Skip to main content

Contact Effects in Organic Thin-Film Transistors: Device Physics and Modeling

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology

Abstract

The electrical characteristics of organic thin-film transistors (OTFTs) are frequently affected by contact effects, which can seriously reduce the transistor performance. The importance of the contact resistance, R c , is more relevant in the case of high carrier mobility and/or small channel length devices, where its value may become comparable or even larger than the channel resistance. R c appears to be strongly affected by the device architecture, and much higher R c values are typically observed, at low-drain voltages, in coplanar structures (i.e., bottom-gate/bottom-contact (BGBC) devices) than in staggered structures (i.e., top-gate/bottom-contact (TGBC) devices). The presence of Schottky barriers, trap states, field dependence of carrier mobility, and defected regions near the electrodes has been suggested as the origin of R c .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Further Reading

  • Abdinia S, Torricelli F, Maiellaro G, Coppard R, Daami A, Jacob S, Mariucci L, Palmisano G, Ragonese E, Tramontana F, van Roermund AHM, Cantatore E (2014) Variation-based design of an AM demodulator in a printed complementary organic technology. Org Electron 15:904–912

    Article  Google Scholar 

  • Ante F, Kälblein D, Zaki T, Zschieschang U, Takimiya K, Ikeda M, Sekitani T, Someya T, Burghartz JN, Kern K, Klauk H (2012) Contact resistance and megahertz operation of aggressively scaled organic transistors. Small 8:73

    Article  Google Scholar 

  • Berger HH (1972) Model for contacts to planar devices. Solid State Electron 15:145–158

    Article  Google Scholar 

  • Blanchet GB, Fincher CR, Lefenfeld M (2004) J. A. Rogers, contact resistance in organic thin film transistors. Appl Phys Lett 84:2964

    Article  Google Scholar 

  • Bock PDV, Kunze U, Käfer D, Witte G, Wöll C (2006) Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes. J Appl Phys 100:114517

    Article  Google Scholar 

  • Bullejos P, Tejada JAJ, Rodríguez-Bolívar S, Deen MJ, Marinov O (2009) Model for the injection of charge through the contacts of organic transistors. J Appl Phys 105:084516.

    Article  Google Scholar 

  • Bürgi L, Sirringhaus H, Friend RH (2002) Noncontact potentiometry of polymer field-effect transistors. Appl Phys Lett 80:2913

    Article  Google Scholar 

  • Chiang C-S, Martin S, Kanicki J, Ugai Y, Yukawa T, Takeuchi S (1998) Top-gate staggered amorphous silicon thin-film transistors: Series resistance and nitride thickness effects. Jpn J Appl Phys 37:5914–5920

    Google Scholar 

  • Coppedè N, Tarabella G, Villani M, Calestani D, Iannotta S, Zappettini A (2014) Human stress monitoring through an organic cotton-fiber biosensor. J Mater Chem B 2:5620

    Article  Google Scholar 

  • Dong H, Fu X, Liu J, Wang Z, Hu W (2013) 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv Mater 25:6158–6183

    Article  Google Scholar 

  • Guo X, Facchetti A, Marks TJ (2014) Imide- and amide-functionalized polymer semiconductors. Chem Rev 114:8943–9021

    Article  Google Scholar 

  • Gupta D, Katiyar M, Gupta D (2009) An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Org Electron 10:775–784

    Article  Google Scholar 

  • Hamadani BH, Natelson D (2005) Nonlinear charge injection in organic field-effect transistors. J Appl Phys 97:064508

    Article  Google Scholar 

  • Hammock ML, Chortos A, Tee BC-K, Tok JB-H, Bao Z (2013) 25th anniversary article: the evolution of electronic skin (E-skin): a brief history, design considerations, and recent progress. Adv Mater 25:5997–6038

    Article  Google Scholar 

  • Hong J-P, Park A-Y, Lee S, Kang J, Shin N, Yoon DY (2008) Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Appl Phys Lett 92:143311

    Article  Google Scholar 

  • Jacob S, Abdinia S, Benwadih M, Bablet J, Chartier I, Gwoziecki R, Cantatore E, van Roermund AHM, Maddiona L, Tramontana F, Maiellaro G, Mariucci L, Rapisarda M, Palmisano G, Coppard R (2013) High performance printed n and p-type OTFTs enabling digital and analog complementary circuits on flexible plastic substrate. Solid State Electron 84:167–178

    Article  Google Scholar 

  • Jung K-D, Kim YC, Shin H, Park B-G, Lee JD, Cho ES, Kwon SJ (2010) A study on the carrier injection mechanism of the bottom-contact pentacene thin film transistor. Appl Phys Lett 96:103305

    Article  Google Scholar 

  • Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwödiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499(458):2013

    Google Scholar 

  • Kang MJ, Doi I, Mori H, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H (2011) Alkylated dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophenes (Cn-DNTTs): organic semiconductors for high-performance thin-film transistors. Adv Mater 23:1222–1225

    Article  Google Scholar 

  • Khodagholy D, Rivnay J, Sessolo M, Gurfinkel M, Leleux P, Jimison LH, Stavrinidou E, Herve T, Sanaur S, Owens RM, Malliaras GG (2013) High transconductance organic electrochemical transistors. Nat Commun 4:2133

    Google Scholar 

  • Kim CH, Bonnassieux Y, Horowitz G (2013) Charge distribution and contact resistance model for coplanar organic field-effect transistors. IEEE Trans on Electron Device 60:280.

    Article  Google Scholar 

  • Klauk H, Schmid G, Radlik W, Weber W, Zhou L, Sheraw CD, Nichols JA, Jackson TN (2003) Contact resistance in organic thin film transistors. Solid State Electron 47:297–301

    Article  Google Scholar 

  • Kumar B, Kaushik BK, Negi YS, Saxena S, Varma GD (2013) Analytical modelling and parameter extraction of top and bottom contact structures of organic thin film transistors. Microelectron J 44:736–743

    Article  Google Scholar 

  • Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, Jaye C, Fischer D, Klauk H, Yamamoto T, Takimiya K, Ikeda M, Kuwabara H, Sekitani T, Loo Y-L, Someya T (2012) Organic transistors with high thermal stability for medical applications. Nat Commun 3:723

    Article  Google Scholar 

  • Li T, Ruden PP, Campbell IH, Smith DL (2003) Investigation of bottom-contact organic field effect transistors by two-dimensional device modelling. J Appl Phys 93:4017–4022

    Article  Google Scholar 

  • Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754

    Google Scholar 

  • Lin P, Yan F, Yu JJ, Chan HLW, Yang M (2010) The application of organic electrochemical transistors in cell-based biosensors. Adv Mater 22:3655–3660

    Article  Google Scholar 

  • Luan SW, Neudeck GW (1992) An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors. J Appl Phys 72:766

    Article  Google Scholar 

  • Mabeck JT, Malliaras GG (2006) Chemical and biological sensors based on organic thin-film transistors. Anal Bioanal Chem 384:343–353

    Article  Google Scholar 

  • Mariucci L, Rapisarda M, Valletta A, Jacob S, Benwadih M, Fortunato G (2013) Current spreading effects in fully printed p-channel organic thin film transistors with Schottky source–drain contacts. Org Electron 14:86–93

    Article  Google Scholar 

  • Murrmann H, Widmann D (1969) Current crowding on metal contacts to planer devices. Dig Tech Pap. ISSCC: 162

    Google Scholar 

  • Natali D, Fumagalli L, Sampietro M (2007) Modeling of organic thin film transistors: effect of contact resistances. J Appl Phys 101:014501

    Article  Google Scholar 

  • Necliudov PV, Shur MS, Gundlach DJ, Jackson TN (2003) Contact resistance extraction in pentacene thin film transistors. Solid State Electron 47:259–262

    Article  Google Scholar 

  • Noda K, Wada Y, Toyabe T (2014) Intrinsic difference in Schottky barrier effect for device configuration of organic thin-film transistors. Org Electron 15:1571–1578

    Article  Google Scholar 

  • Pesavento PV, Chesterfield RJ, Newman CR, Frisbie CD (2004) Gated four-probe measurements on pentacene thin-film transistors: contact resistance as a function of gate voltage and temperature. J Appl Phys 96:7312

    Article  Google Scholar 

  • Petrovic A, Pavlica E, Bratina G, Carpentiero A, Tormen M (2009) Contact resistance in organic thin film transistors. Synth Met 159:1210–1214

    Article  Google Scholar 

  • Rapisarda M, Simeone D, Fortunato G, Valletta A, Mariucci L (2011) Pentacene thin film transistors with (polytetrafluoroethylene) PTFE-like encapsulation layer. Org Electron 12:119–124

    Article  Google Scholar 

  • Rapisarda M, Valletta A, Daami A, Jacob S, Benwadih M, Coppard R, Fortunato G, Mariucci L (2012) Analysis of contact effects in fully printed p-channel organic thin film transistors. Org Electron 13:2017–2027

    Article  Google Scholar 

  • Rapisarda M, Calvi S, Valletta A, Fortunato G, Mariucci L (2015) The role of defective regions near the contacts on the electrical characteristics of bottom-gate bottom-contact organic TFTs. J Disp Technol 12:252–257

    Article  Google Scholar 

  • Risteska A, Steudel S, Nakamura M, Knipp D (2014) Structural ordering versus energy band alignment: effects of self-assembled monolayers on the metal/semiconductor interfaces of small molecule organic thin-film transistors. Org Electron 15:3723–3728

    Article  Google Scholar 

  • Rivnay J, Owens RM, Malliaras GG (2014) The rise of organic bioelectronics. Chem Mater 26:679685

    Article  Google Scholar 

  • Rose A (1955) Space-charge-limited currents in solids. Phys Rev 97:1538

    Article  Google Scholar 

  • Ruiz AR, Choudhary D, Nickel B, Toccoli T, Chang K-C, Mayer AC, Clancy P, Blakely JM, Headrick RL, Iannotta S, Malliaras GG (2004) Pentacene thin film growth. Chem Mater 16:4497–4508

    Article  Google Scholar 

  • Scheinert S, Paasch G (2009) Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors. J Appl Phys 105:014509

    Article  Google Scholar 

  • Scott JC, Malliaras GG (1999) Charge injection and recombination at the metal–organic interface. Chem Phys Lett 299:115–119

    Article  Google Scholar 

  • Sekitani T, Someya T (2010) Stretchable, large-area organic electronics. Adv Mater 22:2228–2246

    Article  Google Scholar 

  • Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015

    Article  Google Scholar 

  • Sou A, Jung S, Gili E, Pecunia V, Joimel J, Fichet G, Sirringhaus H (2014) Programmable logic circuits for functional integrated smart plastic systems. Org Electron 15:3111–3119

    Article  Google Scholar 

  • Tybrandt K, Forchheimer R, Berggren M (2012) Logic gates based on ion transistors. Nat Commun 3:871

    Article  Google Scholar 

  • Valletta A, Daami A, Benwadih M, Coppard R, Fortunato G, Rapisarda M, Torricelli F, Mariucci L (2011) Contact effects in high performance fully printed p-channel organic thin film transistors. Appl Phys Lett 99:233309

    Article  Google Scholar 

  • Wang W, Li L, Ji Z, Ye T, Lu N, Li Z, Li D, Liu M (2013) Modified transmission line model for bottom-contact organic transistors. IEEE Electron Device Lett 34:1301

    Article  Google Scholar 

  • White HS, Kittlesen GP, Wrighton MS (1984) Chemical derivatization of an array of 3 gold microelectrodes with polypyrrole – fabrication of a molecule-based transistor. J Am Chem Soc 106:5375–5377

    Article  Google Scholar 

  • Xu Y, Minari T, Tsukagoshi K, Chroboczek JA, Ghibaudo G (2010) Direct evaluation of low-field mobility and access resistance in pentacene field-effect Transistors. J Appl Phys 107:114507

    Article  Google Scholar 

The following papers provide more insight into charge injection and contact resistance

  • Bürgi L, Richards TJ, Friend RH, Sirringhaus H (2003) Close look at charge carrier injection in polymer field-effect transistors. J Appl Phys 94:6129–6136

    Article  Google Scholar 

  • Marinkovic M, Belaineh D, Wagner V, Knipp D (2012) On the origin of contact resistances of organic thin film transistors. Adv Mater 24:4005–4009

    Article  Google Scholar 

  • Natali D, Caironi M (2012) Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv Mater 24:1357–1387

    Article  Google Scholar 

The following paper is a recent review on the innovative developments of contact engineering

  • Liu C, Xu Y, Noh Y-Y (2015) Contact engineering in organic field-effect transistors. Mater Today 18:79–96

    Article  Google Scholar 

An exhaustive review on metal-organic interface can be found in

  • Hwang J, Wan A, Kahn A (2009) Energetics of metal–organic interfaces: new experiments and assessment of the field. Mater Sci Eng R 64:1–31

    Article  Google Scholar 

More detail about the dependence of contact resistance on device structures can be found in:

  • Brondijk JJ, Torricelli F, Smits ECP, Blom PWM, de Leeuw DM (2012) Gate-bias assisted charge injection in organic field-effect transistors. Org Electron 13:1526–1531

    Article  Google Scholar 

  • Gundlach DJ, Zhou L, Nichols JA, Jackson TN, Necliudov PV, Shur MS (2006) An experimental study of contact effects in organic thin film transistors. J Appl Phys 100:024509

    Article  Google Scholar 

  • Kim CH, Bonnassieux Y, Horowitz G (2011) Fundamental benefits of the staggered geometry for organic field-effect transistors. IEEE Electron Device Lett 32:1302

    Article  Google Scholar 

  • Richards TJ, Sirringhaus H (2007) Analysis of the contact resistance in staggered, top-gate organic field-effect transistors. J Appl Phys 102:094510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Mariucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mariucci, L., Rapisarda, M., Valletta, A., Fortunato, G. (2016). Contact Effects in Organic Thin-Film Transistors: Device Physics and Modeling. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_176-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics