Skip to main content

Vascular Calcification

  • Reference work entry
  • First Online:
  • 321 Accesses

Abstract

Vascular calcification is a detrimental pathology ubiquitously present in a number of vascular disease processes. Anatomically, vascular calcification is recognized in the intima or the media of the arterial wall although both sites may be involved simultaneously. Intimal calcification is exclusively associated with atherosclerosis while medial calcification is clinically manifest as arterial stiffening and hypertension in the context of diabetes mellitus, aging, and chronic kidney disease (CKD).

Vascular smooth muscle cells (VSMCs) are central to the mechanisms of vascular calcification which shares many similarities with developmental osteogenesis. Key features include osteogenic transformation of VSMCs with secretion of mineralization-competent microvesicles and dysregulated expression of calcification inhibitors. Detailed understanding of these mechanisms has identified novel putative therapeutic targets for preventing and treating vascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Calcification:

Deposition of mineral salts in the vessel walls, mostly hydroxyappatite.

Intima:

The inner layer of the vessel wall composed of endothelial cells and vascular smooth muscle cells. Thickened in atherosclerosis.

Media:

The central layer of the vessel wall composed of vascular smooth muscle cells which regulates vessel contraction.

Microvesicles:

Small membrane bound bodies containing protein and nucleic acid that are released by cells into the extracellular environment.

Osteogenic:

Having bone cell-like properties.

Synthetic:

Term typically used to describe for vascular smooth muscle cells that are no longer contractile but have proliferative and migratory capacity.

References

  • Agatston AS et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  • Agatston AS et al (1994) Ultrafast computed tomography-detected coronary calcium reflects the angiographic extent of coronary arterial atherosclerosis. Am J Cardiol 74:1272–1274

    Article  CAS  PubMed  Google Scholar 

  • Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson HC (1983) Calcific diseases. A concept. Archiv of Pathol Lab Med 107:341–348

    CAS  Google Scholar 

  • Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    Google Scholar 

  • Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD (2000) Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 36:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD (2005) Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St Francis Heart Study. J Am Coll Cardiol 46:158–165. doi:10.1016/j.jacc.2005.02.088

    Article  CAS  PubMed  Google Scholar 

  • Baumgart D et al (1997) Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol 30:57–64

    Article  CAS  PubMed  Google Scholar 

  • Beadenkopf WG, Daoud AS, Love BM (1964) Calcification in the coronary arteries and its relationship to arteriosclerosis and myocardial infarction. Am J Roentgenol Radium Ther Nucl Med 92:865–871

    CAS  PubMed  Google Scholar 

  • Becker A et al (2005) Prediction of serious cardiovascular events by determining coronary artery calcification measured by multi-slice computed tomography. Deutsche medizinische Wochenschrift 130:2433–2438. doi:10.1055/s-2005-918586

    Article  CAS  PubMed  Google Scholar 

  • Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM (2001) Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38:938–942

    Article  CAS  PubMed  Google Scholar 

  • Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    Article  CAS  PubMed  Google Scholar 

  • Boström K et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809. doi:10.1172/JCI116391

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucay N et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budoff MJ et al (1996) Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation 93:898–904

    Article  CAS  PubMed  Google Scholar 

  • Budoff MJ et al (2002) Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105:1791–1796

    Article  PubMed  Google Scholar 

  • Bunting CH (1906) The formation of true bone with cellular (red) marrow in a sclerotic aorta. J Exp Med 8:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burleigh MC et al (1992) Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 96:71–81

    Article  CAS  PubMed  Google Scholar 

  • Campbell GR, Campbell JH (1985) Smooth muscle phenotypic changes in arterial wall homeostasis: implications for the pathogenesis of atherosclerosis. Exp Mol Pathol 42:139–162

    Article  CAS  PubMed  Google Scholar 

  • Carlstrom D, Engfeldt B, Engstrom A, Ringertz N (1953) Studies on the chemical composition of normal and abnormal blood vessel walls. I. Chemical nature of vascular calcified deposits. Lab Investig J Tech Method Pathol 2:325–335

    CAS  Google Scholar 

  • Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    CAS  PubMed  Google Scholar 

  • Coates T et al (1998) Cutaneous necrosis from calcific uremic arteriolopathy. Am J Kidney Dis 32:384–391

    Article  CAS  PubMed  Google Scholar 

  • Dao HH, Essalihi R, Bouvet C, Moreau P (2005) Evolution and modulation of age-related medial elastocalcinosis: impact on large artery stiffness and isolated systolic hypertension. Cardiovasc Res 66:307–317. doi:10.1016/j.cardiores.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  • Demer LL, Watson KE, Boström K (1994) Mechanism of calcification in atherosclerosis. Trends Cardiovasc Med 4:45–49. doi:10.1016/1050-1738(94)90025-6

    Article  CAS  PubMed  Google Scholar 

  • Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    CAS  PubMed  Google Scholar 

  • Doherty TM, Detrano RC (1994) Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif Tissue Int 54:224–230. doi:10.1007/BF00301683

    Article  CAS  PubMed  Google Scholar 

  • Duer MJ et al (2008) Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arterioscler Thromb Vasc Biol 28:2030–2034. doi:10.1161/ATVBAHA.108.172387

    Article  CAS  PubMed  Google Scholar 

  • Edmonds ME, Morrison N, Laws JW, Watkins PJ (1982) Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 284:928–930

    Article  CAS  Google Scholar 

  • Eggen DA, Strong JP, McGill HC (1965) Coronary calcification. Relationship to clinically significant coronary lesions and race, sex, and topographic distribution. Circulation 32:948–955

    Article  CAS  PubMed  Google Scholar 

  • Ehara S et al (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429. doi:10.1161/01.CIR.0000148131.41425.E9

    Article  PubMed  Google Scholar 

  • Elliott RJ, McGrath LT (1994) Calcification of the human thoracic aorta during aging. Calcif Tissue Int 54:268–273

    Article  CAS  PubMed  Google Scholar 

  • Essalihi R, Dao HH, Yamaguchi N, Moreau P (2003) A new model of isolated systolic hypertension induced by chronic warfarin and vitamin K1 treatment. Am J Hypertens 16:103–110

    Article  CAS  PubMed  Google Scholar 

  • Everhart JE, Pettitt DJ, Knowler WC, Rose FA, Bennett PH (1988) Medial arterial calcification and its association with mortality and complications of diabetes. Diabetologia 31:16–23

    CAS  PubMed  Google Scholar 

  • Ewence AE et al (2008) Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res 103:e28–34. doi:10.1161/CIRCRESAHA.108.181305

    Article  CAS  PubMed  Google Scholar 

  • Farb A et al (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Feldman T, Glagov S, Carroll JD (1993) Restenosis following successful balloon valvuloplasty: bone formation in aortic valve leaflets. Cathet Cardiovasc Diagn 29:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick LA, Severson A, Edwards WD, Ingram RT (1994) Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 94:1597–1604. doi:10.1172/JCI117501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleckenstein-Grün G, Thimm F, Frey M, Czirfusz A (1994) Role of calcium in arteriosclerosis – experimental evaluation of antiarteriosclerotic potencies of Ca antagonists. Study Group for Calcium Antagonism. Basic Res Cardiol 89(Suppl 1):145–159

    PubMed  Google Scholar 

  • Fleet JC, Hock JM (1994) Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction. J Bone Miner Res 9:1565–1573. doi:10.1002/jbmr.5650091009

    Article  CAS  PubMed  Google Scholar 

  • Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903

    Article  CAS  PubMed  Google Scholar 

  • Ge J et al (1999) Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound. Heart Br Card Soc) 81:621–627

    CAS  Google Scholar 

  • Giachelli CM et al (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696. doi:10.1172/JCI116755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golestani R et al (2010) Abdominal aortic calcification detected by dual X-ray absorptiometry: a strong predictor for cardiovascular events. Ann Med 42:539–545. doi:10.3109/07853890.2010.515604

    Article  PubMed  Google Scholar 

  • Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215. doi:10.1001/jama.291.2.210

    Article  CAS  PubMed  Google Scholar 

  • Gross M-L et al (2007) Calcification of coronary intima and media: immunohistochemistry, backscatter imaging, and x-ray analysis in renal and nonrenal patients. Clin J Am Soc Nephrol 2:121–134. doi:10.2215/CJN.01760506

    Article  PubMed  Google Scholar 

  • Guérin AP, London GM, Marchais SJ, Metivier F (2000) Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant: Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 15:1014–1021

    Article  Google Scholar 

  • Haberl R et al (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 37:451–457

    Article  CAS  PubMed  Google Scholar 

  • Hashiba H, Aizawa S, Tamura K, Kogo H (2006) Inhibition of the progression of aortic calcification by etidronate treatment in hemodialysis patients: long-term effects. Ther Apher Dial 10:59–64. doi:10.1111/j.1744-9987.2006.00345.x

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S et al (1998) Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A 95:3094–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haust MR (1965) Comparative atherosclerosis: the morphology of spontaneous and induced atherosclerotic lesions in animals and its relation to human disease. Harper & Row, New York, pp 255–275

    Google Scholar 

  • Henrion D et al (1991) The consequences of aortic calcium overload following vitamin D3 plus nicotine treatment in young rats. J Hypertens 9:919–926

    Article  CAS  PubMed  Google Scholar 

  • Hirota S et al (1993) Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol 143:1003–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschl M, Francesconi M, Hirschl MM (1991) Moenckeberg media sclerosis: clinical aspects in diabetic patients. VASA Zeitschrift fur Gefasskrankheiten 20:216–221

    CAS  PubMed  Google Scholar 

  • Honye J et al (1992) Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 85:1012–1025

    Article  CAS  PubMed  Google Scholar 

  • Hsu HH, Camacho NP (1999) Isolation of calcifiable vesicles from human atherosclerotic aortas. Atherosclerosis 143:353–362

    Article  CAS  PubMed  Google Scholar 

  • Huang H et al (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Hunt JL et al (2002) Bone formation in carotid plaques: a clinicopathological study. Stroke J Cereb Circ 33:1214–1219

    Article  Google Scholar 

  • Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300(Pt 3):723–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM (2006) Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 260:192–210. doi:10.1111/j.1365-2796.2006.01692.x

    Article  CAS  PubMed  Google Scholar 

  • Kapustin AN et al (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109:e1–12. doi:10.1161/CIRCRESAHA.110.238808

    Article  CAS  PubMed  Google Scholar 

  • Katsuda S et al (1992) Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler Thromb 12:494–502

    Article  CAS  PubMed  Google Scholar 

  • Kelly-Arnold A et al (2013) Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A 110:10741–10746. doi:10.1073/pnas.1308814110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KM (1976) Calcification of matrix vesicles in human aortic valve and aortic media. Fed Proc 35:156–162

    CAS  PubMed  Google Scholar 

  • King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003) Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem 278:11661–11669. doi:10.1074/jbc.M211337200

    Article  CAS  PubMed  Google Scholar 

  • Kirsch T, Nah HD, Shapiro IM, Pacifici M (1997) Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 137:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kockx MM (1998) Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol 18:1519–1522

    Article  CAS  PubMed  Google Scholar 

  • Kockx MM, Muhring J, Bortier H, De Meyer GR, Jacob W (1996) Biotin- or digoxigenin-conjugated nucleotides bind to matrix vesicles in atherosclerotic plaques. Am J Pathol 148:1771–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kockx MM et al (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97:2307–2315

    Article  CAS  PubMed  Google Scholar 

  • Kondos GT et al (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107:2571–2576. doi:10.1161/01.CIR.0000068341.61180.55

    Article  PubMed  Google Scholar 

  • LaMonte MJ et al (2005) Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am J Epidemiol 162:421–429. doi:10.1093/aje/kwi228

    Article  PubMed  Google Scholar 

  • Lau WL, Ix JH (2013) Clinical detection, risk factors, and cardiovascular consequences of medial arterial calcification: a pattern of vascular injury associated with aberrant mineral metabolism. Semin Nephrol 33:93–105. doi:10.1016/j.semnephrol.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  • Laurent S et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605. doi:10.1093/eurheartj/ehl254

    Article  PubMed  Google Scholar 

  • Lehto S, Niskanen L, Suhonen M, Rönnemaa T, Laakso M (1996) Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16:978–983

    Article  CAS  PubMed  Google Scholar 

  • Leroyer AS et al (2007) Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772–777. doi:10.1016/j.jacc.2006.10.053

    Article  CAS  PubMed  Google Scholar 

  • Levy RJ, Gundberg C, Scheinman R (1983) The identification of the vitamin K-dependent bone protein osteocalcin as one of the gamma-carboxyglutamic acid containing proteins present in calcified atherosclerotic plaque and mineralized heart valves. Atherosclerosis 46:49–56

    Article  CAS  PubMed  Google Scholar 

  • Loecker TH, Schwartz RS, Cotta CW, Hickman JR (1992) Fluoroscopic coronary artery calcification and associated coronary disease in asymptomatic young men. J Am Coll Cardiol 19:1167–1172

    Article  CAS  PubMed  Google Scholar 

  • Loeser R et al (1992) Articular-cartilage matrix gamma-carboxyglutamic acid-containing protein. Characterization and immunolocalization. Biochem J 282(Pt 1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomashvili KA, Cobbs S, Hennigar RA, Hardcastle KI, O’Neill WC (2004) Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol 15:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Lomashvili KA, Garg P, Narisawa S, Millan JL, O’Neill WC (2008) Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int 73:1024–1030. doi:10.1038/ki.2008.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London GM (2003) Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol: JASN 14:S305–309

    Article  PubMed  Google Scholar 

  • London GM (2011) Arterial calcification: cardiovascular function and clinical outcome. Nefrología: publicación oficial de la Sociedad Española Nefrologia 31:644–647. doi:10.3265/Nefrologia.pre2011.Oct.11175

    CAS  Google Scholar 

  • London GM et al (2003) Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 18:1731–1740

    Article  PubMed  Google Scholar 

  • Luo G (1997) Spontaneous calcification of arteries and cartilage in mice lacking MGP. Nature 386:78–81

    Article  CAS  PubMed  Google Scholar 

  • Mahoney LT et al (1996) Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J Am Coll Cardiol 27:277–284

    Article  CAS  PubMed  Google Scholar 

  • Mallat Z et al (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99:348–353

    Article  CAS  PubMed  Google Scholar 

  • Mayr M et al (2009) Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet 2:379–388. doi:10.1161/CIRCGENETICS.108.842849

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JH, Palmer FJ (1974) Incidence and significance of coronary artery calcification. Br Heart J 36:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEniery CM et al (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53:524–531. doi:10.1161/HYPERTENSIONAHA.108.126615

    Article  CAS  PubMed  Google Scholar 

  • McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 33:141–164. doi:10.1002/(SICI)1097-0029(19960201)33:2<141::AID-JEMT5>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8

    Article  CAS  PubMed  Google Scholar 

  • Moe SM et al (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304. doi:10.1111/j.1523-1755.2005.00333.x

    Article  CAS  PubMed  Google Scholar 

  • Mohler ER et al (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    Article  PubMed  Google Scholar 

  • Mönckeberg JG (1903) Über die reine Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. Virchows Archiv für pathologische Anatomie und Physiologie, und für klinische Medicin, Berlin 171:141–167

    Google Scholar 

  • Munroe PB et al (1999) Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet 21:142–144. doi:10.1038/5102

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Motoyama T (1990) Collagen species in various sized human arteries and their changes with intimal proliferation. Artery 17:96–106

    CAS  PubMed  Google Scholar 

  • Murphy WA et al (2003) The iceman: discovery and imaging. Radiology 226:614–629. doi:10.1148/radiol.2263020338

    Article  PubMed  Google Scholar 

  • Naghavi M et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778. doi:10.1161/01.CIR.0000087481.55887.C9

    Article  PubMed  Google Scholar 

  • Nakamura S et al (2009) Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin J Am Soc Nephrol 4:1892–1900. doi:10.2215/CJN.04320709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New SEP, Aikawa E (2011) Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 108:1381–1391. doi:10.1161/CIRCRESAHA.110.234146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niederhoffer N et al (1997) Calcification of medial elastic fibers and aortic elasticity. Hypertension 29:999–1006

    Article  CAS  PubMed  Google Scholar 

  • O’Brien KD et al (1995) Osteopontin is expressed in human aortic valvular lesions. Circulation 92:2163–2168

    Article  PubMed  Google Scholar 

  • O’Neill WC, Sigrist MK, McIntyre CW (2010) Plasma pyrophosphate and vascular calcification in chronic kidney disease. Nephrol Dial Transplant 25:187–191. doi:10.1093/ndt/gfp362

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke R et al (2000) American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 36:326–340

    Article  PubMed  Google Scholar 

  • Parfitt AM (1969) Soft-tissue calcification in uremia. Arch Intern Med 124:544–556

    Article  CAS  PubMed  Google Scholar 

  • Parhami F et al (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687

    Article  CAS  PubMed  Google Scholar 

  • Park R et al (2002) Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation 106:2073–2077

    Article  CAS  PubMed  Google Scholar 

  • Pletcher MJ, Tice JA, Pignone M, Browner WS (2004) Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 164:1285–1292. doi:10.1001/archinte.164.12.1285

    Article  PubMed  Google Scholar 

  • Price PA, Williamson MK, Haba T, Dell RB, Jee WS (1982) Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc Natl Acad Sci U S A 79:7734–7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price PA, Faus SA, Williamson MK (1998) Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 18:1400–1407

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D (2002) Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation 106:3044–3050. doi:10.1161/01.CIR.0000041429.83465.41

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D, Shanahan CM (2001) Biology of calcification in vascular cells: intima versus media. Herz 26(1):245–251. doi:10.1007/s00059-001-2289-8

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D, Shanahan CM (2011) Nanocrystals seed calcification in more ways than one. Kidney Int 79:379–382. doi:10.1038/ki.2010.455

    Article  PubMed  Google Scholar 

  • Proudfoot D, Shanahan CM, Weissberg PL (1998a) Vascular calcification: new insights into an old problem. J Pathol 185:1–3

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D, Skepper JN, Shanahan CM, Weissberg PL (1998b) Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterioscler Thromb Vasc Biol 18:379–388

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D et al (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D et al (2001) The role of apoptosis in the initiation of vascular calcification. Z Kardiol 90(Suppl 3):43–46

    PubMed  Google Scholar 

  • Raggi P et al (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    Article  CAS  PubMed  Google Scholar 

  • Rekhter MD et al (1993) Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol 143:1634–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds JL et al (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15:2857–2867. doi:10.1097/01.ASN.0000141960.01035.28

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JL et al (2005) Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 16:2920–2930. doi:10.1681/ASN.2004100895

    Article  CAS  PubMed  Google Scholar 

  • Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941–944

    Article  CAS  PubMed  Google Scholar 

  • Roberts JC & Struas R (1965) Comparative atherosclerosis: the morphology of spontaneous and induced atherosclerotic lesions in animals and its relation to human disease. Harper & Row, New York pp 291–308

    Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809. doi:10.1038/362801a0

    Article  CAS  PubMed  Google Scholar 

  • Rumberger JA et al (1994) Relation of coronary calcium determined by electron beam computed tomography and lumen narrowing determined by autopsy. Am J Cardiol 73:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    Article  CAS  PubMed  Google Scholar 

  • Rutsch F et al (2001) PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol 158:543–554. doi:10.1016/S0002-9440(10)63996-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer C et al (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366. doi:10.1172/JCI17202

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmermund A et al (1997) Coronary artery calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina. Circulation 96:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Schmid K, McSharry WO, Pameijer CH, Binette JP (1980) Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37:199–210

    Article  CAS  PubMed  Google Scholar 

  • Schwarz U et al (2000) Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol Dial Transplant 15:218–223

    Article  CAS  PubMed  Google Scholar 

  • Severson AR, Ingram RT, Fitzpatrick LA (1995) Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro. In Vitro Cell Dev Biol Anim 31:853–857. doi:10.1007/BF02634569

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM, Weissberg PL (1998) Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM, Weissberg PL (1999) Smooth muscle cell phenotypes in atherosclerotic lesions. Curr Opin Lipidol 10:507–513

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM, Weissberg PL, Metcalfe JC (1993) Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res 73:193–204

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93:2393–2402. doi:10.1172/JCI117246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan CM et al (1999) Medial localization of mineralization-regulating proteins in association with Mönckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM et al (2000) Expression of mineralisation-regulating proteins in association with human vascular calcification. Z Kardiol 89(Suppl 2):63–68

    Article  CAS  PubMed  Google Scholar 

  • Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109:697–711. doi:10.1161/CIRCRESAHA.110.234914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Israel DH, Kamean JL, Bodian CA, Ambrose JA (1993) Clinical, angiographic, and procedural determinants of major and minor coronary dissection during angioplasty. Am Heart J 126:39–47

    Article  CAS  PubMed  Google Scholar 

  • Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833. doi:10.1148/radiol.2283021006

    Article  PubMed  Google Scholar 

  • Shemesh J et al (2004) Coronary calcium by spiral computed tomography predicts cardiovascular events in high-risk hypertensive patients. J Hypertens 22:605–610

    Article  CAS  PubMed  Google Scholar 

  • Shioi A et al (1995) Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009

    Article  CAS  PubMed  Google Scholar 

  • Shroff RC, Shanahan CM (2007) The vascular biology of calcification. Semin Dial 20:103–109. doi:10.1111/j.1525-139X.2007.00255.x

    Article  PubMed  Google Scholar 

  • Shroff RC et al (2008) Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118:1748–1757. doi:10.1161/CIRCULATIONAHA.108.783738

    Article  CAS  PubMed  Google Scholar 

  • Shroff RC et al (2010) Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol 21:103–112. doi:10.1681/ASN.2009060640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon A, Levenson J (1993) Cardiovasculaire C. D. M. P. Early detection of subclinical atherosclerosis in asymptomatic subjects at high risk for cardiovascular disease. Atherosclerosis 15:1069–1076

    CAS  Google Scholar 

  • Speer MY et al (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 196:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stary H (1999) Atlas of atherosclerosis: progression and regression. CRC Press, New York, CRC pp 27–28

    Google Scholar 

  • Superko HR et al. (2011) Genetic testing for early detection of individuals at risk of coronary heart disease and monitoring response to therapy: challenges and promises. Current atherosclerosis reports. doi:10.1007/s11883-011-0198-8

    Google Scholar 

  • Tanimura A, McGregor DH, Anderson HC (1983) Matrix vesicles in atherosclerotic calcification. In: Proceedings of the society for experimental biology and medicine. Society for experimental biology and medicine, vol 172. New York, pp 173–177

    Google Scholar 

  • Taylor AJ et al (2005) Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 46:807–814. doi:10.1016/j.jacc.2005.05.049

    Article  CAS  PubMed  Google Scholar 

  • Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2008) Associations between vascular calcification, arterial stiffness and bone mineral density in chronic kidney disease. Nephrol Dial Transplant: Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 23:586–593. doi:10.1093/ndt/gfm660

    Article  Google Scholar 

  • Triffitt JT, Gebauer U, Ashton BA, Owen ME, Reynolds JJ (1976) Origin of plasma alpha2HS-glycoprotein and its accumulation in bone. Nature 262:226–227

    Article  CAS  PubMed  Google Scholar 

  • Tyson KL et al (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494. doi:10.1161/01.ATV.0000059406.92165.31

    Article  CAS  PubMed  Google Scholar 

  • van Popele NM et al (2001) Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke J Cereb Circ 32:454–460

    Article  Google Scholar 

  • Vengrenyuk Y et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 103:14678–14683. doi:10.1073/pnas.0606310103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeke F et al (2011) Prognostic value of aortic stiffness and calcification for cardiovascular events and mortality in dialysis patients: outcome of the calcification outcome in renal disease (CORD) study. Clin J Am Soc Nephrol 6:153–159. doi:10.2215/CJN.05120610

    Article  PubMed  PubMed Central  Google Scholar 

  • Virchow R (1989) Cellular pathology. As based upon physiological and pathological histology. Lecture XVI – Atheromatous affection of arteries. 1858. Nutr Rev 47:23–25

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16:267–272

    Article  PubMed  Google Scholar 

  • Vliegenthart R et al (2005) Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 112:572–577. doi:10.1161/CIRCULATIONAHA.104.488916

    Article  PubMed  Google Scholar 

  • Wada T, McKee MD, Steitz S, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178

    Article  CAS  PubMed  Google Scholar 

  • Watson KE et al (1994) TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93:2106–2113. doi:10.1172/JCI117205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westenfeld R, Jahnen-Dechent W, Ketteler M (2007) Vascular calcification and fetuin-A deficiency in chronic kidney disease. Trends Cardiovasc Med 17:124–128. doi:10.1016/j.tcm.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Wexler L et al (1996) Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 94:1175–1192

    Article  CAS  PubMed  Google Scholar 

  • Wong ND et al (2000) Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 86:495–498

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, Yeoh SE, Wallace W, Salter D, Fletcher AM, van Beek EJ, Flapan AD, Uren NG, Behan MW, Cruden NL, Mills NL, Fox KA, Rudd JH, Dweck MR, Newby DE (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713. doi:10.1016/S0140-6736(13)61754-7. Epub 2013 Nov 11. PMID: 24224999

    Article  PubMed  Google Scholar 

  • Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35(23):1515–1525. doi10.1093/eurheartj/ehu163. Epub 2014 Apr 16. PMID: 24740885

    Article  PubMed  PubMed Central  Google Scholar 

  • Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34(4):724–736. doi:10.1161/ATVBAHA.113.302642. Epub 2014 Feb 20. Review. Erratum in: Arterioscler Thromb Vasc Biol. 2014 Jul;34(7):e17. PMID: 24558104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan CM (2013) Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol 9(11):661–670. doi:10.1038/nrneph.2013.176, Epub 2013 Sep 10. PMID: 24018414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Shanahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kalra, S.S., Shanahan, C. (2015). Vascular Calcification. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_217

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_217

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics