i}}^2}\left(\left(1-2{\nu}_{\mathrm{P}}\right){R}_{\mathrm{i}}^2+{R}_{\mathrm{e}}^2\right)\frac{\Delta p}{\Delta {R}_{\mathrm{e}}}. $$
(15)
Inertia:

Is the property of an object to resist any change in its state of motion.

Kinematic viscosity (ν):

Is the ratio of dynamic viscosity to fluid density that is equivalent to momentum diffusivity.

Mach number (Ma):

Is the ratio of the fluid flow velocity to the propagation speed (Ma = V q /c). The wave speed depends on the involved deformable parts, fluid compressibility (K), and vessel distensibility (D; with K ≪ D even for inhaled air). The usual speed is the speed of sound. In blood circulation, Ma is related to the propagation speed of pressure waves.

Mechanical stress:

Is force per unit surface area producing a deformation usually decomposed into tangential (shear) and normal (pressure and stretch) components. In any point of the flowing blood and within the wall of any part of the cardiovascular circuit, it is represented by the stress tensor (C).

Mechanotransduction:

Is a process used by cells to convert a mechanical stimulus into an electrochemical and/or chemical signal by gating mechanosensitive ion channels and/or launching chemical reaction cascade from proper receptors at the cell surface.

Momentum:

Is a conserved vector quantity (total momentum of any closed system that is not affected by external forces cannot change). Linear momentum is the product of the mass and velocity of an object. Angular momentum is the product of rotation inertia and angular velocity.

Navier number:

\( \left(\mathrm{N}\mathrm{a}=\frac{P^{\ast }}{\mu {V}^{\ast }/{L}^{\ast }}\right) \) is the ratio between the pressure gradient ( x p; normal stress component) and friction (μ∇ 2 x v; tangential stress component).

Nodal cells:

Are specialized cardiac cells involved in the generation and transmission of action potentials, hence responsible for the cardiac automatism and intrinsic conduction under the control of the nervous system. Nodal cells of the sinoatrial node, the cardiac natural pacemaker, trigger action potentials that then spread through both atria and reach the atrioventricular node and then His bundle and its branches and Purkinje fibers to produce successively atrial and ventricular contraction.

Oscillatory shear index (OSI) is given by the formula \( {\displaystyle {\int}_{t_{\mathrm{ri}}}^{t_{\mathrm{rf}}}\left|{c}_w\right|dt}/{\displaystyle {\int}_0^T\left|{c}_w\right|}\;dt \), where t ri and t rf are the initial and final instants of the reversed flow period.

Poisson ratio (νP):

Is the ratio of the relative contraction in the transverse direction j to the relative deformation in the direction i of the applied load νP = E jj /E ii (i ≠ j). One-dimensional extension is characterized by (1) a longitudinal lengthening e  = ΔL/L and (2) a transverse shortening e t  = Δw/w = − (ν P/E)c (transverse strain-to-axial strain ratio).

Pressure (p):

Is the ratio of force to the area over which it is distributed, i.e., force over an area (scalar quantity; [N/m2 or Pa]) applied to an object in a direction perpendicular to the surface. The stress tensor that relates the force vector f to the area vector A incorporates in its diagonal components the pressure.

Hydrostatic pressure is the pressure due to the weight of a fluid: p = ρgh (ρ, fluid density; g, acceleration due to gravity – approximately 9.81 m/s2 on earth’s surface – h, height of the fluid column).

Stagnation pressure is the pressure a fluid exerts when it is forced to stop moving (immersed body, branching apex, etc.).

Dynamic pressure is the pressure that results from fluid motion 1/(2ρν2). In incompressible fluid flow, it is the difference between total pressure and static pressure.

Total pressure is the pressure determined by all moving fluid particles crossing a virtual surface that equals stagnation or impact pressure:

Pulse pressure maximum (peak systolic) minus minimum (diastolic) pressure.

Reactive hyperemia index (RHI):

Is the ratio of the post- to preocclusion pulse volume amplitude of the tested upper limb during reactive hyperemia elicited by the removal of an upper arm blood pressure cuff inflation to suprasystolic pressure during 5 mn.

Reynolds number (Re = V*L*/v):

Is the ratio between convective inertia and viscous effects applied on a unit of fluid volume (ν = μ/ρ; L*: length scale, often the vessel radius [R]; V*: velocity scale, often the cross-sectional average velocity [V q ]). It is also the ratio between the momentum diffusion time scale and the convection characteristic time Re = (R2/ν)/(R/U). In pulsatile flows, both mean \( \overline{\mathrm{Re}}=\mathrm{R}\mathrm{e}\left(\overline{V_q}\right) \) and peak Reynolds numbers \( \widehat{\mathrm{Re}}=\mathrm{R}\mathrm{e}\left(\widehat{V_q}\right) \), proportional to the mean and the peak cross-sectional average velocity, respectively, can be calculated. This parameter controls flow pattern transition. Re δ  = Re/Sto is used for flow stability study (δ: boundary layer thickness). Branching pulsatile flows are currently based on stem peak Reynolds number \( \widehat{\mathrm{Re}} \) calculated from \( \widehat{V_{ q}} \), trunk radius R, and blood kinematic viscosity (ν = 4 × 10−6m2 s−1), assuming a Newtonian blood. In bend flows, a secondary motion-associated Reynolds number can be introduced, using the velocity scale V 2 , when centrifugal forces ρV 2 / R c are balanced by local inertia effects ρωV *2  : Re2 = V 2 R/(ωνR c), i.e., V 2/(ων) × κ c  = Re/St. The wall shear Reynolds number is defined by u δ/ν.

Shear rate (\( \dot{\gamma} \)):

Is the rate at which a progressive shear is applied to a material. In the vascular lumen, the flowing blood experiences a shear stress associated with a shear rate given by the velocity distribution at any cross section and phase of the cardiac cycle (locally given by the spatial velocity gradient).

Shear-thinning material:

Is a non-Newtonian medium that has an apparent viscosity that decreases with an increasing shear rate.

Stokes drag force (F d):

On a rigid spherical particle of radius (R p) and the drag coefficient are given by F d = 6πR p μν.

Stokes number (Sto = R(ω/ν)1/2):

Is a frequency parameter of pulsatile flows, also called Witzig–Womersley number (ω: pulsation of flow oscillation). It is the square root of the ratio between time inertia and viscous effects. The Stokes number is a Reynolds-like number for periodic flow (local acceleration replaces convective acceleration). The Stokes number is proportional to the ratio between the vessel hydraulic radius and the Stokes boundary layer thickness (Sto ∝ R h/δ S ) and the ratio between momentum diffusion time and the cycle period (Sto ∝ R 2/ν)/(1/ω) ≡ ((T diff/T)1/2).

Strain:

Is a variable that relates the deformed to the unstressed reference configuration. It results from change in length (normal strain) and angle (shear strain).

Strouhal number (St = ωL* / V*):

Is the ratio between time and convective inertia (St = Sto2/Re). In quasiperiodic flow in a branching vessel region, the peak Strouhal number is based on the trunk peak cross-sectional average velocity: \( \mathrm{St}=\omega R/\widehat{V_q} \). The Strouhal number is proportional to the ratio between the steady and the Stokes boundary layer thicknesses (St = δ / δ S ). The dimensionless stroke length \( \left(\widehat{V_q}/\left({R}_{\mathrm{h}}\omega \right)\right) \), which is also the ratio of the length scale of the axial displacement of a fluid particle to the vessel radius or the ratio between the flow cycle and the convection time scale, is the inverse of the Strouhal number. In the aorta at rest, \( \widehat{V_q}/{R}_{\mathrm{h}}\omega =11.1 \) with the following value set: f = 1 Hz, R h = 10 mm, and \( \widehat{V_q}=0.7\;\mathrm{m}/s \). Bend flows depend, for small values of the frequency parameter, on the Strouhal number for the secondary motion (when centrifugal forces ρV 2/R c are balanced by local inertia effects ρωV *2 , St2 = (ω 2 RR c)/V 2). In turbulent periodic flows, St = /u′ (u′: turbulent intensity) is the ratio of the time scale of turbulent fluctuations R/u′ to the flow period. The turbulent Strouhal number \( \mathrm{St}=\omega R/{\overline{u}}_{*} \) can also be defined by the time mean friction velocity (\( {\overline{u}}_{*} \)).

Tube law:

Is the relation between the transmural pressure (p) and the luminal cross-sectional surface area (A i). It depends on various factors: vessel geometry, vascular wall rheology, prestresses, vicinity loadings, end effects, and developed stresses (tension, bending).

Velocity (v), linear velocity :

Is the time rate at which distance is covered by a moving object. Angular velocity is the number of rotations per unit time. Terminal velocity is the speed and direction of a falling object when friction balances weight.

Velocity amplitude ratio or modulation rate:

Is the ratio of peak to mean velocity of a pulsatile flow \( \left({\upgamma}_{\upupsilon}=\widehat{V_q}/\overline{V_q}\right) \). The pulsatile flow is characterized by less backflow when the modulation rate is lower.

Vorticity (ω):

Is the curl of the velocity (∇ × v). This property of a fluid particle is related to its angular velocity that describes its tendency to rotate. In a laminar flow, any infinitesimal viscous fluid particle that experiences a shearing torque applied by apposed inner and outer fluid particles does not rotate because of the uniform pressure exerted on its faces.

Viscous head loss:

Is the pressure reduction per unit length given by the Darcy–Weisbach formula.

Wall shear stress (c w ):

Is the product of the wall shear rate by the fluid kinematic viscosity. The wall shear stress exerted by blood is sensed by components of the luminal surface of endotheliocytes.

Wall stiffness:

Relates stress to strain. Due to a nonlinear rheological behavior, the stiffness of the vascular wall increases progressively with the strain.

Arterial wall stiffening increases the speed of pressure wave propagation and creates reflection points closer to the heart, causing premature wave reflection. Early reflected waves amplify the systolic pressure, whereas diastolic blood pressure falls.

Windkessel effect:

Is the effect related to the interaction between the stroke volume and the compliance of the aorta and large deformable elastic arteries that distend when the blood pressure rises during systole and recoil when the blood pressure falls during diastole. The systolic distension is associated with blood storage that is restituted during the following diastole. Therefore, the Windkessel effect dampens the fluctuation in blood pressure and enables continuous blood flow during the entire cardiac cycle, transforming the starting–stopping flow at the exit of the ventricle into a pulsatile flow that maintains organ perfusion during diastole.

References

  • Naidich DP, Webb WR, Muller NL, Vlahos I, Krinsky GA (2007) Aorta, arch vessel, and great veins. In: Computed tomography and magnetic resonance of the thorax. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • American Institute of Aeronautics and Astronautics (1998) Guide for the verification and validation of computational fluid dynamics simulations (G-077–1998e), AIAA standards series. American Institute of Aeronautics and Astronautics, Reston, VA

    Google Scholar 

  • Atabek HB, Chang CC (1961) Oscillatory flow near the entry of a circular tube. Z Angew Math Phys 112:185–201

    Article  Google Scholar 

  • Atkinson B, Brocklebank MP, Card CCH, Smith JM (1969) Low Reynolds number developing flows. AIChE J 15:548–553

    Article  CAS  Google Scholar 

  • Barthes-Biesel D (1980) Motion of a spherical microcapsule freely suspended in a linear shear flow. J Fluid Mech 100:831–853

    Article  Google Scholar 

  • Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222

    Article  CAS  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Begis D, Delpuech C, Le Tallec P, Loth L, Thiriet M, Vidrascu M (1988) A finite element model of tracheal collapse. J Appl Physiol 64:1359–1368

    CAS  PubMed  Google Scholar 

  • Bharadvaj BK, Mabon RF, Giddens DP (1982a) Steady flow in a model of the human carotid bifurcation I: flow visualization. J Biomech 15:349–362

    Article  CAS  PubMed  Google Scholar 

  • Bharadvaj BK, Mabon RF, Giddens DP (1982b) Steady flow in a model of the human carotid bifurcation II: laser-Doppler anemometer measurements. J Biomech 15:363–378

    Article  CAS  PubMed  Google Scholar 

  • Bittoun J, Jolivet O, Herment A, Itti E, Durand E, Mousseaux E, Tasu JP (2000) Multidimensional MR mapping of multiple components of velocity and acceleration by Fourier phase encoding with a small number of encoding steps. Magn Reson Med 44:723–730

    Article  CAS  PubMed  Google Scholar 

  • Bluestein D, Einav S (1994) Transition to turbulence in pulsatile flow through heart valves – a modified stability approach. J Biomech Eng 116:477–487

    Article  CAS  PubMed  Google Scholar 

  • Boissonnat JD (1988) Shape reconstruction from planar cross-sections. Comput Vis Graph Image Process 44:1–29

    Article  Google Scholar 

  • Boissonnat JD, Cazals F (2002) Smooth surface reconstruction via natural neighbour interpolation of distance functions. Comput Geom 22:185–203

    Article  Google Scholar 

  • Boissonnat JD, Chaine R, Frey P, Malandain G, Salmon S, Saltel E, Thiriet M (2005) From arteriographies to computational flow in saccular aneurisms: the INRIA experience. Med Image Anal 9:133–143

    Article  PubMed  Google Scholar 

  • Bonis M, Ribreau C (1981) Wave speed in noncircular collapsible ducts. J Biomech Eng 103:27–31

    Article  CAS  PubMed  Google Scholar 

  • Bonis M, Ribreau C, Verchery G (1981) Etude theorique et expérimentale de l’aplatissement d’un tube élastique en dépression[Theoretical study of the collapse of an elastic tube]. J Mec Appl 5:123–144

    Google Scholar 

  • Boulakia M, Guerrero S (2010) Regular solutions of a problem coupling a compressible fluid and an elastic structure. J Math Appl 94:341–365

    Google Scholar 

  • Boussinesq JV (1891) Calcul de la moindre longueur que doit avoir un tube circulaire, évasé à son entrée, pour qu’un régime sensiblement uniforme s’y établisse [Calculation of the least length that a circular tube, flared at its entrance, must have so that a fairly uniform flow regime establishes itself]. C R Acad Sci 113:49–51

    Google Scholar 

  • Bovendeerd PHM, van Steenhoven AA, van de Vosse FN, Vossers G (1987) Steady entry flow in a curved pipe. J Fluid Mech 177:233–246

    Article  CAS  Google Scholar 

  • Brenner H, Nadim A, Haber S (1987) Long-time molecular diffusion, sedimentation and Taylor dispersion of a fluctuating cluster of interacting Brownian particles. J Fluid Mech 183:511–542

    Article  CAS  Google Scholar 

  • Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Book  Google Scholar 

  • Brodkey RS (1995) The phenomena of fluid motion. Dover, New York

    Google Scholar 

  • Brown N (1993) Impedance matching at arterial bifurcations. J Biomech 26:59–67

    Article  CAS  PubMed  Google Scholar 

  • Bucherer C, Lacombe C, Lelievre J-C (1998) Viscosité du sang humain [Viscosity of the human blood]. In: Jaffrin MY, Goubel F (eds) Biomecanique des Fluides et des Tissus [Fluid and tissue biomechanics]. Masson, Paris

    Google Scholar 

  • Burman E, Fernandez Varela MA (2009) Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput Method Appl Mech Eng 198:766–784

    Article  Google Scholar 

  • Caro CGC, Pedley TJ, Schroter RC, Seed WA (1978) The mechanics of the circulation. Oxford University Press, Oxford, UK

    Google Scholar 

  • Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Method Appl Mech Eng 194:42–44

    Article  Google Scholar 

  • Cebral JR, Löhner R (2001) From medical images to anatomically accurate finite element grids. Int J Numer Meth Eng 51:985–1008

    Article  Google Scholar 

  • Chambers R, Zweifach BW (1994) Topography and function of the mesenteric capillary circulation. Am J Anat 75:175–205

    Google Scholar 

  • Chandran KB, Yearwood TL (1981) Experimental study of physiological pulsatile flow in a curved tube. J Fluid Mech 111:59–85

    Article  Google Scholar 

  • Chang CC, Atabek HB (1961) The inlet length for oscillatory flow and its effects on the determination of the rate of flow in arteries. Phys Med Biol 6:303–317

    Article  CAS  PubMed  Google Scholar 

  • Chang LJ, Tarbell JM (1985) Numerical simulation of fully developed sinusoidal and pulsatile (physiological) flow in curved tubes. J Fluid Mech 161:175–198

    Article  Google Scholar 

  • Chien S (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168:977–978

    Article  CAS  PubMed  Google Scholar 

  • Chien S (1975) Biophysical behavior in suspensions. In: Surgenor D (ed) The red blood cell. Academic, New York

    Google Scholar 

  • Clarion C, Pélissier R (1975) A theoretical and experimental study of the velocity distribution and transition to turbulence in free oscillatory flow. J Fluid Mech 70:59–79

    Article  Google Scholar 

  • Cohen LD (1991) On active contour models and balloons. Comput Vis Graph Image Process 53:211–218

    Google Scholar 

  • Comolet R (1976) Mecanique Experimentale des Fluides [Experimental fluid mechanics], vol 2. Masson, Paris

    Google Scholar 

  • Daley PJ, Sagar KB, Wann LS (1985) Doppler echocardiographic measurement of flow velocity in the ascending aorta during supine and upright exercise. Br Heart J 54:562–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantan P, de Jouvenel F, Oddou C (1976) Stabilité d’un écoulement pulsé incompressible en tube cylindrique rigide [Stability of an incompressible pulsatile flow in a rigid cylindrical tube]. J de Physique 37:233

    Article  Google Scholar 

  • Dean WR (1927) Note on the motion of fluid in a curved pipe. Philos Mag 4:208–223

    Article  Google Scholar 

  • Dean WR (1928a) The stream-line motion of fluid in a curved pipe. Philos Mag 5:673–695

    Article  Google Scholar 

  • Dean WR (1928b) Fluid motion in a curved channel. Proc R Soc Lond A Math Phys Sci 121:402–420

    Article  Google Scholar 

  • Delfour MC, Zolesio JP (2011) Shapes and geometries: metrics, analysis, differential calculus and optimization, 2nd edn, SIAM series on advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Delingette H, Hebert M, Ikeuchi K (1992) Shape representation and image segmentation using deformable surfaces. Image Vis Comput 10:132–144

    Article  Google Scholar 

  • Despard RA, Miller JA (1971) Separation in oscillating laminar boundary layer flows. J Fluid Mech 47:21–31

    Article  Google Scholar 

  • Diaz A, Barthes-Biesel D (2002) Entrance of a bioartificial capsule in a pore. Comput Model Eng Sci 3:321–338

    Google Scholar 

  • Diesen DL, Hess DT, Stamler JS (2008) Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal. Circ Res 103:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dion B, Naili S, Renaudeaux J-P, Ribreau C (1995) Buckling of elastic tubes: study of highly compliant device. Med Biol Eng Comput 33:196–201

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Hart HR (1986) Magnetic resonance angiography. Radiology 161:717–720

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Souza SP, Hart HR (1987) Rapid scan magnetic resonance angiography. Magn Reson Med 5:238–245

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Souza SP, Walker MF, Yoshitome E (1988) Time-resolved magnetic resonance angiography. Magn Reson Med 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9:139–149

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin CL, Doorly DJ, Caro CG (1993) Quantitative measurement of velocity at multiple positions using comb excitation and Fourier velocity encoding. Magn Reson Med 29:44–52

    Article  CAS  PubMed  Google Scholar 

  • Durand E, Jolivet O, Itti E, Tasu JP, Bittoun J (2001) Precision of magnetic resonance velocity and acceleration measurements: theoreticals issues and phantom experiments. Magn Reson Med 13:445–451

    CAS  Google Scholar 

  • Easthope PL, Brooks DE (1980) A comparison of rheological constitutive functions for whole human blood. Biorheology 17:235–247

    CAS  PubMed  Google Scholar 

  • Eicke BM, Bauer J, Mink S, Kuhl V, Hlawatsch A, Kustner E, Victor A (2003) Sympathetic vasomotor response of the radial artery in patients with diabetic foot syndrome. Diabetes Care 26:2616–2621

    Article  PubMed  Google Scholar 

  • ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD (2000) Best practice guidelines for industrial computational fluid dynamics. ERCOFTAC Coordination Centre, Lausanne

    Google Scholar 

  • Eustice J (1911) Experiments on stream-line motion in curved pipes. Proc R Soc Lond A Math Phys Sci 85:119–131

    Article  CAS  Google Scholar 

  • Fediaevski C, Voitkounski I, Faddeev Y (1974) Mecanique des Fluides [Fluid mechanics]. MIR, Moscow

    Google Scholar 

  • Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid II: Couette and Poiseuille flows. J Fluid Mech 277:271–301

    Article  Google Scholar 

  • Fernández Varela MA (2011) Coupling schemes for incompressible fluid–structure interaction: implicit, semi-implicit and explicit. SeMa J 55:59–108

    Article  Google Scholar 

  • Fernández Varela MA, Gerbeau JF, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Method Eng 69:794–821

    Article  Google Scholar 

  • Fetita C, Prêteux F, Beigelman-Aubry C, Grenier P (2004) Pulmonary airways: 3D reconstruction from multi-slice CT and clinical investigation. IEEE Trans Med Imaging 23:1353–1364

    Article  PubMed  Google Scholar 

  • Flaherty JE, Keller JB, Rubinow S (1972) Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J Appl Math 23:446–455

    Article  Google Scholar 

  • Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2002) Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J Numer Anal 40:376–401

    Article  Google Scholar 

  • Garg VK, Rouleau WT (1974) Stability of poiseuille flow in a thin elastic tube. Phys Fluids 17:1103–1108

    Article  Google Scholar 

  • Gerrard JH, Hughes MD (1971) The flow due to an oscillating piston in a cylindrical tube: a comparison between experiment and a simple entrance flow theory. J Fluid Mech 50:97–106

    Article  Google Scholar 

  • Giachetti A, Tuveri M, Zanetti G (2003) Reconstruction and web distribution of measurable arterial models. Med Image Anal 7:79–93

    Article  CAS  PubMed  Google Scholar 

  • Gill JD, Ladak HM, Steinman DA, Fenster A (2000) Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from 3D ultrasound images. Med Phys 27:1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Gilmore ED, Hudson C, Nrusimhadevara RK, Harvey PT, Mandelcorn M, Lam WC, Devenyi RG (2007) Retinal arteriolar diameter, blood velocity, and blood flow response to an isocapnic hyperoxic provocation in early sight-threatening diabetic retinopathy. Invest Ophthalmol Vis Sci 48:1744–1750

    Article  PubMed  Google Scholar 

  • Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations: theory and algorithms. Springer, Berlin

    Book  Google Scholar 

  • Goldstein S (1938) Modern developments in fluid dynamics. Oxford University Press, London

    Google Scholar 

  • Graham JMR, Thiriet M (1990) Pulsatile flow through partially occluded ducts and bifurcations. In: Mosora F, Caro C, Krause E, Schmid-Schönbein H, Baquey C, Pélissier R (eds) Biomechanical transport processes. Plenum, New York

    Google Scholar 

  • Hall P, Parker KH (1976) The stability of the decaying flow in a suddenly blocked channel. J Fluid Mech 75:305–314

    Article  Google Scholar 

  • Hamakiotes CC, Berger SA (1990) Periodic flows through curved tubes: the effect of the frequency parameter. J Fluid Mech 210:353–370

    Article  Google Scholar 

  • Handbook of chemistry and physics, Internet Version (2011) Läde DR (ed) 91st edn. CRC Press/Taylor and Francis, Boca Raton www.hbcpnetbase.com

  • Heil M (1997) Stokes flow in collapsible tubes: computation and experiment. J Fluid Mech 353:285–312

    Article  CAS  Google Scholar 

  • Hoffman JI, Spaan JA (1990) Pressure-flow relations in coronary circulation. Physiol Rev 70:331–390

    CAS  PubMed  Google Scholar 

  • Idel’cik IE (1969) Mémento des pertes de charges singulières et de pertes de charges par frottement [Handbook of singular and friction head losses]. Eyrolles, Paris

    Google Scholar 

  • Iolov A, Kane A, Bourgault Y, Owens R, Fortin A (2011) A finite element method for a microstructure-based model of blood. Int J Numer Method Biomed Eng 27:1321–1349

    Google Scholar 

  • Ito H (1959) Friction factor for turbulent flow in curved pipes. Trans ASME J Basic Eng 81:123–134

    Google Scholar 

  • Ito H (1960) Pressure losses in smooth pipe bends. Trans ASME J Basic Eng 82:131–143

    Article  Google Scholar 

  • Janna WS (1998) Internal incompressible viscous flow. In: Jonhson RW (ed) Handbook of fluid dynamics. CRC Press, Boca Raton

    Google Scholar 

  • Jáuregui-Renaud K, Hermosillo JA, Jardoón JL, Márquez MF, Kostine A, Silva MA, Cárdenas M (2005) Cerebral blood flow during supine rest and the first minute of head-up tilt in patients with orthostatic intolerance. Europace 7:460–464

    Article  PubMed  Google Scholar 

  • Jeffrey DJ, Acrivos A (1976) The rheological properties of suspensions of rigid particles. AIChE J 22:417–432

    Article  CAS  Google Scholar 

  • Joly M, Lacombe C, Quemada D (1981) Application of the transient flow rheology to the study of abnormal human bloods. Biorheology 18:445–452

    CAS  PubMed  Google Scholar 

  • Joulié R (1998) Mecanique des Fluides Appliquée [Applied fluid mechanics]. Ellipses, Paris

    Google Scholar 

  • Kang SG, Tarbell JM (1983) The impedance of curved artery models. J Biomech Eng 105:275–282

    Article  CAS  PubMed  Google Scholar 

  • Karnis A, Goldsmith HL, Mason SG (1966a) The flow of suspensions through tubes. Inertial effects. Can J Chem Eng 44:181–193

    Article  CAS  Google Scholar 

  • Karnis A, Goldsmith HL, Mason SG (1966b) The kinetics of flowing dispersions I: concentrated suspensions of rigid particles. J Colloid Interface Sci 22:531–553

    Article  CAS  Google Scholar 

  • Kay JM, Nedderman RM (1985) Fluid mechanics and transfer processes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kelly R, Hayward C, Avolio A, O’Rourke M (1989) Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80:1652–1659

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Vignon-Clementel I, Figueroa CA, Ladisa JL, Jansen KE, Feinstein J, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37:2153–2169

    Article  CAS  PubMed  Google Scholar 

  • Kitney RI, Giddens DP (1983) Analysis of blood velocity waveforms by phase shift averaging and autoregressive spectral estimation. J Biomech Eng 105:398–401

    Article  CAS  PubMed  Google Scholar 

  • Kochanowicz J, Turek G, Rutkowski R, Mariak Z, Szydlik P, Lyson T, Krejza J (2009) Normal reference values of ratios of blood flow velocities in internal carotid artery to those in common carotid artery using Doppler sonography. J Clin Ultrasound 37:208–211

    Article  PubMed  Google Scholar 

  • Koh CJ, Hookham P, Leal LG (1994) An experimental investigation of concentrated suspension flows in a rectangular channel. J Fluid Mech 266:1–32

    Article  CAS  Google Scholar 

  • Kowalewski TA (1980) Velocity profiles of suspension flowing through a tube. Arch Mech 32:857–865

    CAS  Google Scholar 

  • Kresch E (1979) Compliance of flexible tubes. J Biomech 12:825–839

    Article  CAS  PubMed  Google Scholar 

  • Kresch E, Noordegraaf A (1972) Cross-sectional shape of collapsible tubes. Biophys J 12:274–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku DN, Liepsch D (1986) The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90 degrees bifurcation. Biorheology 23:359–370

    CAS  PubMed  Google Scholar 

  • Ku DN, Giddens DP, Phillips DJ, Strandness DE (1985) Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. Ultrasound Med Biol 11:13–26

    Article  CAS  PubMed  Google Scholar 

  • Ladak HM, Milner JS, Steinman DA (2000) Rapid 3D segmentation of the carotid bifurcation from serial MR images. J Biomech Eng 122:96–99

    Article  CAS  PubMed  Google Scholar 

  • Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364

    PubMed  Google Scholar 

  • Langhaar HL (1942) Steady flow in the transition length of a straight tube. J Appl Mech 9:A55–A58

    Google Scholar 

  • Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  • Lee JS (2000) Biomechanics of the microcirculation, an integrative and therapeutic perspective. Ann Biomed Eng 28:1–13

    Article  CAS  PubMed  Google Scholar 

  • Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    Article  CAS  Google Scholar 

  • Lenègre J, Blondeau M, Bourdarias JP, Gerbaux A, Himbert J, Maurice P (1973) Creur et Circulation [Heart and circulation]. In: Vallery-Radot P, Hamburger J, Lhermitte F (eds) Pathologie Medicale. [Mèdical pathology], vol 3. Flammarion Medecine Sciences, Paris

    Google Scholar 

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems, Cambridge texts in applied mathematics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Lew HS, Fung YC (1970) Entry flow into blood vessels at arbitrary Reynolds number. J Biomech 3:23–38

    Article  CAS  PubMed  Google Scholar 

  • Liepsch D (1986) Flow in tubes and arteries. Biorheology 23:395–433

    CAS  PubMed  Google Scholar 

  • Liepsch D, Moravec S (1984) Pulsatile flow of non-Newtonian fluid in distensible models of human arteries. Biorheology 21:571–586

    CAS  PubMed  Google Scholar 

  • Liepsch D, Poll A, Strigberger J, Sabbah HN, Stein PD (1989) Flow visualization studies in a mold of the normal human aorta and renal arteries. J Biomech Eng 111:222–227

    Article  CAS  PubMed  Google Scholar 

  • Lighthill J (1972) Physiological fluid dynamics: a survey. J Fluid Mech 52:475–497

    Article  Google Scholar 

  • Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K (1983) Comparison of steady and pulsatile flow in a double branching arterial model. J Biomech 16:753–766

    Article  CAS  PubMed  Google Scholar 

  • Lyne WH (1971a) Unsteady viscous flow in a curved pipe. J Fluid Mech 45:15–31

    Article  Google Scholar 

  • Lyne WH (1971b) Unsteady viscous flow over a wavy wall. J Fluid Mech 50:33–48

    Article  Google Scholar 

  • Mao SS, Ahmadi N, Shah B, Beckmann D, Chen A, Ngo L, Flores FR, Gao YL, Budoff MJ (2008) Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad Radiol 15:827–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Mark FF, Bargeron CB, Deters OJ, Friedman MH (1985) Nonquasi-steady character of pulsatile flow in human coronary arteries. J Biomech Eng 107:24–28

    Article  CAS  PubMed  Google Scholar 

  • Matsue H, Sawa Y, Matsumiya G, Matsuda H, Hamada S (2005) Mid-term results of freestyle aortic stentless bioprosthetic valve: clinical impact of quantitative analysis of in-vivo three-dimensional flow velocity profile by magnetic resonance imaging. J Heart Valve Dis 14:630–636

    PubMed  Google Scholar 

  • McConalogue DJ (1970) The effects of secondary flow on the laminar dispersion of an injected substance in a curved tube. Proc R Soc Lond A Math Phys Sci 315:99–113

    Article  Google Scholar 

  • McConalogue DJ, Srivastava RS (1968) Motion of a fluid in a curved tube. Proc R Soc Lond A Math Phys Sci 307:37–53

    Article  Google Scholar 

  • McDonald DA (1974) Blood flow in arteries. Edward Arnold, London, UK

    Google Scholar 

  • Milner JS, Moore JA, Rutt BK, Steinman DA (1998) Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J Vasc Surg 1998:143–156

    Article  Google Scholar 

  • Moore JA, Rutt BK, Karlik SJ, Yin K, Ethier CR (1999) Computational blood flow modeling based on in vivo measurements. Ann Biomed Eng 27:627–640

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Tanaka E, Hyodo K, Mohammed MU, Sekka T, Ito K, Shinozaki Y, Tanaka A, Nakazawa H, Abe S, Handa S, Kubota M, Tanioka K, Umetani K, Ando M (1999) Synchrotron microangiography reveals configurational changes and to-and-fro flow in intramyocardial vessels. Am J Physiol Heart Circ Physiol 276:H429–H437

    CAS  Google Scholar 

  • Morris AA, Patel RS, Binongo JNG, Poole J, Mheid IA, Ahmed Y, Stoyanova N, Vaccarino V, Din-Dzietham R, Gibbons GH, Quyyumi A (2013) Racial differences in arterial stiffness and microcirculatory function between Black and White Americans. J Am Heart Assoc 2:e002154

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulligan-Kehoe MJ (2010) The vasa vasorum in diseased and nondiseased arteries. Am J Physiol Heart Circ Physiol 298:H295–H305

    Article  CAS  PubMed  Google Scholar 

  • Mullin T, Greated CA (1980) Oscillatory flow in curved pipes I: the developing-flow case. J Fluid Mech 98:383–396

    Article  Google Scholar 

  • Nerem RM, Seed WA (1972) An in vivo study of aortic flow disturbances. Cardiovasc Res 6:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nerem RB, Seed WA, Wood WB (1972) An experimental study of the velocity distribution and transition to turbulence in the aorta. J Fluid Mech 52:137–160

    Article  Google Scholar 

  • Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simulat 79:763–813

    Article  Google Scholar 

  • Nichols WW, O’Rourke M (1998) Mc Donald’s blood flow in arteries. Theoretical, experimental and clinical principles, 4th edn. Edward Arnold, London, UK

    Google Scholar 

  • O’Rourke MF, Franklin SS (2006) Arterial stiffness: reflections on the arterial pulse. Eur Heart J 27:2497–2498

    Article  PubMed  Google Scholar 

  • Oates C (2008) Cardiovascular haemodynamics and Doppler waveforms explained. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Obremski HJ, Morkovin MV, Landahl M (1969) A portfolio of stability characteristics of incompressible boundary layers. AGARDograph 134. NATO, Paris

    Google Scholar 

  • Olson RM (1968) Aortic blood pressure and velocity as a function of time and position. J Appl Physiol 24:563–569

    CAS  PubMed  Google Scholar 

  • Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299

    Article  CAS  PubMed  Google Scholar 

  • Padet J (1991) Fluides en Ecoulement [Flowing fluids]. Masson, Paris

    Google Scholar 

  • Palermo T, Flaud P (1987) Etude de l’effondrement à deux et trois lobes de tubes élastiques [Study of two- or three-lobe collapse of elastic tubes]. J Biophys Bioméc 11:105–111

    Google Scholar 

  • Papageorgiou D (1987) Stability of the unsteady viscous flow in a curved pipe. J Fluid Mech 182:200–233

    Article  Google Scholar 

  • Papaharilaou Y, Doorly DJ, Sherwin SJ, Peiró J, Griffith C, Chesire N, Zervas V, Anderson J, Sanghera B, Watkins N, Caro CG (2002) Combined MRI and computational fluid dynamics detailed investigation of flow in idealised and realistic arterial bypass graft models. Biorheology 39:525–532

    CAS  PubMed  Google Scholar 

  • Parker KH, Jones CJ (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326

    Article  CAS  PubMed  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow, Hemisphere series on computational methods in mechanics and thermal science. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  • Patel RP, Hogg N, Kim-Shapiro DB (2011) The potential role of the red blood cell in nitrite-dependent regulation of blood flow. Cardiovasc Res 89:507–515

    Article  CAS  PubMed  Google Scholar 

  • Peiró J, Giordana S, Griffith C, Sherwin SJ (2002) High-order algorithms for vascular flow modelling. Int J Numer Method Fluids 40:137–151

    Article  Google Scholar 

  • Perktold K, Nerem RM, Peter RO (1991a) A numerical calculation of flow in a curved tube model of the left main coronary artery. J Biomech 1991(24):175–189

    Article  Google Scholar 

  • Perktold K, Resch M, Florian H (1991b) Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J Biomech Eng 113:464–475

    Article  CAS  PubMed  Google Scholar 

  • Pironneau O (1988) Méthodes des elements finis pour les fluides. Masson, Paris and Finite element methods for fluids. Wiley, Hoboken

    Google Scholar 

  • Pott F, van Lieshout JJ, Ide K, Madsen P, Secher NH (2000) Middle cerebral artery blood velocity during a valsalva maneuver in the standing position. J Appl Physiol 88:1545–1550

    CAS  PubMed  Google Scholar 

  • Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci 4:111–124

    Article  Google Scholar 

  • Raghu R, Vignon-Clementel IE, Figueroa CA, Taylor CA (2011) Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. ASME J Biomech Eng 133:081003

    Article  Google Scholar 

  • Ralph ME (1986) Oscillatory flows in wavy-walled tubes. J Fluid Mech 168:515–540

    Article  CAS  Google Scholar 

  • Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143

    Article  CAS  Google Scholar 

  • Reddy JN (2006) An introduction to the finite element method, McGraw-hill series in mechanical engineering, engineering series. McGraw-Hill Higher Education, New York

    Google Scholar 

  • Reynolds O (1883) On the experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos Trans R Soc Lond Ser A Math Phys Sci 174:935–982

    Article  Google Scholar 

  • Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc Lond Ser A Math Phys Sci 186:123–164

    Article  Google Scholar 

  • Ribreau C (1991) Sur la loi d’état, la loi de perte de charge, et la nature de l’écoulement permanent en conduite collabable inclinée [On the tube-law, the head loss, and the properties of steady flow in inclined collapsible ducts]. PhD thesis, University Paris XII

    Google Scholar 

  • Ribreau C, Bonis M (1978) Propagations et écoulements dans les tubes collabables. Contributions à l’étude des vaisseaux[Propagations and flows in collapsible tubes. Contributions to the blood vessel study]. J Français Biophys Med Nucl 3:153–158

    Google Scholar 

  • Ribreau C, Thiriet M (1998) Écoulements veineux [Venous flow]. In: Jaffrin MY, Goubel F (eds) Biomécanique des fluides et des tissus [Fluid and tissue biomechanics]. Masson, Paris

    Google Scholar 

  • Ribreau C, Naili S, Bonis M, Langlet A (1993) Collapse of thin-walled elliptical tubes for high values of major-to-minor axis ratio. J Biomech Eng 115:432–440

    Article  CAS  PubMed  Google Scholar 

  • Rieu R, Friggi A, Pelissier R (1985) Velocity distribution along an elastic model of human arterial tree. J Biomech 18:703–715

    Article  CAS  PubMed  Google Scholar 

  • Salmon S, Thiriet M, Gerbeau JF (2003) Medical image-based computational model of pulsatile flow in saccular aneurisms. Math Model Numer Anal 37:663–679

    Article  Google Scholar 

  • Scaramucci J (1695) De motu cordis, theorema sexton. Theoremata familiaria viros eruditos consulentia de variis physico medicis lucubrationibus iucta leges mecanicas. Apud Joannem Baptistam Bustun, Urbino, pp 70–81

    Google Scholar 

  • Schiller L (1992) Die Entwicklung der laminaren Gesschwindigkeitsverteilung and ihre Bedeutung fur Aahigkeitsmessungen [The evolution of the laminar velocity distribution and its significance for the measurement of viscosity]. Z Angew Math Mech 2:96–106

    Article  Google Scholar 

  • Schilt S, Moore JE, Delfino A, Meister J-J (1996) The effects of time-varying curvature on velocity profiles in a model of the coronary arteries. J Biomech 29:469–474

    Article  CAS  PubMed  Google Scholar 

  • Schlichting H (1955) Boundary layer theory. McGraw Hill, New York

    Google Scholar 

  • Segré G, Silberberg A (1962a) Behaviour of macroscopic rigid spheres in poiseuille flow I: determination of local concentration by statistical analysis of particle passages through crossed light beam. J Fluid Mech 14:115–135

    Article  Google Scholar 

  • Segré G, Silberberg A (1962b) Behaviour of macroscopic rigid spheres in Poiseuille flow II: experimental results and interpretation. J Fluid Mech 14:136–157

    Article  Google Scholar 

  • Seminara G, Hall P (1976) Centrifugal instability of a Stokes layer: linear theory. Proc R Soc Lond A Math Phys Sci 350:299–316

    Article  Google Scholar 

  • Shah RK, London AL (1978) Laminar flow forced convection in ducts. Academic, New York

    Google Scholar 

  • Shapiro AH (1977) Steady flow in collapsible tubes. J Biomech Eng 99:126–147

    Article  Google Scholar 

  • Sherwin SJ, Peiró J (2002) Mesh generation in curvilinear domains using high-order elements. Int J Numer Method Eng 53:207–223

    Article  Google Scholar 

  • Shortis TA, Hall P (1999) On the nonlinear stability of the oscillatory viscous flow of an incompressible fluid in a curved pipe. J Fluid Mech 379:145–163

    Article  CAS  Google Scholar 

  • Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FT (1975) Pulsatile flow in curved pipes. J Fluid Mech 71:15–42

    Article  Google Scholar 

  • Smith FT (1976) Fluid flow into a curved pipe. Proc R Soc Lond A Math Phys Sci 331:71–87

    Article  Google Scholar 

  • Smith NP, Pullan AJ, Hunter PJ (2002) An anatomically based model of transient coronary blood flow in the heart. SIAM J Appl Math 62:990–1018

    Article  Google Scholar 

  • Sobey IJ (1985) Observation of waves during oscillatory channel flow. J Fluid Mech 151:395–426

    Article  Google Scholar 

  • Stein PD, Walburn FJ, Blick EF (1980) Damping effect of distensible tubes on turbulent flow: implications in the cardiovascular system. Biorheology 17:275–281

    CAS  PubMed  Google Scholar 

  • Stergiopulos N, Tardy Y, Meister JJ (1993) Nonlinear separation of forward and backward running waves in elastic conduits. J Biomech 26:201–209

    Article  CAS  PubMed  Google Scholar 

  • Sukernik MR, West O, Lawal O, Chittivelu B, Henderson R, Sherzoy AA, Vanderbush EJ, Francis CK (1996) Hemodynamic correlates of spontaneous echo contrast in the descending aorta. Am J Cardiol 77:184–186

    Article  CAS  PubMed  Google Scholar 

  • Sung HW, Yoganathan AP (1990) Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies. J Biomech 23:201–214

    Article  CAS  PubMed  Google Scholar 

  • Tada S, Oshima S, Yamane R (1996) Classification of pulsating flow patterns in curved pipes. J Biomech Eng 118:311–317

    Article  CAS  PubMed  Google Scholar 

  • Tadjbakhsh I, Odeh F (1967) Equilibrium states of elastic rings. J Math Anal Appl 18:59–74

    Article  Google Scholar 

  • Takano M, Goldsmith HL, Mason SG (1968) The flow of suspensions through tubes VIII: radial migration of particles in pulsatile flow. J Colloid Interface Sci 27:253–267

    Article  Google Scholar 

  • Talbot L, Gong KO (1983) Pulsatile entrance flow in a curved pipe. J Fluid Mech 127:1–25

    Article  Google Scholar 

  • Targ SM (1951) Basic problems of the theory of laminar flows (Russian). Gostechizdat, Moscow

    Google Scholar 

  • Taylor GI (1929) The criterion for turbulence in curved pipes. Proc R Soc Lond A Math Phys Sci 124:243–249

    Article  Google Scholar 

  • Taylor LA, Gerrard JH (1977) Pressure radius relationships for elastic tubes and their application to arteries. Med Biol Eng Comput 15:11–21

    Article  CAS  PubMed  Google Scholar 

  • Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Method Appl Mech Eng 158:155–196

    Article  Google Scholar 

  • Thiriet M, Bonis M (1983) Experiments on flow limitation during forced expiration in a monoalveolar model. Med Biol Eng Comput 21:681–687

    Article  CAS  PubMed  Google Scholar 

  • Thiriet M, Ribreau C (2000) Computational flow in a collapsed tube with wall contact. Rev Mec Ind 1:349–364

    Google Scholar 

  • Thiriet M, Maarek JM, Chartrand DA, Delpuech C, Davis L, Hatzfeld C, Chang HK (1989) Transverse images of the human thoracic trachea during forced expiration. J Appl Physiol 67:1032–1040

    CAS  PubMed  Google Scholar 

  • Thiriet M, Graham JMR, Issa RI (1992a) A pulsatile developing flow in a bend. J Phys III 2:995–1013

    CAS  Google Scholar 

  • Thiriet M, Pares C, Saltel E, Hecht F (1992b) Numerical model of steady flow in a model of the aortic bifurcation. J Biomech Eng 114:40–49

    Article  CAS  PubMed  Google Scholar 

  • Thiriet M, Graham JMR, Issa RI (1993) A computational model of wall shear and residence time of fluid particles conveyed by steady flow in a curved tube. J Phys III 3:85–103

    Google Scholar 

  • Thiriet M, Martin-Borret G, Hecht F (1996) Écoulement rheofluidifiant dans un coude et une bifurcation plane symetrique. Application à l’écoulement sanguin dans la grande circulation [Shear-thinning flow in a bend and a symmetrical planar bifurcation. Application to the blood flow in large vessels]. J Phys III 6:529–542

    Google Scholar 

  • Thiriet M, Cybulski G, Darrow RD, Doorly DJ, Dumoulin C, Tarnawski M, Caro CG (1997) Apports et limitations de la vélocimétrie par résonance magnétique nucléaire en biomécanique. Mesures dans un embranchement plan symétrique [Contributions and limitations of the nuclear magnetic resonance velocimetry in biomechanics. Measures in a two plane symmetrical bifurcation]. J Phys III 7:771–787

    Google Scholar 

  • Thiriet M, Brugières P, Bittoun J, Gaston A (2001a) Computational flow models in cerebral congenital aneurisms I: steady flow. Rev Mec Ind 2:107–118

    Google Scholar 

  • Thiriet M, Naili S, Langlet A, Ribreau C (2001b) Flow in thin-walled collapsible tubes. In: Leondes C (ed) Biofluid methods in vascular and pulmonary systems. CRC Press, Boca Raton

    Google Scholar 

  • Thiriet M, Naili S, Ribreau C (2003) Entry length and wall shear stress in uniformly collapsed veins. Comput Model Eng Sci 4:473–488

    Google Scholar 

  • Tritton DJ (1988) Physical fluid dynamics. Oxford University Press, London

    Google Scholar 

  • Uchida S, Aoki H (1977) Unsteady flows in a semi-infinite contracting or expanding pipe. J Fluid Mech 82:371–387

    Article  Google Scholar 

  • von Kerczek C, Davis SH (1974) Linear stability theory of oscillatory Stokes layers. J Fluid Mech 62:753–773

    Article  Google Scholar 

  • Wang K, Rallu A, Gerbeau JF, Farhat C (2011) Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid–structure interaction problems. Int J Numer Method Fluids 67:1175–1206

    Article  Google Scholar 

  • Waters SL, Pedley TJ (1999) Oscillatory flow in a tube of time-dependent curvature I: perturbation to flow in a stationary curved tube. J Fluid Mech 383:327–352

    Article  Google Scholar 

  • Womersley J (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao LS, Berger SA (1975) Entry flow in a curved pipe. J Fluid Mech 67:177–196

    Article  Google Scholar 

  • Yellin EL (1966) Laminar-turbulent transition process in pulsatile flow. Circ Res 19:791–804

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Details and associated references on specific topics at diverse length scales (micro-, meso-, and macroscopic scales) can be found in

    Google Scholar 

  • Thiriet M (2013) Tissue functioning and remodeling in the circulatory and ventilatory systems, vol 5, Biomathematical and biomechanical modeling of the circulatory and ventilatory systems. Springer, New York

    Google Scholar 

  • Thiriet M (2014) Anatomy and physiology of the circulatory and ventilatory systems, vol 6, Biomathematical and biomechanical modeling of the circulatory and ventilatory systems. Springer, New York

    Google Scholar 

  • Thiriet M (2008) Biology and mechanics of blood flows, part II: mechanics and medical aspects of blood flows, CRM series in mathematical physics. Springer, New York

    Book  Google Scholar 

  • Thiriet M, Sheu TWH, Garon A (2014) Biofluid flow and heat transfer. In: Johnson RW (ed) Handbook of fluid dynamics, 2nd edn. CRC Press, Boca Raton. ISBN 9781439849552

    Google Scholar 

  • The anatomy of the cardiovascular system is covered in any human anatomy textbook. Gray’s Anatomy: Descriptive and Surgical (1858) is an revised open-access text on the web (education.yahoo.com/reference/gray)

    Google Scholar 

  • The physiology of the cardiovascular apparatus is described in the textbook of Medical Physiology by A.C. Guyton, updated in Guyton AC and Hall JE (2006; 7th edition) Elsevier – Saunders Other cardiovascular physiology textbooks include in particular An Introduction to Cardiovascular Physiology by J.R. Levick (2003), Cardiovascular Physiology by M.N. Levy and R.M. Berne (2007), and Cardiac Electrophysiology: from Cell to Bedside by D.P. Zipes (2004)

    Google Scholar 

  • Principles of Biochemistry by A.L. Lehninger (1993) that is updated enables a basic understanding of cell functioning. Details on cell signaling are given in

    Google Scholar 

  • Thiriet M (2012) Signaling at the cell surface in the circulatory and ventilatory systems, vol 3, Biomathematical and biomechanical modeling of the circulatory and ventilatory systems. Springer, New York

    Book  Google Scholar 

  • Thiriet M (2012) Intracellular signaling mediators in the circulatory and ventilatory systems, vol 4, Biomathematical and biomechanical modeling of the circulatory and ventilatory systems. Springer, New York

    Book  Google Scholar 

  • Textbooks on blood flow comprise McDonald’s Blood Flow in Arteries by W.W. Nichols and M.F. O’Rourke (1998) rewritten and upgraded from Blood Flow in Arteries by D.A. McDonald and Hemodynamics by W.R. Milnor (1989). Pulmonary Circulation: Basic Mechanisms to Clinical Practice by J.M.B. Hughes and N.W. Morrell (2001) emphasizes the pulmonary microcirculation. An introduction to the cardiovascular system and basic biomechanical principles is given in The Mechanics of the Circulation by C.G. Caro, T.J. Pedley, R.C. Schroter, and W.A. Seed (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thiriet .

Editor information

Editors and Affiliations

Notation Rules

Biochemical species usually possess many aliases. Conversely, a given alias can refer to various types of molecules. Aliases that designate different types of molecules as well as those that do not have an obvious meaning are not used in the present text.

Symbols for physical quantities are most often represented by a single letter of the Latin or Greek alphabet (J, flux; L, length; m, mass; p, pressure; T, temperature; t, time; u, displacement; v, velocity; x, space; μ, dynamic viscosity; ρ, mass density; etc.). These symbols are specified using sub- and superscripts (\( \mathcal{D} \): mass diffusivity and \( {\mathcal{D}}_T \): thermal diffusivity).

A physical quantity associated with a given point in space at a given time can be (1) a scalar uniquely defined by its magnitude; (2) a vector characterized by a magnitude, a support, and a direction represented by an oriented line segment defined by a unit vector; and (3) a tensor specified by a magnitude and a few directions. To ensure a straightforward meaning of symbols used for scalar, vectorial, and tensorial quantities, boldface upper- (T) and lowercase (v) letters are used to denote a tensor and a vector, respectively, whereas both roman-style upper- and lowercase letters designate a scalar.

Nomenclature

Greek Symbols

Subscripts

Miscellaneous

Mathematical Notations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Thiriet, M. (2015). Hemodynamics: An Introduction. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics