Skip to main content

High Speed Cutting

  • Living reference work entry
  • First Online:
CIRP Encyclopedia of Production Engineering
  • 235 Accesses

Synonyms

HPC – High Performance Cutting; HSC – High Speed Cutting; HSM – High Speed Machining

Definition

The main challenges in metal cutting today lie in the development and application of innovative strategies aimed, firstly, at reducing cycle time and costs for better productivity and higher profitability, and also for improved performance and especially at reducing the amount of energy and resources used as well as emissions. In machining, for example, lightweight materials or high temperature alloys, the use of high machining conditions (HSM & HPC) is often restricted by the machine’s capacity or in terms of tool wear and workpiece machinability. In general, the use of high velocity may lead to reductions in cutting forces, power, and energy, something which will in turn have a positive effect on tool and machine design.

CIRP’s main activities within High Speed Machining (HSM), or High Speed Cutting (HPC) and High Performance Cutting (HPC) topics within the STC “C,” are shown in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abele E, Sahm A, Koppka F (2005) Einfluss des Wärmebehandlungszustandes und der Technologieparameter auf die Spanbildung und Schnittkräfte beim Hochgeschwindigkeitsfräsen (the influence of heat treatment conditions and technology parameters on chip formation and cutting forces during high speed cutting). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 292–303. (in German)

    Chapter  Google Scholar 

  • Aurich JC, Dornfeld D, Arrazola PJ, Franke V, Leitz L, Min S (2009) Burrs: analysis, control and removal. Keynote paper. Ann CIRP 58(2):519–542

    Article  Google Scholar 

  • Behrens A, Westhoff B, Kalisch K (2005) Application of the finite element method at the chip forming process under high speed cutting conditions. In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 112–134. (in German)

    Chapter  Google Scholar 

  • Bouzakis K-D, Mirisidis I, Lili E, Michailidis N, Sampris A, Skordaris G, Pavlidou E, Erkens G, Wirth I (2006) Impact resistance of PVD films and milling performance of coated tools at various temperature levels. Ann CIRP 55(1):67–70

    Article  Google Scholar 

  • Byrne G, Dornfeld D, Denkena B (2003) Advanced cutting technology. Ann CIRP Manuf Technol 52(2):483–507

    Article  Google Scholar 

  • Calamaz M, Coupard D, Girot F (2008) A new material model for 2D simulation of serrated chip formation when machining titanium alloy Ti-6Al-4 V. Int J Mach Tools Manuf 48(3–4):275–288

    Article  Google Scholar 

  • Denkena B, Altan T, Jivishov V, Al-Zkeri I (2006) Influence of material models used in finite element modeling on predicted scaling effects in machining. Ann Ger Acad Soc Prod Eng (WGP), Prod Eng Res Dev 13(1):103–108

    Google Scholar 

  • Denkena B, Boehnke D, Kästner J (2008) Microstructuring of functional surfaces by means of cutting processes. Prod Eng 2(1):21–25

    Article  Google Scholar 

  • Heisel U, Krivoruchko DV, Zaloha W, Storchak M, Stehle T (2009) Thermomechanische Wechselwirkungen beim Zerspanen. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 4:263–272

    Article  Google Scholar 

  • Klocke F (2004) Basics of HPC and resulting mechanical and thermal characteristics. In: Proceedings of the CIRP international conference on high performance cutting, Aachen, pp 19–20

    Google Scholar 

  • Klocke F, Hoppe S (2005) Experimentelle und numerische Untersuchungen zur Hochgeschwindigkeitszerspanung (experimental and numerical investigations of high speed cutting). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim

    Google Scholar 

  • Komanduri R (1985) High-speed machining. Mech Eng 107(12):64–76

    Google Scholar 

  • Lazoglu I, Altintas Y (2002) Prediction of tool and chip temperature in continuous and interrupted machining. Int J Mach Tools Manuf 42(9):1011–1022

    Article  Google Scholar 

  • Leopold J, Schmidt G (2000) Challenge and problems with hybrid systems for the modeling of machining operations. Int J Form Process HERMES Sci Publ 3(1–2):157–176

    Google Scholar 

  • Meyer LW, Halle T, Herzig N (2005) Determination of special material behavior and development of constitutive equations for numerical simulations of high speed cutting processes. In: Proceedings of CIRP 8th international workshop on modeling of machining operations, Chemnitz, 10–11 May 2005, pp 131–138

    Google Scholar 

  • Müller C, Landua S, Blümke R, Exner HE (2005) Microstructure: a dominating parameter for chip forming during high-speed milling. In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim/Berlin, pp 330–350

    Chapter  Google Scholar 

  • Neugebauer R, Bouzakis KD, Denkena B, Klocke F, Sterzing A, Tekkaya AE, Wertheim R (2011) Velocity effects in metal forming and machining processes. CIRP Ann 60(2):627–650

    Article  Google Scholar 

  • Schmidt W (1991) Hochgeschwindigkeitsbearbeitung mit definierter Schneide: Ein theoretisch-physikalischer Beitrag (high speed machining with geometrically defined cutting edge: a theoretical and physical contribution). PhD thesis, Universität Kassel. http://worldcat.org/oclc/55574476. (in German)

  • Siems S, Warnecke G, Aurich JC (2005) Mechanismen der Werkstoffbeanspruchungen sowie deren Beeinflussung bei der Zerspanung mit hohen Geschwindigkeiten (mechanism of material stresses and their manipulation during cutting with high velocity). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 304–329. (in German)

    Chapter  Google Scholar 

  • Sievert R, Noack HD, Hamann A, Löwe P, Singh KN, Künecke G (2005) Simulation der Spansegmentierung einer Nickelbasislegierung unter Berücksichtigung thermischer Entfestigung und duktiler Schädigung (chip segmentation simulation of a nickel-based alloy through thermal work softening and ductile damaging). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 446–469. (in German)

    Chapter  Google Scholar 

  • Stoll A, Arnold A (2010) Economic and energy-efficient cutting assisted by high-pressure cooling, using the example of titanium alloys. In: Neugebauer R (ed) Sustainable production for resource efficiency and ecomobility: proceedings of International Chemnitz Manufacturing Colloquium, ICMC 2010. Verlag Wissenschaftliche Scripten, Zwickau, pp 231–246

    Google Scholar 

  • Sutter G, Molinari A (2005) Analysis of the cutting force components and friction in high speed machining. ASME J Manuf Sci Eng 127(2):245–250

    Article  Google Scholar 

  • Tönshoff HK, Denkena B, Amor RB, Ostendorf A, Stein J, Hollmann C, Kuhlmann A (2005a) Spanbildung und Temperaturen beim Spanen mit hohen Schnittgeschwindigkeiten (chip formation and temperatures during cutting with high velocity). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 1–40. (in German)

    Google Scholar 

  • Tönshoff HK, Denkena B, Plöger J, Breidenstein B (2005b) Auswirkung des Hochgeschwindigkeitsspanens auf die Werkstückrandzone (effects of high speed cutting on the surface layer of a workpiece). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 64–88. (in German)

    Chapter  Google Scholar 

  • Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. In: Compendium: international research in production engineering. ASME, New York, pp 42–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Wertheim .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CIRP

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wertheim, R. (2018). High Speed Cutting. In: Chatti, S., Tolio, T. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35950-7_6407-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35950-7_6407-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35950-7

  • Online ISBN: 978-3-642-35950-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics