Skip to main content

Instrumental Variables/Method of Moments Estimation

  • Living reference work entry
  • First Online:

Abstract

The chapter discusses generalized method of moments (GMM) estimation methods for spatial models. Much of the discussion is on GMM estimation of Cliff-Ord-type models where spatial interactions are modeled in terms of spatial lags. The chapter also discusses recent developments on GMM estimation from data processes which are spatially α-mixing.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Lee (2004) gives, to the best of our knowledge, first formal results for the maximum likelihood estimator of a spatial-autoregressive model. The maintained assumptions are similar to those introduced in Kelejian and Prucha (1998, 1999).

  2. 2.

    Let u = [u1, …, un], then the above moment condition can be rewritten as E[n−1uAqu] = tr[n−1AqEuu] = n−1σ2tr(Aq) = 0, since under the maintained assumptions Euu = σ2In.

  3. 3.

    Recall, e.g., that there are more than 33,000 zip codes in the U.S.

  4. 4.

    To obtain the estimator of Kelejian and Prucha (1998, 1999) the matrix A1 has to be scaled by v = 1/[1 + [n−1tr(MM)]2]. Of course, the scaling factor only comes into play if the moment conditions are not optimally weighted, as was the case in the early literature.

  5. 5.

    Lin and Lee (2010) also allow for heteroskedastic innovations for model (22) with ρ0 = 0.

  6. 6.

    For an incomplete list of empirical work see, e.g., Kelejian and Prucha (2010).

  7. 7.

    Quasi-ML and Bayesian MCMC methods are not covered by this review. For recent papers employing those methods within the context of dynamic panel data models, see, e.g., Yu et al. (2008) and Parent and LeSage (2012), respectively. There is also an important literature on testing for spatial dependence in a panel context, which is not part of this review. For a partial review of this literature see, e.g., Baltagi (2011).

  8. 8.

    In the following vecD (A) refers to the column vector containing the diagonal elements of the matrix A.

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Boston

    Book  Google Scholar 

  • Anselin L (2010) Thirty years of spatial econometrics. Pap Reg Sci 89(1):3–25

    Article  Google Scholar 

  • Arbia G (2006) Spatial econometrics, statistical foundations and applications to regional convergence. Springer, New York

    Google Scholar 

  • Arraiz I, Drukker DM, Kelejian HH, Prucha IR (2010) A spatial Cliff-Ord-type model with heteroskedastic innovations: small and large sample results. J Reg Sci 50(2):592–614

    Article  Google Scholar 

  • Badinger H, Egger P (2011) Estimation of higher-order spatial autoregressive cross-section models with heteroscedastic disturbances. Pap Reg Sci 90(1):213–235

    Article  Google Scholar 

  • Baltagi BH (2011) Spatial panels. In: Ullah A, Giles DEA (eds) The handbook of empirical economics and finance. Chapman and Hall, Boca Raton, pp 435–454

    Google Scholar 

  • Cliff A, Ord J (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Cliff A, Ord J (1981) Spatial processes, models and applications. Pion, London

    Google Scholar 

  • Conley T (1999) GMM estimation with cross sectional dependence. J Econ 92:1–45

    Article  Google Scholar 

  • Cressie N (1993) Statistics of spatial data. Wiley, New York

    Google Scholar 

  • Das D, Kelejian HH, Prucha IR (2003) Small sample properties of estimators of spatial autoregressive models with autoregressive disturbances. Pap Reg Sci 82(1):1–26

    Article  Google Scholar 

  • Drukker DM, Egger P, Prucha IR (2013) On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econ Rev 32:686–733

    Article  Google Scholar 

  • Fingleton B (2008) A generalized method of moments of moments estimaor for a spatial model with moving average errors, with application to real estate prices. Empir Econ 34:35–57

    Article  Google Scholar 

  • Haining R (2003) Spatial data analysis, theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jenish N, Prucha IR (2009) Central limit theorems and uniform laws of large numbers for arrays of random fields. J Econ 150(1):86–98

    Article  Google Scholar 

  • Jenish N, Prucha IR (2012) On spatial processes and asymptotic inference under near-epoch dependence. Department of Economics University of Maryland, Mimeo

    Google Scholar 

  • Kapoor M, Kelejian HH, Prucha IR (2007) Panel data models with spatially correlated error components. J Econ 140(1):97–130

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Financ Econ 17(1):99–121

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2):509–533

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2001) On the asymptotic distribution of the Moran I test statistic with applications. J Econ 104(2):219–257

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2004) Estimation of simultaneous systems of spatially interrelated cross sectional equations. J Econ 118(1–2):27–50

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2007) HAC estimation in a spatial framework. J Econ 140(1):131–154

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2010) Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J Econ 157(1):53–67

    Article  Google Scholar 

  • Kelejian HH, Prucha IR, Yuzefovich E (2004) Instrumental variable estimation of a spatial autoregressive model with autoregressive disturbances: large and small sample results. In: LeSage JP, Pace PR (eds) Advances in econometrics: spatial and spatiotemporal econometrics. Elsevier, New York, pp 163–198

    Chapter  Google Scholar 

  • Lee L-F (2003) Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econ Rev 22(4):307–335

    Article  Google Scholar 

  • Lee L-F (2004) Asymptotic distributions of maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6):1899–1925

    Article  Google Scholar 

  • Lee L-F (2007) GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. J Econ 137(2):489–514

    Article  Google Scholar 

  • Lee L-F, Liu X (2010) Efficient GMM estimation of higher order spatial autoregressive models with autoregressive disturbances. Economic Theory 26(1):187–230

    Article  Google Scholar 

  • LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press/Taylor and Francis, Boca Raton

    Book  Google Scholar 

  • Lin X, Lee L-F (2010) GMM estimation of spatial autoregressive models with unknown heteroskedasticity. J Econ 157(1):34–52

    Article  Google Scholar 

  • Liu X, Lee L-F (2010) GMM estimation of social interaction models with centrality. J Econ 159(1):99–115

    Article  Google Scholar 

  • Liu X, Lee L-F, Bollinger CR (2010) An efficient GMM estimator of spatial autoregressive models. J Econ 159(2):303–319

    Article  Google Scholar 

  • Mutl J, Pfaffermayr M (2011) The Hausman test in a Cliff and Ord panel model. Econ J 14(1):48–76

    Google Scholar 

  • Paelink JHP, Klaassen LH (1979) Spatial econometrics. Saxon House, Farnborough

    Google Scholar 

  • Parent O, LeSage JP (2012) Spatial dynamic panel data models with random effects. Reg Sci Urban Econ 42(4):727–738

    Article  Google Scholar 

  • Pinkse J, Slade ME, Brett C (2002) Spatial price competition: a semiparametric approach. Econometrica 70(3):1111–1153

    Article  Google Scholar 

  • Robinson PM, Thawornkaiwong S (2012) Statistical inference on regression with spatial dependence. J Econ 167(2):521–542

    Article  Google Scholar 

  • Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrica 41(3/4):434–449

    Article  Google Scholar 

  • Yu J, de Jong R, Lee L-F (2008) Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. J Econ 146(1):118–134

    Article  Google Scholar 

  • Yu J, de Jong R, Lee L-F (2012) Estimation for spatial dynamic panel data with fixed effects: the case of spatial cointegration. J Econ 167(1):16–37

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank James LeSage and Pablo Salinas Macario for their helpful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingmar R. Prucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prucha, I.R. (2019). Instrumental Variables/Method of Moments Estimation. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36203-3_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36203-3_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36203-3

  • Online ISBN: 978-3-642-36203-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics