Skip to main content

Spatial Data and Spatial Statistics

  • Living reference work entry
  • First Online:
Handbook of Regional Science
  • 229 Accesses

Abstract

Advances in information technology as well as organizational changes in both the public and private sectors have led to increased availability of small area data. If the benefits of having such data are to be fully realized, we need statistical methods that give rise to parameter estimates with good properties including standard errors reliably estimated. To achieve this goal, four challenges associated with spatial and spatial-temporal data need to be met head-on: spatial dependence, spatial heterogeneity, data sparsity, and uncertainty. We start this chapter by reviewing each of the four challenges. We then describe spatial statistical modelling drawing a distinction between theory-driven and data-driven modelling. We also compare Bayesian and frequentist approaches to inference and argue that Bayesian inference is more appropriate to an observational science. The chapter then discusses the two principal approaches to modelling spatial and spatial-temporal data: spatial econometric and spatial hierarchical regression modelling. While the two approaches are, in many respects, complementary, hierarchical modelling which breaks down complex models into distinct modules offers a number of clear advantages and in combination with Bayesian inference meets the four challenges described at the outset thereby providing a positive answer to the question of whether we can have the best of both worlds: spatial and spatial-temporal precision and statistical precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36(2):192–225

    Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically weighted regression: a method for exploring spatial non-stationarity. Geogr Anal 28(4):281–298

    Article  Google Scholar 

  • Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw 76(1):v76i01

    Article  Google Scholar 

  • Clifford P, Richardson S, Hemon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics 45(1):123–134

    Article  Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • DiNardo J (2008) Natural experiments and quasi-natural experiments. In: Durlauf SN, Blume LE (eds) The new Palgrave dictionary of economics, 2nd edn. Palgrave Macmillan, London

    Google Scholar 

  • Gelfand A, Kim H, Sirmans C, Banerjee S (2003) Spatial modelling with spatially varying coefficient processes. J Am Stat Assoc 98(462):387–396

    Article  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1(3):515–534

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2014) Bayesian Data Analysis (3rd ed.). Chapman and Hall, Boca Raton

    Google Scholar 

  • Gibbons S, Overman HG (2012) Mostly pointless spatial econometrics. J Regional Sci 52(2):172–191

    Google Scholar 

  • Goméz-Rubio V, Roger B, Havard R (2015) A new latent class to fit spatial econometrics models with integrated nested Laplace approximations. Procedia Environ Sci 27:116–118

    Article  Google Scholar 

  • Haining R, Li G (2019, Forthcoming) Modelling spatial and spatial-temporal data: a Bayesian approach. CRC Press, Boca Raton

    Google Scholar 

  • Haining R, Law J, Griffith D (2009) Modelling small area counts in the presence of overdispersion and spatial autocorrelation. Comput Stat Data Anal 53(8):2923–2937

    Article  Google Scholar 

  • Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64(4):325–334

    Article  Google Scholar 

  • Lee D (2013) CARBayes: an R package for Bayesian spatial modelling with conditional autoregressive priors. J Stat Softw 55(13):v55i13

    Article  Google Scholar 

  • Lee D, Rushworth A, Napier G (2018) Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J Stat Softw 84(9):v84i09

    Article  Google Scholar 

  • LeSage J (1998) ECONOMETRICS: MATLAB toolbox of econometrics functions, statistical software components T961401, Boston College Department of Economics

    Google Scholar 

  • Lesage J, Fischer M (2008) Spatial growth regressions: model specification, estimation and interpretation. Spat Econ Anal 3(3):275–304

    Article  Google Scholar 

  • LeSage J, Pace K (2009) Introduction to spatial econometrics. CRC Press, Boca Raton

    Book  Google Scholar 

  • LeSage J, Pace K, Lam N, Campanella R, Liu X (2011) New Orleans business recovery in the aftermath of Hurricane Katrina. J R Stat Soc A Stat Soc 174(4):1007–1027

    Article  Google Scholar 

  • Li G, Best N, Hansell A, Ahmed I, Richardson S (2012) BaySTDetect: detecting unusual temporal patterns in small area data via Bayesian model choice. Biostatistics 13(4):695–710

    Article  Google Scholar 

  • Li G, Haining RP, Richardson S, Best N (2013) Evaluating the no cold calling zones in Peterborough, England: application of a novel statistical method for evaluating neighbourhood policing methods. Environ Plan A 45:2012–2026

    Article  Google Scholar 

  • Lloyd C (2011) Local models for spatial analysis. CRC Press, Boca Raton

    Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28(25):3049–3067

    Article  Google Scholar 

  • Maheswaran R, Haining R, Brindley P, Law J, Pearson T, Best N (2006) Outdoor NOx and stroke mortality – adjusting for small area level smoking prevalence using a Bayesian approach. Stat Methods Med Res 15(5):499–516

    Article  Google Scholar 

  • Office for National Statistics (2016) Model-based estimates of households in poverty for middle layer super output areas, 2011/12, Technical report

    Google Scholar 

  • Paelinck J, Klaassen L (1979) Spatial econometrics. Saxon House, Farnborough

    Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J R Stat Soc Ser B 71(2):319–392

    Article  Google Scholar 

  • Seya H, Yamagata Y, Tsutsumi M (2013) Automatic selection of a spatial weight matrix in spatial econometrics: application to a spatial hedonic approach. Reg Sci Urban Econ 43(3):429–444

    Article  Google Scholar 

  • Shekhar S, Yoo E-H, Ahmed SA, Haining R, Kadannolly S (2017) Analysing malaria incidence at the small area level for developing a spatial decision support system: a case study in Kalaburagi, Karnataka, India. Spat Spatio-temporal Epidemiol 20:9–25

    Article  Google Scholar 

  • Spiegelhalter DJ, Abrams KR, Myles JP (2004) Bayesian approaches to clinical trials and health-care evaluation. Wiley, New York

    Google Scholar 

  • Vega S, Elhorst J (2015) The SLX model. J Reg Sci 55(3):339–363

    Article  Google Scholar 

  • Wakefield J (2013) Bayesian and Frequentist Regression Methods. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Haining .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haining, R., Li, G. (2019). Spatial Data and Spatial Statistics. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36203-3_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36203-3_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36203-3

  • Online ISBN: 978-3-642-36203-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics