Skip to main content

Fuzzy Modeling in Spatial Analysis

  • 105 Accesses

Abstract

Spatial systems are generally complex and embedded with uncertainty due to subjectivity and vagueness of human valuation and decision. Such uncertainty cannot be equated with randomness, but fuzziness, of a system. Fuzzy sets, an extension of the classical notion of set, are sets whose elements have degrees of membership of/degrees of belonging to a set. Fuzzy mathematics based upon the notion of fuzzy sets provides attractive methods to model the above reality better than our traditional tools for formal modeling, reasoning and computing that are crisp (i.e. dichotomous), deterministic and precise in character. In this chapter we first describe the basic mathematical framework of fuzzy set theory in which imprecision in the sense of vagueness can be precisely and rigorously studied. Then attention is moved to applications of the theory in the field of spatial analysis with special reference to classification and grouping, as well as optimization in a fuzzy environment.

This is a preview of subscription content, log in via an institution.

References

  • Altman D (1994) Fuzzy set theoretic approaches for handling imprecision in spatial analysis. Int J Geogr Inf Syst 8(3):271–289

    Article  Google Scholar 

  • Bastin L (1997) Comparison of fuzzy c-means classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels. Int J Remote Sens 18(17):3629–3648

    Article  Google Scholar 

  • Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B141–B164

    Article  Google Scholar 

  • Berry BJL (1967) Grouping and regionalization, an approach to the problem using multivariate analysis. In: Garrison WL, Marble DF (eds) Quantitative geography, part I: economic and cultural topics. Northwestern University Press, Evanston, pp 219–251

    Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  • Burrough PA, Frank A (1996) Geographic objects with indeterminate boundaries. Taylor and Francis, London

    Google Scholar 

  • Chanas S (1983) The use of parametric programming in fuzzy linear programming. Fuzzy Sets Syst 11(1–3):243–251

    Article  Google Scholar 

  • De Bruin S, Stein A (1998) Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a digital elevation model (DEM). Geoderma 83(1–2):17–33

    Article  Google Scholar 

  • Di Martino F, Sessa S (2011) The extended fuzzy C-means algorithm for hotspots in spatio-temporal GIS. Expert Syst Appl 38(9):11829–11836

    Article  Google Scholar 

  • Dubois D, Prade H (2002) Possibility theory, probability theory and multiple-valued logics: a clarification. Ann Math Artif Intell 32(1–4):35–66

    Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57

    Article  Google Scholar 

  • Fischer MM (1984) Tassonomia regionale: alcuni riflessioni sullo dell’arte. In: Clemente F (ed) Pianificazione del Territorio e Sistema Informativo. Franco Angeli Libri, Milan, pp 365–400

    Google Scholar 

  • Gale S (1972) Inexactness, fuzzy sets and the foundation of behavioral geography. Geogr Anal 4(4):337–349

    Article  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  • Leung Y (1982) Approximate characterization of some fundamental concepts of spatial analysis. Geogr Anal 14(1):29–40

    Article  Google Scholar 

  • Leung Y (1988) Spatial analysis and planning under imprecision. Elsevier, Amsterdam

    Google Scholar 

  • Miyamoto S, Ichihashi H, Honda K (2008) Algorithms for fuzzy clustering methods in c-means clustering with applications. Springer, Berlin

    Google Scholar 

  • Ponsard C (1986) A theory of spatial general equilibrium in a fuzzy economy. In: Ponsard C, Fustier B (eds) Fuzzy economics and spatial analysis. Librairie de l’ Universite, Dijon, pp 1–27

    Google Scholar 

  • Ponsard C (1988) Fuzzy mathematical models in economics. Fuzzy Sets Syst 28(3):273–283

    Article  Google Scholar 

  • Robinson VB (2003) A perspective on the fundamentals of fuzzy sets and their use in geographic information systems. Trans GIS 7(1):3–30

    Article  Google Scholar 

  • Verdegay JL (1982) Fuzzy mathematical programming. In: Gupta MM, Sanchez E (eds) Fuzzy information and decision processes. North-Holland, Amsterdam, pp 231–237

    Google Scholar 

  • Verdegay JL (2015) Progress on fuzzy mathematical programming: a personal perspective. Fuzzy Sets Syst 281(15):219–226

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  • Zadeh LA (1975a) The concept of a linguistic variable and its application to approximate reasoning, I. Inf Sci 8(3):199–249

    Article  Google Scholar 

  • Zadeh LA (1975b) The concept of a linguistic variable and its application to approximate reasoning, II. Inf Sci 8(4):301–357

    Article  Google Scholar 

  • Zadeh LA (1975c) The concept of a linguistic variable and its application to approximate reasoning, III. Inf Sci 9(1):43–80

    Article  Google Scholar 

  • Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1(1):3–28

    Article  Google Scholar 

  • Zimmermann HJ (1976) Description and optimization of fuzzy systems. Int J Gen Syst 2(1):209–215

    Article  Google Scholar 

  • Zimmermann HJ (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1(1):45–55

    Article  Google Scholar 

  • Zimmermann HJ (2010) Fuzzy set theory. Wiley Interdiscip Rev Comput Stat 2(3):317–332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Leung, Y. (2020). Fuzzy Modeling in Spatial Analysis. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36203-3_114-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36203-3_114-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36203-3

  • Online ISBN: 978-3-642-36203-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Fuzzy Modeling in Spatial Analysis
    Published:
    23 July 2021

    DOI: https://doi.org/10.1007/978-3-642-36203-3_114-2

  2. Original

    Fuzzy Modeling in Spatial Analysis
    Published:
    19 April 2020

    DOI: https://doi.org/10.1007/978-3-642-36203-3_114-1