Skip to main content

Actuator

  • Living reference work entry
  • First Online:
CIRP Encyclopedia of Production Engineering
  • 310 Accesses

Synonyms

Smart materials; Smart structure; Unconventional actuator

Definition

Unconventional Actuator Systems

An actuator is a functional element which connects the information processing part of an electronic control system in a technical of nontechnical process. Actuators can be used to control the flow of energy, mass or volume. The output quantity of an actuator is energy or power, often in the form of a mechanical working potential (force times displacement). The actuator control is always achieved using very low electrical power, ideally without any power consumption. (Janocha 2004)

Actuators can be classified as conventional and unconventional actuators. Conventional actuators are commonly used as essential components for mechatronic systems (see Fig. 1 (left)). These are, for instance, electrical motors, pneumatic actuators, hydraulic pistons, or relays.

Fig. 1
figure 1

Characteristics of mechatronic system and smart structure. (Reprinted from Drossel et al. 2015a, p. 211, with...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abele E, Hanselka H, Haase F, Schlote D, Schiffler A (2008) Development and design of an active work piece holder driven by piezo actuators. Prod Eng Res Dev 2:437–442

    Article  Google Scholar 

  • Actuator Solutions GMBH (2016) 3/3 actuator, http://www.actuatorsolutions.de/products/valves/air-gas/33-actuator/. Date of access: 13 Feb 2017

  • Aggogeri F, Al-Bender F, Brunner B, Elsaid M, Mazzola M, Merlo A, Ricciardi D, de la O’Rodriguez M, Salvi E (2013) Design of Piezo-based AVC system for machine tool applications. Mech Syst Signal Process 36(1):53–65

    Article  Google Scholar 

  • Bäume T, Zorn W, Drossel W-G, Rupp G (2015) Step by step control of a deep drawing process with piezo-electric actuators in serial operation. MATEC Web of Conferences 21, 2015, 04008(2015), 4th international conference on new forming technology (ICNFT 2015), Glasgow, UK, August 6–9, 2015. https://doi.org/10.1051/matecconf/20152104008

  • Brecher C, Schauerte G, Lange S (2005) Adaptronisches Bohrwerkzeug zur Feinbearbeitung von Zylinderhülsen [Adaptronical drilling tool for precision machining of cylinder liner]. Inno Innov Tech--Neue Anwendungen 32(10):14–15. Jg. 12/2005 (in German)

    Google Scholar 

  • Brecher C, Schauerte G, Merz M (2007) Modeling and simulation of adaptronic drilling tool axes as the basis of control design. Prod Eng Res Dev 1(3):297–301

    Article  Google Scholar 

  • Brecher C, Manoharan D, Ladra U, Köpken H-G (2010) Chatter suppression with an active workpiece holder. Prod Eng Res Dev 4:239–245

    Article  Google Scholar 

  • Brehl DE, Dow TA (2008) Review of vibration assisted machining. Precis Eng 32(3):153–172. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  • Calkins F, Butler G, Mabe J (2006) Variable geometry chevrons for jet noise reduction. 12th AIAA/CEAS aeroacoustics conference (27th aeroacoustics conference), May 8–10, Cambridge, MA, May 2006, American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  • Cambridge Mechatronics Ltd. CML OIS actuator, https://www.cambridgemechatronics.com/ois. Date of access: 13 Feb 2017

  • Denkena B, Gümmer O (2012) Process stabilization with an adaptronic spindle system. Prod Eng Res Dev 6(4):485–492

    Article  Google Scholar 

  • Denkena B, Will JC, Sellmeier V (2006) Prediction of process stability and dynamic forces of an adaptronic spindle system, Conf.-Speech, Adaptronic Congress 2006, May 3–4, 2006, Göttingen, pp 9.1–9.7

    Google Scholar 

  • Denkena B, Köhler J, Mörke T, Gümmer O (2012) High-performance cutting of micro patterns. In: Fifth CIRP conference on high performance cutting 2012. Procedia CIRP 1:144–149

    Google Scholar 

  • Drossel W-G, Kunze H, Junker T, Ullrich M (2011) Piezo-based parallel kinematics for tool positioning, International symposium on piezocomposite applications (ISPA), September 22nd–23rd, 2011, Dresden

    Google Scholar 

  • Drossel W-G, Hochmuth C, Schneider R (2013a) An adaptronic system to control shape and surface of liner bores during the honing process. CIRP Ann Manuf Technol 62(1):331–334. https://doi.org/10.1016/j.cirp.2013.03.074

    Article  Google Scholar 

  • Drossel W-G, Pagel K, Bucht A, Roscher H-J, Kunze H (2013b) Piezo assisted machining – an overview. International symposium on piezocomposite applications (ISPA 2013), September 20th, 2013, Dresden

    Google Scholar 

  • Drossel W-G, Bucht A, Hochmuth C, Schubert A, Stoll A, Schneider J, Schneider R (2014) High performance of machining processes by applying adaptronic systems. In: 6th CIRP international conference on high performing cutting (HPC2014). Procedia CIRP 14:500–505

    Google Scholar 

  • Drossel W-G, Kunze H, Bucht A, Weisheit L, Pagel K (2015a) Smart3 – smart materials for smart applications. In: CIRP 25th design conference innovative product creation. Procedia CIRP 36:211–216

    Google Scholar 

  • Drossel W-G, Bucht A, Kunze H, Pagel K (2015b) The application of piezo based subsystems for improved machining processes. In: ASME 2015 conference on smart materials, adaptive structures and intelligent systems, Colorado Springs, Colorado, USA, September 21–23, 2015, vol 2: Integrated system design and implementation; structural health monitoring; bioinspired smart materials and systems, energy harvesting. ASME Paper No. SMASIS2015-8878, pp V002T04A005

    Google Scholar 

  • Elfizy AT, Bone GM, Elbestawi MA (2005) Design and control of a dual-stage feed drive. Int J Mach Tool Manu 45(2):153–165. https://doi.org/10.1016/j.ijmachtools.2004.07.008

    Article  Google Scholar 

  • Feucht F, Ketelaer J, Wolff A, Mori M, Fujishima M (2014) Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. In: 6th CIRP international conference on high performance cutting, HPC2014, Procedia CIRP 14:148–152. https://doi.org/10.1016/j.procir.2014.03.040

  • Ghiotti A, Regazzo P, Bruschi S, Bariani PF (2010) Reduction of vibrations in blanking by MR dampers. CIRP Ann Manuf Technol 59(1):275–278

    Article  Google Scholar 

  • Hesselbach J (2011) Adaptronik für Werkzeugmaschinen [Smart structures in machine tools]. Shaker-Verlag, Aachen. (in German)

    Google Scholar 

  • Holz B, Janocha H (2010) MSM actuators – magnetic circuit concepts and operating modes. In: Borgmann H (ed) Actuator 10: 12th international conference on new actuators & 6th international exhibition on smart actuators and drive systems, June 14–16, 2010, Bremen, Germany, Conference Proceedings. WIrtschaftsförderung Bremen (WFB), Bremen, pp 307–310

    Google Scholar 

  • Jani JM, Leary M, Subic A, Gibson M (2013) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  • Janocha H (2004) Actuator – basics and applications. Springer, Berlin

    Google Scholar 

  • Jung J (2009) Aufbau eines Greifmechanismus mit FGL-Drahtaktoren [Design of a shape memory driven gripping mechanism], Diploma Thesis Technische Universität Dresden, 15.12.2009 (in German)

    Google Scholar 

  • Junker T, Bucht A, Navarro y de Sosa I, Pagel K, Drossel W-G (2014) In: Vin LJ d, Solis J (eds) Proceedings of the 14th mechatronics forum international conference, mechatronics 2014, June 16–18, 2014, Karlstad, Sweden. Karlstad University, Sweden, pp 24–29

    Google Scholar 

  • Malukhin K, Sung H, Ehmann K (2012) A shape memory alloy based tool clamping device. J Mater Process Technol 212(4):735–744

    Article  Google Scholar 

  • McGeough JA (1988) Advanced methods of machining. Chapman and Hall, London/New York

    Google Scholar 

  • Meier H, Pollmann J, Czechowicz A (2013) Design and control strategies for SMA actuators in a feed axis for precision machine tools. Prod Eng Res Dev 7:547–553

    Article  Google Scholar 

  • Möhring H-C, Brecher C, Abele E, Fleischer J, Bleicher F (2015) Materials in machine tool structures. CIRP Ann Manuf Technol 64(2):725–748

    Article  Google Scholar 

  • Navarro y de Sosa I, Bucht A, Junker T, Pagel K, Drossel W-G (2014) Novel compensation of axial thermal expansion in ball screw drives. Prod Eng Res Dev 8(3):397–406. https://doi.org/10.1007/s11740-014-0528-0

    Article  Google Scholar 

  • Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686

    Article  Google Scholar 

  • Neugebauer R, Pagel K, Bucht A, Wittstock V, Pappe A (2010a) Control concept for piezo-based actuator-sensor-units for uniaxial vibration damping in machine tools. Prod Eng Res Dev 4:413–419

    Article  Google Scholar 

  • Neugebauer R, Drossel W-G, Bucht A, Kranz B, Pagel K (2010b) Control design and experimental validation of an adaptive spindle support for enhanced cutting processes. CIRP Ann Manuf Technol 59(1):373–376

    Article  Google Scholar 

  • Neugebauer R, Kunze H, Bucht A (2011a) Erweiterung der Fertigungsgrenzen durch adaptronische Zusatzaktorik, Forum [Improvement of machining processes using piezo actuators]‚ Sensitive Fertigungstechnik‘, 10.-11.11.2011, Magdeburg. http://publica.fraunhofer.de/dokumente/N-192539.html. Date of Access: 27 Sept 2016 (in German)

  • Neugebauer R, Mainda P, Drossel W-G, Kerschner M, Wolf K (2011b) Integrated piezoelectric actuators in deep drawing tools. In: Farinholt KM, Griffin SF (eds) Proc SPIE 7979, industrial and commercial applications of smart structures technologies, March 6–10, 2011, San Diego, CA, Paper 79790F. SPIE Press, Bellingham. https://doi.org/10.1117/12.879888

    Google Scholar 

  • Neugebauer R, Drossel W-G, Pagel K, Bucht A, Anders N (2011c) Design of a controllable shape-memory-actuator with mechanical lock function. In: Ghasemi-Nejhad MN (ed) Proc SPIE 7977 active and passive smart structures and integrated systems, San Diego, CA, March 6, 2011, Paper 797719. SPIE Press, Bellingham. https://doi.org/10.1117/12.880719

    Google Scholar 

  • Pagel K, Drossel W-G, Zorn W (2013) Multi-functional shape-memory-actuator with guidance function. Prod Eng Res Dev 7:491–496

    Article  Google Scholar 

  • Preumont A (1997) Vibration control of active structures: an introduction. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Ries M (2009) Aktive Motorspindel zur Unterdrückung von Ratterschwingungen im Fräsprozess [Active milling spindle for chatter suppression], Fortschritt-Berichte VDI, Reihe 2, Fertigungstechnik 670. VDI-Verlag, Düsseldorf. (in German)

    Google Scholar 

  • Shin W-C, Ro S-K, Park H-W, Park J-K (2009) Development of a micro/meso-tool clamp using a shape memory alloy for applications in micro-spindle units. Int J Mach Tools Manuf 49(7–8):579–585

    Article  Google Scholar 

  • Tellinin J, Suorsa I, Jääskeläinen A, Aaltio I, Ullakko K (2002) Basic properties Of magnetic shape memory actuators. In: Proceedings of ACTUATOR 2002, 8th international conference on new actuators 2002, June 10–12, 2002, Bremen, pp 566–569

    Google Scholar 

  • Truong DQ, Ahn KK (2012). MR fluid damper and its application to force sensorless damping control system. In: Berselli G, Vertechy R, Vassura G (eds) Smart actuation and sensing systems – recent advances and future challenges. InTech: online, https://doi.org/10.5772/51391

  • Uhlmann E, Perfilov I, Oberschmidt D (2015) Two-axis vibration system for targeted influencing of micro-milling. In: Leach R (ed) Proceedings of the European Society for Precision Engineering and Nanotechnology –(EUSPEN):15th international conference & exhibition of the European Society of Precision Engineering and Nanotechnology, June 1–5, 2015, Leuven. EUSPEN, Bedford, pp 325–326

    Google Scholar 

  • Weinert K, Kersting M (2007) Adaptronic chatter damping system for deep hole drilling. In: International conference on smart machining systems, National Institute for Standards and Technologies (NIST), 13.3.-15.3. 2007, Gaithersburg, Maryland, USA, digitally published already corrected

    Google Scholar 

  • Woronko A, Huang J, Altintas Y (2003) Piezoelectric tool actuator for precision machining on conventional CNC turning centers. Precis Eng 27(4):335–345

    Article  Google Scholar 

  • Yang G (2001) Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control. Ph.D. Dissertation. University of Notre Dame, Notre Dame, p 33

    Google Scholar 

  • Youssef HA, El-Hofy H (2008) Machining technology: machine tools and operations. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zimmermann P, Pagel K, Bucht A, Drossel W-G (2014) Design of a self-adjusting terminal connector based on shape memory alloys. In: Zagrai A (ed) American Society of Mechanical Engineers (ASME) conference on smart materials, adaptive structures and intelligent systems (SMASIS 2014), Proceedings: September 8–10, 2014, Newport, Rhode Island. ASME, New York. Paper 7429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welf Guntram Drossel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CIRP

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Drossel, W.G., Pagel, K. (2018). Actuator. In: The International Academy for Production (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35950-7_6520-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35950-7_6520-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35950-7

  • Online ISBN: 978-3-642-35950-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics