Skip to main content

Pressure Effects on the Rate of Chemical Reactions Under the High Pressure and High Temperature Conditions Used in Pressure-Assisted Thermal Processing

  • Reference work entry
Handbook of Food Chemistry

Abstract

Thermal processing technologies are widely used to reduce microbial safety risks and extend the shelf life of foods. In spite of continuous improvements, the development of new technologies has become a necessary response to consumer demands for safer foods with closer-to-fresh quality, higher retention of nutrients, and higher bioavailability of phytochemicals promoting health. High-pressure processing (HPP) has become a well-established food pasteurization alternative with numerous and worldwide applications since the first products were first commercialized in Japan in the early 1990s. Efforts in the early 2000s to combine multiple pressure pulses and pressure shifting of pH with HPP treatments at moderate temperatures (<100 °C) failed in achieving the inactivation of bacterial spores at acceptable levels. Pressure-assisted thermal processing (PATP), called pressure-assisted sterilization (PATS) when the process yields shelf-stable foods, is an emerging technology combining the application of high temperature (>100 °C) and high pressure (>600 MPa). Under these conditions, bacterial spores can be inactivated, but the extent of chemical changes must be determined from a quality and safety point of view. However, adiabatic heating during pressurization increases temperature to lethal levels for microorganisms, which in combination with fast decompression cooling can lower the extent of chemical changes to levels below conventional thermal processing. Development of enzyme and microbial inactivation models and calculation methods to assist the design of PATP processes and equipment are advancing rapidly. However, elucidating reaction mechanisms in PATP-treated foods is challenging due to limitations when performing in situ measurements under high pressure. In this chapter, current knowledge of reaction kinetics at high pressure and elevated temperature and information on specific chemical reactions at the temperature and pressure levels required for the pasteurization and sterilization of foods, particularly those reactions known to yield toxic compounds, are presented. Predicting the direction of pressure effects on chemical reaction cannot be predicted unless its activation volume value (V a ) is experimentally determined. Reactions are accelerated or slowed by pressure if V a is negative or positive, respectively. For example, acrylamide can be formed when foods are subjected to conventional thermal treatments above 100 °C. Under PATP treatment conditions, its formation in model systems was inhibited by pressure suggesting a positive V a for this reaction, but this must be confirmed with experiments in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar S, Paredes-Sabja D, Torres JA, Sarker MR (2009) Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiol 26:272–277

    Article  CAS  Google Scholar 

  • Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A 70:782–786

    Article  CAS  Google Scholar 

  • Barbosa-Canovas GV, Medina-Meza I, Candogan K, Bermudez-Aguirre D (2014) Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Sci 98(3):420–434

    Article  Google Scholar 

  • Behsnilian D, Butz P, Greiner R, Lautenschlaeger R (2014) Process-induced undesirable compounds: chances of non-thermal approaches. Meat Sci 98(392–403)

    Google Scholar 

  • Bolumar T, Skibsted LH, Orlien V (2012) Kinetics of the formation of radicals in meat during high pressure processing. Food Chem 134(4):2114–2120

    Article  CAS  Google Scholar 

  • Bolumar T, Andersen ML, Orlien V (2014) Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants. Food Chem 150:422–428

    Article  CAS  Google Scholar 

  • Buckow R, Heinz V, Knorr D (2007) High pressure phase transition kinetics of maize starch. J Food Eng 81(2):469–475

    Article  Google Scholar 

  • Buckow R, Weiss U, Knorr D (2009) Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innov Food Sci Emerg Technol 10(4):441–448

    Article  CAS  Google Scholar 

  • Buckow R, Kastell A, Terefe NS, Versteeg C (2010) Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice. J Agric Food Chem 58(18):10076–10084

    Article  CAS  Google Scholar 

  • Buckow R, Wendorff J, Hemar Y (2011) Conjugation of bovine serum albumin and glucose under combined high pressure and heat. J Agric Food Chem 59(8):3915–3923

    Article  CAS  Google Scholar 

  • Butz P, Serfert Y, Fernandez Garcia A, Dieterich S, Lindauer R, Bognar A, Tauscher B (2004) Influence of high-pressure treatment at 25 °C and 80 °C on folates in orange juice and model media. J Food Sci 79(3):SNQ 117–SNQ 121

    Google Scholar 

  • Butz P, Bognar A, Dieterich S, Tauscher B (2007) Effect of high-pressure processing at elevated temperatures on thiamin and riboflavin in pork and model systems. J Agric Food Chem 55(4):1289–1294

    Article  CAS  Google Scholar 

  • Castañón-Rodriguez JF, Torrestiana-Sanchez B, Montero-Lagunes M, Portilla-Arias J, Ramirez de Leon JA, Aguilar-Uscanga MG (2013) Using high pressure processing (HPP) to pretreat sugarcane bagasse. Carbohydr Polym 98(1):1018–1024

    Article  CAS  Google Scholar 

  • Chakraborty S, Kaushik N, Rao PS, Mishra HN (2014) High-pressure inactivation of enzymes: a review on its recent applications on fruit purees and juices. Compr Rev Food Sci Food Safety 13(4):578–596

    Article  CAS  Google Scholar 

  • Corrales M, Fernández García A, Butz P, Stärke J, Pfaff E, Wiesmüller KH, Tauscher B (2007) Stability of peptide amides under high pressure. High Pressure Res 27(1):17–22

    Article  CAS  Google Scholar 

  • Corrales M, Butz P, Tauscher B (2008) Anthocyanin condensation reactions under high hydrostatic pressure. Food Chem 110(3):627–635

    Article  CAS  Google Scholar 

  • Cruz RMS, Rubilar JF, Ulloa PA, Torres JA, Vieira MC (2011) New food processing technologies: development and impact on the consumer acceptability. In: Columbus F (ed) Food quality: control, analysis and consumer concerns. Nova, New York, pp 555–584

    Google Scholar 

  • Danielewicz-Ferchmin I, Ferchmin AR (1998) Hydration of ions at various temperatures: the role of electrostriction. J Chem Phys 109(6):2394–2402

    Article  CAS  Google Scholar 

  • de Roeck A, Duvetter T, Fraeye I, van der Plancken I, Sila DN, van Leoy A, Hendrickx ME (2009) Effect of high-pressure/high-temperature processing on chemical pectin conversions in relation to fruit and vegetable texture. Food Chem 115(1):207–213

    Article  CAS  Google Scholar 

  • de Vleeschouwer K, van der Plancken I, van Loey A, Hendrickx ME (2011) The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. J Agric Food Chem 58(22):11740–11748

    Article  CAS  Google Scholar 

  • del Pozo Insfran D, del Follo Martinez A, Talcott ST, Brenes CH (2007) Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. J Food Sci 72(4):S247–S253

    Article  CAS  Google Scholar 

  • Duarte RV, Moreira SA, Fernandes PAR, Fidalgo LG, Santos MD, Queirós RP, Santos DI, Delgadillo I, Saraiva JA. 2014. Preservation under pressure (hyperbaric storage) at 25 °C, 30 °C and 37 °C of a highly perishable dairy food and comparison with refrigeration. CyTA - Cyta J Food (ahead-of-print):1–8.

    Google Scholar 

  • Eisenbrand G, Engel KH, Werner W, Hartwig A, Knorr D, Knusden L, Schlatter J, Schreier P, Steinberg P, Vieths S (2007) Thermal processing of food: potential health benefits and risks. Wiley-VCH, Weinheim

    Google Scholar 

  • El'yanov B, Hamann S (1975) Some quantitative relationships for ionization reactions at high pressures. Aust J Chem 28(5):945–954

    Article  Google Scholar 

  • Escobedo-Avellaneda Z, Pateiro Moure M, Chotyakul N, Torres JA, Welti-Chanes J, Pérez-Lamela C (2011) Benefits and limitations of food processing by high pressure technologies: effects on functional compounds and abiotic contaminants. Cyta J Food 9(4):352–365

    Article  CAS  Google Scholar 

  • Fernandes PA, Moreira SA, Fidalgo LG, Santos MD, Queirós RP, Delgadillo I, Saraiva JA (2015) Food preservation under pressure (hyperbaric storage) as a possible improvement/alternative to refrigeration: a review. Food Eng Rev 7:1–10

    Article  Google Scholar 

  • Fernández García A, Butz P, Zöller H, Stärke J, Pfaff E, Tauscher B (2003) Pressure/temperature combined treatments yield hormone-like peptides with pyroglutamate at N-terminus. J Agric Food Chem 51:8093–8097

    Article  CAS  Google Scholar 

  • Ferreira ARFC, Figueiredo AB, Evtuguin DV, Saraiva JA (2011) High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose. Green Chem 13(10):2764

    Article  CAS  Google Scholar 

  • Figueiredo A, Evtuguin D, Saraiva J (2010) Effect of high pressure treatment on structure and properties of cellulose in eucalypt pulps. Cellulose 17(6):1193–1202

    Article  CAS  Google Scholar 

  • Fukuda M, Kunijigi S (1984) Pressure dependence of thermolysin catalysis. Eur J Biochem 142(3):565–570

    Article  CAS  Google Scholar 

  • Fullerton PM, Barnes JM (1966) Peripheral neuropathy in rats produced by acrylamide. Br J Ind Med 23:210–221

    CAS  Google Scholar 

  • Gamboa da Costa G, Churchwell MI, Hamilton P, von Tungeln LS, Beland FA, Marques MM, Doerge DR (2003) DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice. Chem Res Toxicol 16(10):1328–1337

    Article  CAS  Google Scholar 

  • Gupta R, Balasubramaniam VM, Schwartz SJ, Francis DM (2010) Storage stability of lycopene in tomato juice subjected to combined pressure-heat treatments. J Agric Food Chem 58(14):8305–8313

    Article  CAS  Google Scholar 

  • Haase NU (2004) Ways to reduce acrylamide in potato chips (crisps). Federal Centre for Cereal, Potato and Lipid Research, Detmold

    Google Scholar 

  • Hamann SD (1981) Properties of electrolyte solutions at high pressure and temperatures. Phys Chem Earth 13(4):89–111

    Article  Google Scholar 

  • Hamann SD (1982) The influence of pressure on ionization equilibria in aqueous-solutions. J Solut Chem 11(1):63–68

    Article  CAS  Google Scholar 

  • Heinz V, Knorr D (2001) Effects of high pressure on spores. Ultra high pressure treatments of foods. Springer Science+Business Media, New York, pp 77–113

    Book  Google Scholar 

  • Hepburn P, Howlett J, Boeing H, Cockburn A, Constable AD, de Jong N, Moseley B, Oberdörfer R, Robertson C, Walk JM, Samuels F (2008) The application of post-market monitoring to novel foods. Food Chem Toxicol 46(1):9–33

    Article  CAS  Google Scholar 

  • Hill VM, Ledward DA, Ames JM (1996) Influence of high hydrostatic pressure and pH on the rate of Maillard browning in a glucose-lysine system. J Agric Food Chem 44(2):594–598

    Article  CAS  Google Scholar 

  • IARC (1983) Polynuclear aromatic compounds. Part 1: chemical, environmental and experimental data. International Agency for Research on Cancer, Lyon, Fance

    Google Scholar 

  • IARC (1994) Monographs on the evaluation of carcinogenic risks to humans. Some Industrial Chemicals. Acrylamide. International Agency for Research on Cancer, Lyon, France, pp 389–433

    Google Scholar 

  • Isaacs N, Coulson M (1996) Effect of pressure on processes modelling the Maillard reaction. J Phys Organ Chem 9:639–644

    Article  CAS  Google Scholar 

  • Jägerstad M, Skog K (2005) Genotoxicity of heat-processed foods. Mutat Res 574:156–172

    Article  CAS  Google Scholar 

  • Jagerstad M, Skog K, Arvidsson P, Solyakov A (1998) Chemistry, formation and occurrence of genotoxic heterocyclic amines identified in model systems and cooked foods. Z Lebensm Unters Forsch 207(419–427)

    Google Scholar 

  • Jenner G (2004) Role of the medium in high pressure organic reactions. A review. Mini-Rev Organ Chem 1(1):9–26

    Article  CAS  Google Scholar 

  • Kanekanian A (2010) Book review: thermal processing of food: potential health benefits and risks – symposium proceedings (2007). Int J Dairy Technol 63(1):145

    Article  Google Scholar 

  • Kebede BT, Grauwet T, Tabilo-Munizaga G, Palmers S, Vervoort L, Hendrickx M, Van Loey A (2013) Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: identification and linkage to possible process-induced chemical changes. Food Chem 141(3):1603–1613

    Article  CAS  Google Scholar 

  • Kebede BT, Grauwet T, Mutsokoti L, Palmers S, Vervoort L, Hendrickx M, Van Loey A (2014) Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Res Int 56:218–225

    Article  CAS  Google Scholar 

  • Kim CT, Hwang ES, Hyong JL (2007) An improved LC-MS/MS method for the quantitation of acrylamide in processed foods. Food Chem 101(1):401–409

    Article  CAS  Google Scholar 

  • Knockaert G, De Roeck A, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A (2011) Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chem 125(3):903–912

    Article  CAS  Google Scholar 

  • Laidler K (2002) Kinetics (chemistry). In: Meyers RA (ed) Encyclopedia of physical science and technology. Academic, New York, pp 177–198

    Google Scholar 

  • Lee ML, Novotny MV, Bartle KD (1981) Analytical chemistry of polycyclic aromatic compounds. Academic, London, UK

    Google Scholar 

  • Ma H, Ledward DA (2013) High pressure processing of fresh meat – is it worth it? Meat Sci 95(4):897–903

    Article  Google Scholar 

  • Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    Article  CAS  Google Scholar 

  • Martínez-Monteagudo SI, Saldaña MDA (2014) Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Res Int 62:169–176

    Article  CAS  Google Scholar 

  • Martínez-Monteagudo SI, Saldaña MDA, Torres JA, Kennelly JJ (2012) Effect of pressure-assisted thermal sterilization on conjugated linoleic acid (CLA) content in CLA-enriched milk. Innov Food Sc Emerg Technol 16:291–297

    Article  CAS  Google Scholar 

  • Mathys A, Reineke K, Heinz V, Knorr D (2009) High pressure thermal sterilization-development and application of temperature controlled spore inactivation studies. High Pressure Res 29(1):3–7

    Article  Google Scholar 

  • Matser AA, Krebbers B, van den Berg RW, Bartels PV (2004) Advantages of high pressure sterilisation on quality of food products. Trends Food Sci Technol 15(2):79–85

    Article  CAS  Google Scholar 

  • Matthäus B (2004) Factors affecting the concentration of acrylamide during deep-fat frying of potatoes. Eur J Lipid Sci Technol 106:793–801

    Article  CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology: IUPAC recommendations, 2nd edn. Blackwell, Ames

    Google Scholar 

  • Medina-Meza IG, Barnaba C, Barbosa-Cánovas GV (2014) Effects of high pressure processing on lipid oxidation: a review. Innov Food Sci Emerg Technol 22:1–10

    Article  CAS  Google Scholar 

  • Meyer RS, Cooper KL, Knorr D, Lelieveld HLM (2000) High-pressure sterilization of foods. Food Technol 54(11):67, 8, 70, 2

    Google Scholar 

  • Molina-Guitierrez A, Stippl V, Delgado A, Ganzle MG, Vogel R (2002) In situ determination of the intercellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl Environ Microbiol 68(9):4399–4406

    Article  CAS  Google Scholar 

  • Moreno FJ, Molina E, Olano A, López-Fandiño R (2003a) High-pressure effects on Maillard reaction between glucose and lysine. J Agric Food Chem 51:394–400

    Article  CAS  Google Scholar 

  • Moreno FJ, Villamiel M, Olano A (2003b) Effect of high pressure on isomerization and degradation of lactose in alkaline media. J Agric Food Chem 51(7):1894–1896

    Article  CAS  Google Scholar 

  • Mortelmans K, Errol Z (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  Google Scholar 

  • Mújica-Paz H, Valdez-Fragoso A, Tonello Samson C, Welti-Chanes J, Torres JA (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4(6):969–985

    Article  Google Scholar 

  • Oey I, Verlinde P, Hendrickx ME, van Loey A (2006) Temperature and pressure stability of l-ascorbic acid and/or [6 s] 5-methyltetrahydrofolic acid: a kinetic study. Eur Food Res Technol 223:71–77

    Article  CAS  Google Scholar 

  • Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  Google Scholar 

  • Paredes-Sabja D, Gonzalez M, Sarker MR, Torres JA (2007) Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. J Food Sci 72(6):M202–M206

    Article  CAS  Google Scholar 

  • Patterson MF (2005) A review: microbiology of pressure-treated foods. J Appl Microbiol 98:1400–1409

    Article  CAS  Google Scholar 

  • Pedrenski F (2007) The canon of potato science: acrylamide. Potato Res 50:411–413

    Article  CAS  Google Scholar 

  • Porretta S, Birzi A, Ghizzoni C, Vicini E (1995) Effects of ultrahigh hydrostatic pressure treatments on the quality of tomato juice. Food Chem 52(1):35–41

    Article  CAS  Google Scholar 

  • Queirós RP, Santos MD, Fidalgo LG, Mota MJ, Lopes RP, Inácio RS, Delgadillo I, Saraiva JA (2014) Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration. Food Chem 147:209–214

    Article  CAS  Google Scholar 

  • Rademacher B, Hinrichs J (2006) Effects of high pressure treatment on indigenous enzymes in bovine milk: reaction kinetics, inactivation and potential application. Int Dairy J 16(6):655–661

    Article  CAS  Google Scholar 

  • Ramirez R, Saraiva J, Pérez Lamela C, Torres JA (2009) Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Eng Rev 1(1):16–30

    Article  CAS  Google Scholar 

  • Ruiz-Capillas C, Jiménez Colmenero F (2004) Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. Eur Food Res Technol 218:237–241

    Article  CAS  Google Scholar 

  • Ruiz-Capillas C, Jiménez Colmenero F, Carrascosa AV, Muñoz R (2007) Biogenic amine production in Spanish dry-cured “chorizo” sausage treated with high-pressure and kept in chilled storage. Meat Sci 77:365–371

    Article  CAS  Google Scholar 

  • Saldaña MDA, Martinez-Monteagudo SI (2014) Chemical reactions in food systems at high hydrostatic pressure. Food Eng Rev 6:105–127

    Article  CAS  Google Scholar 

  • Samaranayake CP, Sastry SK (2010) In situ measurement of pH under high pressure. J Phys Chem B 114(42):13326–13332

    Article  CAS  Google Scholar 

  • Samaranayake CP, Sastry SK (2013) In-situ pH measurement of selected liquid foods under high pressure. Innov Food Sc Emerg Technol 17:22–26

    Article  CAS  Google Scholar 

  • Schwarzenbolz U, Klostermeyer H, Henle T (2000) Maillard-type reactions under high hydrostatic pressure: formation of pentosidine. Eur Food Res Technol 211:208–210

    Article  CAS  Google Scholar 

  • Schwarzenbolz U, Klostermeyer H, Henle T (2002) Maillard reaction under high hydrostatic pressure: studies on the formation of protein-bound amino acid derivatives. Int Congress Ser 1245:223–227

    Article  CAS  Google Scholar 

  • Segovia Bravo K, Ramírez R, Durst R, Escobedo-Avellaneda ZJ, Welti-Chanes J, Sanz PD, Torres JA (2012) Formation risk of toxic compounds in pressure-assisted thermally processed foods. J Food Sci 77(1):R1–R10

    Article  CAS  Google Scholar 

  • Segovia-Bravo KA, Guignon B, Bermejo-Prada A, Sanz PD, Otero L (2012) Hyperbaric storage at room temperature for food preservation: a study in strawberry juice. Innov Food Sc Emerg Technol 15:14–22

    Article  Google Scholar 

  • Serment-Moreno V, Barbosa-Cánovas G, Torres JA, Welti-Chanes J (2014) High pressure processing: kinetic models for microbial and enzyme inactivation. Food Eng Rev 6(3):56–88

    Article  CAS  Google Scholar 

  • Serment-Moreno V, Fuentes C, Torres JA, Welti CJ (2015) Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time–pressure functions for process design. Food Bioprocess Technol 8(6):1244–1257

    Article  CAS  Google Scholar 

  • Shao Y, Zhu S, Ramaswamy H, Marcotte M (2010) Compression heating and temperature control for high pressure destruction of bacterial spores: an experimental method for kinetics evaluation. Food Bioprocess Technol 3(1):71–78

    Article  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Smeller L (2002) Pressure–temperature phase diagrams of biomolecules. Biochim Biophys Acta (BBA) Protein Struct 1595(1–2):11–29

    CAS  Google Scholar 

  • Spinner J. 2014. Hiperbaric “can’t complain” about growth in HPP market. Food Production Daily:Retrieved May 12, 2014, from http://www.foodproductiondaily.com/Processing/Hiperbaric-can-t-complain-about-growth-in-HPP-market.

  • Stadler RH, Blank I, Varga N (2002) Acrylamide from Maillard reaction products. Nature 419:449–450

    Article  CAS  Google Scholar 

  • Swedish National Food Administration. 2002. Acrylamide in heat-processed foods, rev.26apr02. Uppsala, Sweden: Swedish National Food Administration. [Accessed November 11, 2010], Available from: http://www.mindfully.org/Food/Acrylamide-Heat-Processed-Foods26apr02.htm.

  • Tamaoka T, Itoh N, Hayashi R (1991) High pressure effect on Maillard reaction. Agric Biol Chem 55:2071–2074

    CAS  Google Scholar 

  • The Weekly. 2009. FDA accepts novel food sterilization process. Food Technology Publishers. [Accessed July 12, 2010], Available from: http://www4.ift.org/food-technology/newsletters/ift-weekly-newsletter/2009/march/030409.aspx.

  • Torres JA, Velázquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67(1–2):95–112

    Article  Google Scholar 

  • Torres JA, Velazquez G (2008) Hydrostatic pressure processing of foods. In: Jun S, Irudayaraj J (eds) Food processing operations modeling: design and analysis, 2nd edn. CRC Press, Boca Raton, pp 173–212

    Google Scholar 

  • Torres JA, Sanz PD, Otero L, Pérez Lamela C, Saldaña MDA (2009a) Engineering principles to improve food quality and safety by high pressure processing. In: Ortega-Rivas E (ed) Processing effects on safety and quality of foods. CRC Taylor & Francis, Boca Raton, pp 379–414

    Chapter  Google Scholar 

  • Torres JA, Sanz PD, Otero L, Pérez Lamela C, Saldaña MDA (2009b) Temperature distribution and chemical reactions in foods treated by pressure-assisted thermal processing. In: Ortega-Rivas E (ed) Processing effects on safety and quality of foods. CRC Taylor & Francis, Boca Raton, pp 415–440

    Chapter  Google Scholar 

  • Tritscher MA (2004) Human health risk assessment of processing-related compounds in food. Toxicol Lett 149:177–186

    Article  CAS  Google Scholar 

  • Valdez-Fragoso A, Mújica-Paz H, Welti-Chanes J, Torres JA (2011) Reaction kinetics at high pressure and temperature: effects on milk flavor volatiles and on chemical compounds with nutritional and safety importance in several foods. Food Bioprocess Technol 4(6):986–995

    Article  CAS  Google Scholar 

  • van Boekel MAJS (2008) Kinetic modeling of food quality: a critical review. Compr Rev Food Sci Food Safety 7(1):144–158

    Article  Google Scholar 

  • Vazquez PA, Qian M (2007) Antioxidant impacts on volatile formation in high-pressure-processed milk. J Agric Food Chem 55(22):9183–9188

    Article  CAS  Google Scholar 

  • Vazquez PA, Torres JA, Qian MC (2006) Effect of high-pressure-moderate-temperature processing on the volatile profile of milk. J Agric Food Chem 54(24):9184–9192

    Article  CAS  Google Scholar 

  • Vazquez PA, Qian MC, Torres JA (2007) Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments. J Food Sci 72(7):E389–E398

    Article  CAS  Google Scholar 

  • Vázquez M, Torres JA, Gallardo JM, Saraiva J, Aubourg SP (2013) Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): effect of a high hydrostatic pressure pre-treatment. Innov Food Sc Emerg Technol 18:24–30

    Article  CAS  Google Scholar 

  • Vega-Gálvez A, Uribe E, Perez M, Tabilo-Munizaga G, Vergara J, Garcia-Segovia P, Lara E, Di Scala K (2011) Effect of high hydrostatic pressure pretreatment on drying kinetics, antioxidant activity, firmness and microstructure of Aloe vera (Aloe barbadensis Miller) gel. LWT Food Sci Technol 44(2):384–391

    Article  CAS  Google Scholar 

  • Verbeyst L, Oey I, van der Plancken I, Hendrickx M, van Loey A (2010) Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem 123(2):269–274

    Article  CAS  Google Scholar 

  • Verbeyst L, van Crombruggen K, van der Plancken I, Hendrickx ME, van Loey A (2011) Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. J Food Eng 105(3):513–521

    Article  CAS  Google Scholar 

  • Verlinde PH, Oey I, Deborggraeve WM, Hendrickx ME, Van Loey AM (2009) Mechanism and related kinetics of 5-methyltetrahydrofolic acid degradation during combined high hydrostatic pressure-thermal treatments. J Agric Food Chem 57(15):6803–6814

    Article  CAS  Google Scholar 

  • Vervoort L, Grauwet T, Njoroge DM, Van der Plancken I, Matser A, Hendrickx M, Van Loey A (2013) Comparing thermal and high pressure processing of carrots at different processing intensities by headspace fingerprinting. Innov Food Sci Emerg Technol 18:31–42

    Article  CAS  Google Scholar 

  • Viljanen K, Lille M, Heinio RL, Buchert J (2011) Effect of high-pressure processing on volatile composition and odour of cherry tomato puree. Food Chem 129(4):1759–1765

    Article  CAS  Google Scholar 

  • Weemaes C, Ooms V, Indrawati LL, van den Broeck I, van Loey A, Hendrickx ME (1999) Pressure-temperature degradation of green color in broccoli juice. J Food Sci 64(3):504–508

    Article  CAS  Google Scholar 

  • Weisshaar R (2004) Acrylamide in bakery products – results from model experiments. Dtsch Lebensmitt Rundsch 100(3):92–97

    CAS  Google Scholar 

  • Wentorf RH, de Vries RC (2004) High pressure synthesis (chemistry). In: Encyclopedia of physical sciences and technology. Academic, New York, pp 365–379

    Google Scholar 

  • Wilson DR, Dabrowski L, Stringer S, Moezelaar R, Brocklehurst TF (2008) High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends Food Sci Technol 19(6):289–299

    Article  CAS  Google Scholar 

  • Wimalaratne SK, Farid MM (2008) Pressure assisted thermal sterilization. Food Bioprod Process 86(4):312–316

    Article  Google Scholar 

  • Zhang Y, Zhang Y (2007) Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Crit Rev Food Sci Nutr 47:521–542

    Article  CAS  Google Scholar 

  • Zhu X, Ye A, Teo HJ, Lim SJ, Singh H (2014) Oxidative stability of fish oil-in-water emulsions under high-pressure treatment. Int J Food Sci Technol 49(6):1441–1448

    Article  CAS  Google Scholar 

  • Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Stothers MA, Rizzi GP, Villagran MD (2003) Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782–4787

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Tecnológico de Monterrey (Research chair funds GEE 1A01001 and CDB081), México’s CONACYT Scholarship Program (Grant no. 227790), and Formula Grants no. 2011-31200-06041 and 2012-31200-06041 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Serment-Moreno, V., Deng, K., Wu, X., Welti-Chanes, J., Velazquez, G., Torres, J.A. (2015). Pressure Effects on the Rate of Chemical Reactions Under the High Pressure and High Temperature Conditions Used in Pressure-Assisted Thermal Processing. In: Cheung, P., Mehta, B. (eds) Handbook of Food Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36605-5_5

Download citation

Publish with us

Policies and ethics