Skip to main content

Carbon Nanotube TFTs

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 383 Accesses

Abstract

The mix of extraordinary electrical, mechanical, and optical properties makes carbon nanotubes a promising material for future applications. The room-temperature charge carrier mobility of individual carbon nanotubes was demonstrated to outperform all known semiconductors. This might enable high-performance on-panel electronic circuits like so far realized in poly-Si technology. Carbon nanotubes can in contrast be processed from solution, theoretically enabling low-cost vacuum-free deposition. Since carbon nanotubes are also extremely flexible, mechanically and chemically very stable, they seem predestined for flexible or even stretchable electronics and flexible displays in particular. It has however to be noted that this technology is still in a research state with a multitude of flavors. The topics are reaching from high-performance VLSI-type electronics to outperform silicon technology down to low-cost fully printed electronics on plastic substrates or even stretchable circuits. Although in recent years, developments have moved from pure academic research to applied research aiming for mass production so far only building blocks were realized. It might still take years until real products can reliably be produced. The major obstacles are lying in mass production of single-type nanotubes, precise deposition and alignment methods, and homogeneous high-performance circuits. Since the first edition of this article, significant progress in all of these areas was made. If researchers achieve to realize a well-controlled technology combined with reasonable production costs, carbon nanotube transistors can become the basic building block not only for display applications. In this chapter, the basic knowledge for a better understanding of carbon nanotube-based electronics is given, and key techniques for their application in displays and flexible electronics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AM:

Active matrix

CHP:

Cyclohexyl pyrrolidone

CNN:

Carbon nanotube network

CNT:

Carbon nanotube

CVD:

Chemical vapor deposition

D :

Density of a CNN [tubes/area]

DFES:

Dose-controlled, floating evaporative self-assembly

DGU:

Density gradient ultracentrifugation

DOS:

Density of states

d t :

Diameter of a SWNT

EB:

Electrical breakdown

E f :

Fermi energy

FET:

Field effect transistor

I off :

TFT current in the off-state

I on :

TFT current in the on-state

L :

Length of a SWNT

L C :

TFT channel length

m-SWNT:

Metallic single-walled nanotube

MWNT:

Multiwalled nanotube

NMP:

N-methyl-pyrrolidone

PANI:

Poly(aniline)

PD:

Polymer dispersed

PEI:

Poly(ethylenimine)

p m :

Percolation threshold of m-SWNTs

PMMA:

Poly(methyl methacrylate)

p s :

Percolation threshold of s-SWNTs

S :

Subthreshold swing

SB:

Schottky barrier

s-SWNT:

Semiconducting single-walled nanotube

SWNT:

Single-walled nanotube

TFT:

Thin-film transistor

VF:

Vacuum filtration

W C :

TFT channel width

φ m :

Metal work function

Further Reading

  • Arnold K, Hennrich F, Krupke R, Lebedkin S, Kappes MM (2006a) Length separation studies of single walled carbon nanotube dispersions. Phys Status Solidi B 243:3073–3076

    Article  Google Scholar 

  • Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006b) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  Google Scholar 

  • Auvray S, Derycke V, Goffman M, Filoramo A, Jost O, Bourgoin J-P (2005) Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett 5:451–455. doi:10.1021/nl048032y

    Article  Google Scholar 

  • Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605–615. doi:10.1038/nnano.2007.300

    Article  Google Scholar 

  • Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J Am Chem Soc 125:11186–11187. doi:10.1021/ja036622c

    Article  Google Scholar 

  • Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542. doi:10.1021/ja010462s

    Article  Google Scholar 

  • Balasubramanian K, Sordan R, Burghard M, Kern K (2004) A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett 4:827–830. doi:10.1021/nl049806d

    Article  Google Scholar 

  • Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29. doi:10.1002/adma.200401340

    Article  Google Scholar 

  • Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun Z, Windle AH, Ryan P, Niraj NPP, Wang Z-TT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20:1876–1881. doi:10.1002/adma.200702451

    Article  Google Scholar 

  • Bethune DS, Kiang CH, de Vries MS, Groman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  • Brady GJ, Joo Y, Roy SS, Gopalan P, Arnold MS (2014a) High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl Phys Lett 104:083107. doi:10.1063/1.4866577

    Article  Google Scholar 

  • Brady GJ, Joo Y, Wu M-Y, Shea MJ, Gopalan P, Arnold MS (2014b) Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8:11614–11621. doi:10.1021/nn5048734

    Article  Google Scholar 

  • Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A 19:1800–1805

    Article  Google Scholar 

  • Cao Q, Rogers J (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res 1:259–272. doi:10.1007/s12274-008-8033-4

    Article  Google Scholar 

  • Cao Q, Hur S-H, Zhu Z-T, Sun Y, Wang C, Meitl MA, Shim M, Rogers JA (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309

    Article  Google Scholar 

  • Cao Q, Kim H, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500. doi:10.1038/nature07110

    Article  Google Scholar 

  • Che Y, Lin Y-C, Kim P, Zhou C (2013) T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS Nano 7:4343–4350. doi:10.1021/nn400847r

    Article  Google Scholar 

  • Chen Z, Appenzeller J, Knoch J, Lin Y-M, Avouris P (2005) The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 5:1497–1502

    Article  Google Scholar 

  • Chen Z, Appenzeller J, Lin Y-M, Sippel-Oakley J, Rinzler AG, Tang J, Wind SJ, Solomon PM, Avouris P (2006) An integrated logic circuit assembled on a single carbon nanotube. Science 311:1735. doi:10.1126/science.1122797

    Article  Google Scholar 

  • Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695. doi:10.1002/adfm.200901640

    Article  Google Scholar 

  • Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804. doi:10.1126/science.287.5459.1801

    Article  Google Scholar 

  • Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709. doi:10.1126/science.1058782

    Article  Google Scholar 

  • Davis VA, Parra-Vasquez A, Nicholas G, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834. doi:10.1038/nnano.2009.302

    Article  Google Scholar 

  • Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773. doi:10.1063/1.1467702

    Article  Google Scholar 

  • Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mater 11:1354–1358. doi:10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO;2-N

    Article  Google Scholar 

  • Dimaki M, Boggild P (2004) Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology 15:1095–1102. doi:10.1088/0957-4484/15/8/039

    Article  Google Scholar 

  • Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J (2009a) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805. doi:10.1021/nl803496s

    Article  Google Scholar 

  • Ding L, Wang S, Zhang Z, Zeng Q, Wang Z, Pei T, Yang L, Liang X, Shen J, Chen Q, Cui R, Li Y, Peng L-M (2009b) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9:4209–4214. doi:10.1021/nl9024243

    Article  Google Scholar 

  • Druzhinina T, Hoeppener S, Schubert US (2011) Strategies for post-synthesis alignment and immobilization of carbon nanotubes. Adv Mater 23:953–970. doi:10.1002/adma.201003509

    Article  Google Scholar 

  • Durkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39. doi:10.1021/nl034841q

    Article  Google Scholar 

  • Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2:2445–2452. doi:10.1021/nn800708w

    Article  Google Scholar 

  • Fouquet M, Bayer BC, Esconjauregui S, Blume R, Warner JH, Hofmann S, Schlögl R, Thomsen C, Robertson J (2012) Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst. Phys Rev B 85:235411. doi:10.1103/PhysRevB.85.235411

    Article  Google Scholar 

  • Franklin AD, Tulevski GS, Han S-J, Shahrjerdi D, Cao Q, Chen H-Y, Wong H-SP, Haensch W (2012) Variability in carbon nanotube transistors: improving device-to-device consistency. ACS Nano 6:1109–1115. doi:10.1021/nn203516z

    Article  Google Scholar 

  • Fuhrer MS, Nygård J, Shih L, Forero M, Yoon Y-G, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494–497. doi:10.1126/science.288.5465.494

    Article  Google Scholar 

  • Geier ML, Prabhumirashi PL, McMorrow JJ, Xu W, Seo J-WT, Everaerts K, Kim CH, Marks TJ, Hersam MC (2013) Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett 13:4810–4814. doi:10.1021/nl402478p

    Article  Google Scholar 

  • Geng HZ, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129:7758–7759

    Article  Google Scholar 

  • Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443–450. doi:10.1038/nnano.2010.68

    Article  Google Scholar 

  • Ha M, Xia Y, Green AA, Zhang W, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2010) Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4:4388–4395. doi:10.1021/nn100966s

    Article  Google Scholar 

  • Ha M, Seo J-WT, Prabhumirashi PL, Zhang W, Geier ML, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2013) Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett 13:954–960. doi:10.1021/nl3038773

    Article  Google Scholar 

  • Ha T-J, Kiriya D, Chen K, Javey A (2014) Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. ACS Appl Mater Interfaces 6:8441–8446. doi:10.1021/am5013326

    Article  Google Scholar 

  • Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–120. doi:10.1126/science.1177599

    Article  Google Scholar 

  • Hassanien A, Tokumoto M, Umek P, Vrbanič D, Mozetič M, Mihailović D, Venturini P (2005) Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma. Nanotechnology 16:278–281. doi:10.1088/0957-4484/16/2/017

    Article  Google Scholar 

  • He M, Jiang H, Liu B, Fedotov PV, Chernov AI, Obraztsova ED, Cavalca F, Wagner JB, Hansen TW, Anoshkin IV, Obraztsova EA, Belkin AV, Sairanen E, Nasibulin AG, Lehtonen J, Kauppinen EI (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep. doi:10.1038/srep01460

    Google Scholar 

  • Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Carbon nanotubes as schottky barrier transistors. Phys Rev Lett 89:106801. doi:10.1103/PhysRevLett.89.106801

    Article  Google Scholar 

  • Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3:387–394. doi:10.1038/nnano.2008.135

    Article  Google Scholar 

  • Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46:2003–2025. doi:10.1016/j.carbon.2008.09.009

    Article  Google Scholar 

  • Hu L, Hecht DS, Grüner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4:2513–2517. doi:10.1021/nl048435y

    Article  Google Scholar 

  • Huang L, Cui X, Dukovic G, O’Brien SP (2004a) Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology 15:1450–1454. doi:10.1088/0957-4484/15/11/012

    Article  Google Scholar 

  • Huang L, Cui X, White B, O’Brien SP (2004b) Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition. J Phys Chem B 108:16451–16456. doi:10.1021/jp0474125

    Article  Google Scholar 

  • Huang X, Mclean RS, Zheng M (2005) High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem 77:6225–6228. doi:10.1021/ac0508954

    Article  Google Scholar 

  • Huang H, Maruyama R, Noda K, Kajiura H, Kadono K (2006) Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J Phys Chem B 110:7316–7320. doi:10.1021/jp056684k

    Article  Google Scholar 

  • Huang L, Jia Z, O’Brien S (2007) Orientated assembly of single-walled carbon nanotubes and applications. J Mater Chem 17:3863–3874

    Article  Google Scholar 

  • Hur S-H, Park OO, Rogers JA (2005) Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl Phys Lett 86:243502. doi:10.1063/1.1947380

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  • Im J, Lee I-H, Lee BY, Kim B, Park J, Yu W, Kim UJ, Lee YH, Seong M-J, Lee EH, Min Y-S, Hong S (2009) Direct printing of aligned carbon nanotube patterns for high-performance thin film devices. Appl Phys Lett 94:053109. doi:10.1063/1.3073748

    Article  Google Scholar 

  • Ishida M, Nihey F (2008) Estimating the yield and characteristics of random network carbon nanotube transistors. Appl Phys Lett 92:163507. doi:10.1063/1.2901165

    Article  Google Scholar 

  • Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    Article  Google Scholar 

  • Jain D, Rouhi N, Rutherglen C, Densmore CG, Doorn SK, Burke PJ (2010) Effect of source, surfactant, and deposition process on electronic properties of nanotube arrays. J Nanomater 2011:e174268. doi:10.1155/2011/174268

    Google Scholar 

  • Jang S, Kim B, Geier ML, Prabhumirashi PL, Hersam MC, Dodabalapur A (2014) Fluoropolymer coatings for improved carbon nanotube transistor device and circuit performance. Appl Phys Lett 105:122107. doi:10.1063/1.4895069

    Article  Google Scholar 

  • Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR (2008) Synthesis, characterization, and theory of [9]-, [12]-, and [18] cycloparaphenylene: carbon nanohoop structures. J Am Chem Soc 130:17646–17647

    Article  Google Scholar 

  • Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H (2002) High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 1:241–246. doi:10.1038/nmat769

    Article  Google Scholar 

  • Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657. doi:10.1038/nature01797

    Article  Google Scholar 

  • Jin S, Whang D, McAlpine MC, Friedman RS, Wu Y, Lieber CM (2004) Scalable interconnection and integration of nanowire devices without registration. Nano Lett 4:915–919. doi:10.1021/nl049659j

    Article  Google Scholar 

  • Joo Y, Brady GJ, Arnold MS, Gopalan P (2014) Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 30:3460–3466. doi:10.1021/la500162x

    Article  Google Scholar 

  • Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes – advanced topics in the synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  • Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57:571–580. doi:10.1109/TED.2009.2039541

    Article  Google Scholar 

  • Kämpgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429

    Article  Google Scholar 

  • Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932–1935. doi:10.1103/PhysRevLett.78.1932

    Article  Google Scholar 

  • Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236. doi:10.1038/nnano.2007.77

    Article  Google Scholar 

  • Kang L, Hu Y, Liu L, Wu J, Zhang S, Zhao Q, Ding F, Li Q, Zhang J (2014) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett. doi:10.1021/nl5037325

    Google Scholar 

  • Kar S, Vijayaraghavan A, Soldano C, Talapatra S, Vajtai R, Nalamasu O, Ajayan PM (2006) Quantitative analysis of hysteresis in carbon nanotube field-effect devices. Appl Phys Lett 89:132118-3. doi:10.1063/1.2358290

    Article  Google Scholar 

  • Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302:1380–1382. doi:10.1126/science.1091022

    Article  Google Scholar 

  • Kim W, Javey A, Vermesh O, Wang Q, Yiming L, Dai H (2003a) Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3:193–198

    Article  Google Scholar 

  • Kim Y, Minami N, Zhu W, Kazaoui S, Azumi R, Matsumoto M (2003b) Homogeneous and structurally controlled thin films of single-wall carbon nanotubes by the Langmuir-Blodgett technique. Synth Met 135–136:747–748. doi:10.1016/S0379-6779(02)00830-5

    Article  Google Scholar 

  • Kim W, Javey A, Tu R, Cao J, Wang Q, Dai H (2005) Electrical contacts to carbon nanotubes down to 1nm in diameter. Appl Phys Lett 87:173101. doi:10.1063/1.2108127

    Article  Google Scholar 

  • Kim SK, Xuan Y, Ye PD, Mohammadi S, Back JH, Shim M (2007) Atomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors. Appl Phys Lett 90:163108. doi:10.1063/1.2724904

    Article  Google Scholar 

  • Kim T, Kim G, Choi WI, Kwon Y-K, Zuo J-M (2010) Electrical transport in small bundles of single-walled carbon nanotubes: intertube interaction and effects of tube deformation. Appl Phys Lett 96:173107. doi:10.1063/1.3402768

    Article  Google Scholar 

  • Kim B, Jang S, Prabhumirashi PL, Geier ML, Hersam MC, Dodabalapur A (2013) Low voltage, high performance inkjet printed carbon nanotube transistors with solution processed ZrO2 gate insulator. Appl Phys Lett 103:082119. doi:10.1063/1.4819465

    Article  Google Scholar 

  • Kim B, Franklin A, Nuckolls C, Haensch W, Tulevski GS (2014a) Achieving low-voltage thin-film transistors using carbon nanotubes. Appl Phys Lett 105:063111. doi:10.1063/1.4891335

    Article  Google Scholar 

  • Kim B, Jang S, Geier ML, Prabhumirashi PL, Hersam MC, Dodabalapur A (2014b) High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett 14:3683–3687. doi:10.1021/nl5016014

    Article  Google Scholar 

  • Klinke C, Chen J, Afzali A, Avouris P (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5:555–558. doi:10.1021/nl048055c

    Article  Google Scholar 

  • Kocabas C, Kang SJ, Ozel T, Shim M, Rogers JA (2007a) Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J Phys Chem C 111:17879–17886. doi:10.1021/jp071387w

    Article  Google Scholar 

  • Kocabas C, Pimparkar N, Yesilyurt O, Kang SJ, Alam MA, Rogers JA (2007b) Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett 7:1195–1202. doi:10.1021/nl062907m

    Article  Google Scholar 

  • Kocabas C, Kim H, Banks T, Rogers JA, Pesetski AA, Baumgardner JE, Krishnaswamy SV, Zhang H (2008) Radio frequency analog electronics based on carbon nanotube transistors. Proc Natl Acad Sci 105:1405–1409. doi:10.1073/pnas.0709734105

    Article  Google Scholar 

  • Kocabas C, Dunham S, Cao Q, Cimino K, Ho X, Kim H-S, Dawson D, Payne J, Stuenkel M, Zhang H, Banks T, Feng M, Rotkin SV, Rogers JA (2009) High-frequency performance of submicrometer transistors that Use aligned arrays of single-walled carbon nanotubes. Nano Lett 9:1937–1943. doi:10.1021/nl9001074

    Article  Google Scholar 

  • Krupke R, Hennrich F, Loehneysen HV, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347

    Article  Google Scholar 

  • Krupke R, Hennrich F, Kappes MM, Lohneysen HV (2004) Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett 4:1395–1399. doi:10.1021/nl0493794

    Article  Google Scholar 

  • Kumar S, Pimparkar N, Murthy JY, Alam MA (2006) Theory of transfer characteristics of nanotube network transistors. Appl Phys Lett 88:123505. doi:10.1063/1.2187401

    Article  Google Scholar 

  • Lau PH, Takei K, Wang C, Ju Y, Kim J, Yu Z, Takahashi T, Cho G, Javey A (2013) Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett 13:3864–3869. doi:10.1021/nl401934a

    Article  Google Scholar 

  • Lay MD, Novak JP, Snow ES (2004) Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett 4:603–606

    Article  Google Scholar 

  • Lee K-H, Cho J-M, Sigmund W (2003) Control of growth orientation for carbon nanotubes. Appl Phys Lett 82:448. doi:10.1063/1.1535269

    Article  Google Scholar 

  • Lee HW, Yoon Y, Park S, Oh JH, Hong S, Liyanage LS, Wang H, Morishita S, Patil N, Park YJ, Park JJ, Spakowitz A, Galli G, Gygi F, Wong PH-S, Tok JB-H, Kim JM, Bao Z (2011) Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat Commun 2:541. doi:10.1038/ncomms1545

    Article  Google Scholar 

  • Lee D, Seol M-L, Moon D-I, Bennett P, Yoder N, Humes J, Bokor J, Choi Y-K, Choi S-J (2014a) High-performance thin-film transistors produced from highly separated solution-processed carbon nanotubes. Appl Phys Lett 104:143508. doi:10.1063/1.4871100

    Article  Google Scholar 

  • Lee SW, Suh D, Lee SY, Lee YH (2014b) Passivation effect on gate-bias stress instability of carbon nanotube thin film transistors. Appl Phys Lett 104:163506. doi:10.1063/1.4873316

    Article  Google Scholar 

  • Li Y, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons JF, Nishi Y, Dai H (2004) Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett 4:317–321. doi:10.1021/nl035097c

    Article  Google Scholar 

  • Li Y, Peng S, Mann D, Cao J, Tu R, Cho KJ, Dai H (2005) On the origin of preferential growth of semiconducting single-walled carbon nanotubes. J Phys Chem B 109:6968–6971. doi:10.1021/jp050868h

    Article  Google Scholar 

  • Li J, Zhang Z-B, Zhang S-L (2007a) Percolation in random networks of heterogeneous nanotubes. Appl Phys Lett 91:253127-3. doi:10.1063/1.2827577

    Google Scholar 

  • Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W-S, Dai H (2007b) Langmuir − blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129:4890–4891. doi:10.1021/ja071114e

    Article  Google Scholar 

  • Li X, Huang J-S, Nejati S, McMillon L, Huang S, Osuji CO, Hazari N, Taylor AD (2014) Role of HF in oxygen removal from carbon nanotubes: implications for high performance carbon electronics. Nano Lett 14:6179–6184. doi:10.1021/nl502401c

    Article  Google Scholar 

  • Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo I-S, Lee YH (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95:264103. doi:10.1063/1.3255016

    Article  Google Scholar 

  • Lin YM, Appenzeller J, Knoch J, Avouris P (2005) High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol 4:481–489

    Article  Google Scholar 

  • Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W, Rimberg AJ, Smith KA, Colbert DT, Smalley RE (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129. doi:10.1016/S0009-2614(99)00209-2

    Article  Google Scholar 

  • Liu H, Tanaka T, Urabe Y, Kataura H (2013) High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett 13:1996–2003. doi:10.1021/nl400128m

    Article  Google Scholar 

  • Lolli G, Zhang L, Balzano L, Sakulchaicharoen N, Tan Y, Resasco DE (2006) Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J Phys Chem B 110:2108–2115. doi:10.1021/jp056095e

    Article  Google Scholar 

  • Maruyama S (2010) Shigeo Maruyama’s carbon nanotube and fullerene site. http://www.photon.t.u-tokyo.ac.jp/~maruyama/nanotube.html. Accessed 1 Mar 2010

  • Maune HT, Han S, Barish RD, Bockrath M, Goddard WA, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66. doi:10.1038/nnano.2009.311

    Article  Google Scholar 

  • Mclean RS, Huang X, Khripin C, Jagota A, Zheng M (2006) Controlled two-dimensional pattern of spontaneously aligned carbon nanotubes. Nano Lett 6:55–60. doi:10.1021/nl051952b

    Article  Google Scholar 

  • McNicholas TP, Ding L, Yuan D, Liu J (2009) Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis. Nano Lett 9:3646–3650. doi:10.1021/nl901890x

    Article  Google Scholar 

  • Meitl MA, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett 4:1643–1647

    Article  Google Scholar 

  • Mistry KS, Larsen BA, Blackburn JL (2013) High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7:2231–2239. doi:10.1021/nn305336x

    Article  Google Scholar 

  • Mizutani T, Iwatsuki S, Ohno Y, Kishimoto S (2005) Effects of fabrication process on current–voltage characteristics of carbon nanotube field effect transistors. Jpn J Appl Phys 44:1599–1602. doi:10.1143/JJAP.44.1599

    Article  Google Scholar 

  • Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97. doi:10.1016/S0009-2614(99)01029-5

    Article  Google Scholar 

  • Nojeh A, Ural A, Pease RF, Dai H (2004) Electric-field-directed growth of carbon nanotubes in two dimensions. In: The 48th international conference on electron, ion, and photon beam technology and nanofabrication. AVS, San Diego, pp 3421–3425

    Google Scholar 

  • O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  • Park T-J, Banerjee S, Hemraj-Benny T, Wong SS (2006) Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 16:141. doi:10.1039/b510858f

    Article  Google Scholar 

  • Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    Google Scholar 

  • Peng N, Zhang Q, Sun Y (2008) Motion of carbon nanotubes in suspension under AC electric field. Int J Nanomanuf 2:50–58

    Article  Google Scholar 

  • Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single-wall carbon nanotube salt. J Am Chem Soc 127:8–9. doi:10.1021/ja0443373

    Article  Google Scholar 

  • Pimparkar N, Cao Q, Rogers J, Alam M (2009) Theory and practice of “Striping” for improved ON/OFF ratio in carbon nanonet thin film transistors. Nano Res 2:167–175. doi:10.1007/s12274-009-9013-z

    Article  Google Scholar 

  • Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43:61–102. doi:10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  • Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct Use in FETs. Nano Lett 8:2682–2687. doi:10.1021/nl800967n

    Article  Google Scholar 

  • Raman Pillai SK, Chan-Park MB (2012) High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask. ACS Appl Mater Interfaces 4:7047–7054. doi:10.1021/am302431e

    Article  Google Scholar 

  • Ramesh S, Ericson LM, Davis VA, Saini RK, Kittrell C, Pasquali M, Billups WE, Adams WW, Hauge RH, Smalley RE (2004) Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J Phys Chem B 108:8794–8798. doi:10.1021/jp036971t

    Article  Google Scholar 

  • Reich DS, Thomsen PC, Maultzsch DPJ (2003) Carbon nanotubes – basic concepts and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  • Rinkiö M, Johansson A, Paraoanu GS, Törmä P (2009) High-speed memory from carbon nanotube field-effect transistors with high-κ gate dielectric. Nano Lett 9:643–647. doi:10.1021/nl8029916

    Article  Google Scholar 

  • Rouhi N, Jain D, Burke PJ (2011) High-performance semiconducting nanotube inks: progress and prospects. ACS Nano 5:8471–8487. doi:10.1021/nn201828y

    Article  Google Scholar 

  • Rutherglen C, Jain D, Burke P (2009) Nanotube electronics for radiofrequency applications. Nat Nanotechnol 4:811–819. doi:10.1038/nnano.2009.355

    Article  Google Scholar 

  • Ryu K, Badmaev A, Wang C, Lin A, Patil N, Gomez L, Kumar A, Mitra S, Wong H-SP, Zhou C (2009) CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett 9:189–197. doi:10.1021/nl802756u

    Article  Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  Google Scholar 

  • Sanchez-Valencia JR, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512:61–64. doi:10.1038/nature13607

    Article  Google Scholar 

  • Sangwan VK, Ortiz RP, Alaboson JMP, Emery JD, Bedzyk MJ, Lauhon LJ, Marks TJ, Hersam MC (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488. doi:10.1021/nn302768h

    Article  Google Scholar 

  • Schießl SP, Fröhlich N, Held M, Gannott F, Schweiger M, Forster M, Scherf U, Zaumseil J (2014) Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl Mater Interfaces. doi:10.1021/am506971b

    Google Scholar 

  • Schindler A, Brill J, Fruehauf N, Novak JP, Yaniv Z (2007a) Solution-deposited carbon nanotube layers for flexible display applications. Physica E 37:119–123. doi:10.1016/j.physe.2006.07.016

    Article  Google Scholar 

  • Schindler A, Spiessberger S, Fruehauf N, Novak JP, Yaniv Z (2007b) Solution-deposited carbon nanotube networks for flexible active matrix displays. In: Proceedings of Asia display. Shanghai, pp 882–887

    Google Scholar 

  • Schindler A, Spiessberger S, Hergert S, Fruehauf N, Novak JP, Yaniv Z (2008) Suspension-deposited carbon nanotube networks for flexible active matrix displays. J SID 16:651–658

    Google Scholar 

  • Schindler A, Knorr S, Novak JP, Yaniv Z, Fruehauf N (2010) High yield solution-based deposition of carbon nanotube thin film transistors for flexible display applications. In: 10th international meeting on information display. Seoul

    Google Scholar 

  • Seidel R, Graham AP, Unger E, Duesberg GS, Liebau M, Steinhoegl W, Kreupl F, Hoenlein W, Pompe W (2004) High-current nanotube transistors. Nano Lett 4:831–834. doi:10.1021/nl049776e

    Article  Google Scholar 

  • Shahrjerdi D, Franklin AD, Oida S, Ott JA, Tulevski GS, Haensch W (2013) High-performance air-stable n-type carbon nanotube transistors with erbium contacts. ACS Nano 7:8303–8308. doi:10.1021/nn403935v

    Article  Google Scholar 

  • Shim M, Javey A, Shi Kam NW, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123:11512–11513. doi:10.1021/ja0169670

    Article  Google Scholar 

  • Shimauchi H, Ohno Y, Kishimoto S, Mizutani T (2006) Suppression of hysteresis in carbon nanotube field-effect transistors: effect of contamination induced by device fabrication process. Jpn J Appl Phys 45:5501–5503. doi:10.1143/JJAP.45.5501

    Article  Google Scholar 

  • Shimoda H, Oh SJ, Geng HZ, Walker RJ, Zhang XB, McNeil LE, Zhou O (2002) Self-assembly of carbon nanotubes. Adv Mater 14:899–901. doi:10.1002/1521-4095(20020618)14:12<899::AID-ADMA899>3.0.CO;2-2

    Article  Google Scholar 

  • Shin DH, Kim J-E, Shim HC, Song J-W, Yoon J-H, Kim J, Jeong S, Kang J, Baik S, Han C-S (2008) Continuous extraction of highly pure metallic single-walled carbon nanotubes in a microfluidic channel. Nano Lett 8:4380–4385. doi:10.1021/nl802237m

    Article  Google Scholar 

  • Shulaker MM, Wei H, Patil N, Provine J, Chen H-Y, Wong H-SP, Mitra S (2011) Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett 11:1881–1886. doi:10.1021/nl200063x

    Article  Google Scholar 

  • Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong H-SP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530. doi:10.1038/nature12502

    Article  Google Scholar 

  • Siddons GP, Merchin D, Back JH, Jeong JK, Shim M (2004) Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett 4:927–931. doi:10.1021/nl049612y

    Article  Google Scholar 

  • Skákalová V, Kaiser AB, Woo Y-S, Roth S (2006) Electronic transport in carbon nanotubes: from individual nanotubes to thin and thick networks. Phys Rev B 74:085403. doi:10.1103/PhysRevB.74.085403

    Article  Google Scholar 

  • Sorgenfrei S, Meric I, Banerjee S, Akey A, Rosenblatt S, Herman IP, Shepard KL (2009) Controlled dielectrophoretic assembly of carbon nanotubes using real-time electrical detection. Appl Phys Lett 94:053105. doi:10.1063/1.3077620

    Article  Google Scholar 

  • Stadermann M, Papadakis SJ, Falvo MR, Novak JP, Snow ES, Fu Q, Liu J, Fridman Y, Boland JJ, Superfine R, Washburn S (2004) Nanoscale study of conduction through carbon nanotube networks. Phys Rev B 69:201402-1–201402-3

    Article  Google Scholar 

  • Steiner M, Engel M, Lin Y-M, Wu Y, Jenkins K, Farmer DB, Humes JJ, Yoder NL, Seo J-WT, Green AA, Hersam MC, Krupke R, Avouris P (2012) High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl Phys Lett 101:053123. doi:10.1063/1.4742325

    Article  Google Scholar 

  • Stokes P, Khondaker SI (2010) High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl Phys Lett 96:083110. doi:10.1063/1.3327521

    Article  Google Scholar 

  • Stokes P, Silbar E, Zayas YM, Khondaker SI (2009) Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes. Appl Phys Lett 94:113104. doi:10.1063/1.3100197

    Article  Google Scholar 

  • Sun D, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161. doi:10.1038/nnano.2011.1

    Article  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. doi:10.1021/cr050569o

    Article  Google Scholar 

  • Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21:3210–3216. doi:10.1002/adma.200803551

    Article  Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  • Timmermans MY, Estrada D, Nasibulin AG, Wood JD, Behnam A, Sun D, Ohno Y, Lyding JW, Hassanien A, Pop E, Kauppinen EI (2012) Effect of carbon nanotube network morphology on thin film transistor performance. Nano Res 5:307–319. doi:10.1007/s12274-012-0211-8

    Article  Google Scholar 

  • Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Grüner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9:1866–1871. doi:10.1021/nl803849e

    Article  Google Scholar 

  • Toshimitsu F, Nakashima N (2014) Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry. Nat Commun. doi:10.1038/ncomms6041

    MATH  Google Scholar 

  • Tseng SH, Tai NH (2009) Fabrication of a transparent and flexible thin film transistor based on single-walled carbon nanotubes using the direct transfer method. Appl Phys Lett 95:204104. doi:10.1063/1.3264970

    Article  Google Scholar 

  • Tulevski GS, Franklin AD, Frank D, Lobez JM, Cao Q, Park H, Afzali A, Han S-J, Hannon JB, Haensch W (2014) Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 8:8730–8745. doi:10.1021/nn503627h

    Article  Google Scholar 

  • Vaillancourt J, Zhang H, Vasinajindakaw P, Xia H, Lu X, Han X, Janzen DC, Shih W-S, Jones CS, Stroder M, Chen MY, Subbaraman H, Chen RT, Berger U, Renn M (2008) All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl Phys Lett 93:243301–243303. doi:10.1063/1.3043682

    Article  Google Scholar 

  • Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett 7:1556–1560. doi:10.1021/nl0703727

    Article  Google Scholar 

  • Wang Y, Kim MJ, Shan H, Kittrell C, Fan H, Ericson LM, Hwang W-F, Arepalli S, Hauge RH, Smalley RE (2005) Continued growth of single-walled carbon nanotubes. Nano Lett 5:997–1002. doi:10.1021/nl047851f

    Article  Google Scholar 

  • Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y (2007) Direct enrichment of metallic single-walled carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3:1486–1490. doi:10.1002/smll.200700241

    Article  Google Scholar 

  • Wang C, Zhang J, Ryu K, Badmaev A, De Arco LG, Zhou C (2009) Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett 9:4285–4291. doi:10.1021/nl902522f

    Article  Google Scholar 

  • Wang H, Luo J, Robertson A, Ito Y, Yan W, Lang V, Zaka M, Schäffel F, Rümmeli MH, Briggs GAD, Warner JH (2010) High-performance field effect transistors from solution processed carbon nanotubes. ACS Nano 4:6659–6664. doi:10.1021/nn1020743

    Article  Google Scholar 

  • Wang C, Chien J-C, Takei K, Takahashi T, Nah J, Niknejad AM, Javey A (2012) Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett 12:1527–1533. doi:10.1021/nl2043375

    Article  Google Scholar 

  • Wang H, Wei P, Li Y, Han J, Lee HR, Naab BD, Liu N, Wang C, Adijanto E, Tee BC-K, Morishita S, Li Q, Gao Y, Cui Y, Bao Z (2014) Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc Natl Acad Sci 111:4776–4781. doi:10.1073/pnas.1320045111

    Article  Google Scholar 

  • Willey AD, Holt JM, Larsen BA, Blackburn JL, Liddiard S, Abbott J, Coffin M, Vanfleet RR, Davis RC (2014) Thin films of carbon nanotubes via ultrasonic spraying of suspensions in N-methyl-2-pyrrolidone and N-cyclohexyl-2-pyrrolidone. J Vac Sci Technol B 32:011218. doi:10.1116/1.4861370

    Article  Google Scholar 

  • Xiao J, Dunham S, Liu P, Zhang Y, Kocabas C, Moh L, Huang Y, Hwang K-C, Lu C, Huang W, Rogers JA (2009) Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett 9:4311–4319. doi:10.1021/nl9025488

    Article  Google Scholar 

  • Xie X, Jin SH, Wahab MA, Islam AE, Zhang C, Du F, Seabron E, Lu T, Dunham SN, Cheong HI, Tu Y-C, Guo Z, Chung HU, Li Y, Liu Y, Lee J-H, Song J, Huang Y, Alam MA, Wilson WL, Rogers JA (2014) Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. Nat Commun. doi:10.1038/ncomms6332

    Google Scholar 

  • Xin H, Woolley AT (2003) DNA-templated nanotube localization. J Am Chem Soc 125:8710–8711. doi:10.1021/ja035902p

    Article  Google Scholar 

  • Xin H, Woolley AT (2004) Directional orientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett 4:1481–1484. doi:10.1021/nl049192c

    Article  Google Scholar 

  • Xiong X, Chen C-L, Ryan P, Busnaina AA, Jung YJ, Dokmeci MR (2009) Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates. Nanotechnology 20:295302

    Article  Google Scholar 

  • Xu H, Zhang S, Anlage SM, Hu L, Grüner G (2008) Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density. Phys Rev B 77:075418. doi:10.1103/PhysRevB.77.075418

    Article  Google Scholar 

  • Xu Z, Yang X, Yang Z (2010) A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies. Nano Lett 10:985–991. doi:10.1021/nl9041005

    Article  Google Scholar 

  • Xu W, Zhao J, Qian L, Han X, Wu L, Wu W, Song M, Zhou L, Su W, Wang C, Nie S, Cui Z (2014) Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 6:1589–1595. doi:10.1039/C3NR04870E

    Article  Google Scholar 

  • Yan Y, Chan-Park MB, Zhang Q (2007) Advances in carbon-nanotube assembly. Small 3:24–42. doi:10.1002/smll.200600354

    Article  Google Scholar 

  • Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524. doi:10.1038/nature13434

    Article  Google Scholar 

  • Yoon J, Lee D, Kim C, Lee J, Choi B, Kim DM, Kim DH, Lee M, Choi Y-K, Choi S-J (2014) Accurate extraction of mobility in carbon nanotube network transistors using C-V and I-V measurements. Appl Phys Lett 105:212103. doi:10.1063/1.4902834

    Article  Google Scholar 

  • Yu G, Cao A, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2:372–377. doi:10.1038/nnano.2007.150

    Article  Google Scholar 

  • Zamora-Ledezma C, Blanc C, Maugey M, Zakri C, Poulin P, Anglaret E (2008) Anisotropic thin films of single-wall carbon nanotubes from aligned lyotropic nematic suspensions. Nano Lett 8:4103–4107. doi:10.1021/nl801525x

    Article  Google Scholar 

  • Zavodchikova MY, Nasibulin AG, Kulmala T, Grigoras K, Anisimov AS, Franssila S, Ermolov V, Kauppinen EI (2008) Novel carbon nanotube network deposition technique for electronic device fabrication. Phys Status Solidi B 245:2272–2275. doi:10.1002/pssb.200879607

    Article  Google Scholar 

  • Zavodchikova MY, Kulmala T, Nasibulin AG, Ermolov V, Franssila S, Grigoras K, Kauppinen EI (2009) Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology 20:085201

    Article  Google Scholar 

  • Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H (2006) Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314:974–977

    Article  Google Scholar 

  • Zhang J, Fu Y, Wang C, Chen P-C, Liu Z, Wei W, Wu C, Thompson ME, Zhou C (2011a) Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett 11:4852–4858. doi:10.1021/nl202695v

    Article  Google Scholar 

  • Zhang J, Wang C, Fu Y, Che Y, Zhou C (2011b) Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 5:3284–3292. doi:10.1021/nn2004298

    Article  Google Scholar 

  • Zhou Y, Gaur A, Hur S-H, Kocabas C, Meitl MA, Shim M, Rogers JA (2004) p-channel, n-channel thin film transistors and p − n diodes based on single wall carbon nanotube networks. Nano Lett 4:2031–2035. doi:10.1021/nl048905o

    Article  Google Scholar 

  • Zhou X, Park J-Y, Huang S, Liu J, McEuen PL (2005) Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95:146805. doi:10.1103/PhysRevLett.95.146805

    Article  Google Scholar 

  • Zhou Y, Liangbing H, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109-1–123109-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schindler, A. (2015). Carbon Nanotube TFTs. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_53-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_53-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics