Skip to main content

Spatial Autocorrelation and Moran Eigenvector Spatial Filtering

  • Living reference work entry
  • First Online:
Handbook of Regional Science

Abstract

This chapter provides an introductory discussion of spatial autocorrelation (SA), that refers to correlation existing and observed in geospatial data, and which characterizes data values that are not independent, but rather are tied together in overlapping subsets within a given geographic landscape. This chapter summarizes the various interpretations of SA with particular emphasis on its explanation as map pattern. SA can be quantified in a number of different ways, too, one being with the Moran Coefficient. Spatial filtering is a statistical method whose goal is to obtain enhanced and robust results in a spatial data analysis by decomposing a spatial variable into trend, a spatially structured random component (i.e., a spatial stochastic signal), and random noise. Its aim is to separate spatially structured random components from both trend and random noise, and, consequently, leads statistical modeling to sounder statistical inference and useful visualization. This separation procedure can involve eigenfunctions of the matrix version of the numerator of the Moran Coefficient. This chapter summarizes the Moran eigenvector spatial filtering (MESF) conceptual material, and presents the computer code for implementing MESF in R, Matlab, MINITAB, FORTRAN, and SAS. Next, it demonstrates the statistical features of MESF. Finally, it summarizes a MESF empirical example application, and the extensions of MESF to spatial interaction modeling and space-time data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B 36(2):192–225

    Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153(1–2):51–68

    Article  Google Scholar 

  • Chun Y, Griffith DA (2014) A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spatial Statistics 10:1–11

    Article  Google Scholar 

  • Chun Y, Griffith DA, Lee M, Sinha P (2016) Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. J Geogr Syst 18(1):67–85

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • de Jong P, Sprenger C, van Veen F (1984) On extreme values of Moran’s I and Geary’s c. Geogr Anal 16(1):17–24

    Article  Google Scholar 

  • Fischer M, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: a comparison of spatial econometric and spatial filtering specifications. J Reg Sci 48(5):969–989

    Article  Google Scholar 

  • Flowerdew R, Aitkin M (1982) A method of fitting the gravity model based on the Poisson distribution. J Reg Sci 22(2):191–202

    Article  Google Scholar 

  • Getis A (2010) Spatial autocorrelation. In: Fischer M, Getis A (eds) Handbook of applied spatial analysis. Springer, New York, pp 255–278

    Chapter  Google Scholar 

  • Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140

    Article  Google Scholar 

  • Griffith DA (1992) What is spatial autocorrelation? Reflections on the past 25 years of spatial statistics. l’Espace Géographique 21(3):265–280

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understating through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355

    Article  Google Scholar 

  • Griffith DA (2010) The Moran coefficient for non-normal data. J Stat Plann Infer 140(11):2980–2990

    Article  Google Scholar 

  • Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149

    Article  Google Scholar 

  • Griffith DA (2012) Space, time, and space-time eigenvector filter specifications that account for autocorrelation. Estadística Española 54(#177):7–34

    Google Scholar 

  • Griffith DA, Chun Y (2016) Evaluating eigenvector spatial filter corrections for omitted georeferenced variables. Econometrics 4(2):29

    Article  Google Scholar 

  • Griffith DA, Fischer MM, LeSage J (2017) The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions. Lett Spat Resour Sci 10(1):75–86

    Article  Google Scholar 

  • Griffith DA, Chun Y, Li B (2019) Spatial regression analysis using eigenvector spatial filtering. Elsevier, Cambridge, MA. ISBN: 9780128150436

    Google Scholar 

  • Haining R (1991) Bivariate correlation with spatial data. Geogr Anal 23(3):210–227

    Article  Google Scholar 

  • Hu L, Griffith DA, Chun Y (2018) Space-time statistical insights about geographic variation in lung cancer incidence rates: Florida, 2000–2011. Int J Environ Res Public Health 15(11):2406

    Article  Google Scholar 

  • Lee M, Chun Y, Griffith DA (2018) Errors propagation in spatial modeling of public health data: a simulation approach using pediatric blood lead level data for Syracuse, New York. Environ Geochem Health 40(2):667–681

    Article  Google Scholar 

  • Pace K, LeSage J, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spatial Econ Anal 8(3):352–369

    Article  Google Scholar 

  • Paéz A (2018) Using spatial filters and exploratory data analysis to enhance regression models of spatial data. Geogr Anal,. online first. https://doi.org/10.1111/gean.12180

  • Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time model for German unemployment data. Int Reg Sci Rev 34(2):235–280

    Article  Google Scholar 

  • Seya H, Murakami D, Tsutsumi M, Yamagata Y (2015) Application of LASSO to the eigenvector selection problem in eigenvector based spatial filtering. Geogr Anal 47(3):284–299

    Article  Google Scholar 

  • Tibshirani RJ (2015) Degrees of freedom and model search. Stat Sin 25(3):1265–1296

    Google Scholar 

  • Tiefelsdorf M, Boots BN (1995) The exact distribution of Moran’s I. Environ Plann A 27(6):985–999

    Article  Google Scholar 

  • Tobler W (1969) A computer movie simulating urban growth in the Detroit region. Paper prepared for the meeting of the international geographical union, commission on quantitative methods, Ann Arbor, Michigan, August; published in 1970. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  • Wilson A (1967) A statistical theory of spatial distribution models. Transp Res 1(3):253–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwan Chun .

Editor information

Editors and Affiliations

Appendix A

Appendix A

The relationship between the MC and a squared product moment correlation coefficient (r2).

MC can be derived as a linear regression solution:

From OLS theory: b = (XTX)−1XTY

  1. (i)

    Convert the attribute variable in question to z-scores

  2. (ii)

    Let X = zY and Y = CzY

  3. (iii)

    Regress CzY on zY, with a no-intercept option

  4. (iv)

    Let X = 1 and Y = C1

  5. (v)

    Regress C1 on 1, with a no-intercept option

$$ \mathrm{MC}={\mathrm{b}}_{\mathrm{numerator}}/{\mathrm{b}}_{\mathrm{denominator}} $$

This relationship links directly to the Moran scatterplot, conveying why it is a useful visualization of SA.

Next, let MC = (n/1TC1)zTCz/(n − 1) and rewrite vector z as the following bivariate regression model specification: z = a1 + bCZ + e, where e is an n-by-1 vector of residuals. Then

$$ \mathrm{b}=\frac{{\mathbf{z}}^{\mathrm{T}}\mathbf{Cz}}{{\mathbf{z}}^{\mathrm{T}}{\mathbf{C}}^2\mathbf{z}}=\frac{{\mathrm{s}}_{\mathrm{z}}}{{\mathrm{s}}_{\mathrm{Cz}}}\mathrm{r}=\frac{\sqrt{1}}{{\mathrm{s}}_{\mathrm{Cz}}}\mathrm{r} $$
(24)
$$ \frac{\mathrm{MC}}{{\mathrm{MC}}_1}\frac{\mathrm{n}{\uplambda}_1}{{\mathbf{1}}^{\mathrm{T}}\mathbf{C}\mathbf{1}}\frac{{\mathbf{1}}^{\mathrm{T}}\mathbf{C}\mathbf{1}}{\mathrm{n}}\frac{\mathrm{n}-1}{{\mathbf{z}}^{\mathrm{T}}{\mathbf{C}}^2\mathbf{z}}=\frac{1}{\sqrt{\frac{{\mathbf{z}}^{\mathrm{T}}\mathbf{C}\left(\mathbf{I}-\mathbf{1}{\mathbf{1}}^{\mathrm{T}}/\mathrm{n}\right)\mathbf{Cz}}{\mathrm{n}-1}}}\mathrm{r} $$
(25)
$$ {\left(\frac{\mathrm{MC}}{{\mathrm{MC}}_1}\right)}^2{\uplambda}_1^2\frac{{\left(\mathrm{n}-1\right)}^2}{{\left({\mathbf{z}}^{\mathrm{T}}{\mathbf{C}}^2\mathbf{z}\right)}^{\mathbf{2}}}=\frac{\mathrm{n}-1}{{\mathbf{z}}^{\mathrm{T}}\mathbf{C}\left(\mathbf{I}-\mathbf{1}{\mathbf{1}}^{\mathrm{T}}/\mathrm{n}\right)\mathbf{Cz}}{\mathrm{r}}^2 $$
(26)
$$ {\mathrm{r}}^2={\left(\frac{\mathrm{MC}}{{\mathrm{MC}}_1}\right)}^2{\uplambda}_1^2\left(\mathrm{n}-1\right)\frac{{\mathbf{z}}^{\mathrm{T}}\mathbf{C}\left(\mathbf{I}-\mathbf{1}{\mathbf{1}}^{\mathrm{T}}/\mathrm{n}\right)\mathbf{Cz}}{{\left({\mathbf{z}}^{\mathrm{T}}{\mathbf{C}}^2\mathbf{z}\right)}^{\mathbf{2}}} $$
(27)

where MC1 denotes the maximum value of MC for a given spatial weight matrix C. For a large P-by-Q regular square lattice (i.e., n = PQ) and the rook’s adjacency definition, for which MC1 ≈ 1, if MC = 0.25, then

$$ \mathbf{1}\mathbf{Cz}\approx 0 $$
(28)
$$ {\mathbf{z}}^{\mathrm{T}}{\mathbf{C}}^2\mathbf{z}\approx \mathbf{16}\left(\mathrm{PQ}-1\right) $$
(29)
$$ {\uplambda}_1=2\left[\mathrm{COS}\left(\frac{\uppi}{\mathrm{P}+1}\right)+\mathrm{COS}\left(\frac{\uppi}{\mathrm{Q}+1}\right)\right]\approx 4 $$
(30)

and, consequently, r2 ≈ 0.05. Therefore, roughly 5% of the variance in a spatially autocorrelation random variable with MC = 0.25 is attributable to spatial autocorrelation.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Griffith, D., Chun, Y. (2019). Spatial Autocorrelation and Moran Eigenvector Spatial Filtering. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36203-3_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36203-3_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36203-3

  • Online ISBN: 978-3-642-36203-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics