Skip to main content

Electronic Holographic Displays: 20 Years of Interactive Spatial Imaging

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 351 Accesses

Abstract

This chapter reviews the first 20 years of interactive electro-holographic displays and holographic video – from first instance in 1990 through recent innovations in computational approaches and photonic modulation schemes. The enormous computational and photonic challenges required to interactively generate three-dimensional (3D) holographic images are examined, along with descriptions of techniques used to overcome the limitations on holographic computation and high-bandwidth photonic modulation. Included are the techniques of bipolar fringe computation, diffraction-specific fringe computation, and utilization of computer graphics hardware, as well as the scanned acousto-optic modulation technique (used in early display systems) and the liquid-crystal modulation technologies used in recent holographic displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AOM:

Acousto-optic modulator

DMD:

Digital micro-mirror device

GPU:

Graphical processing unit

Hogel:

Holographic element

HPO:

Horizontal-parallax-only

MAC:

Multiplication accumulation

SLM:

Spatial light modulator

Further Reading

  • Active digital hologram display. US Patent 6,859,293, 2005

    Google Scholar 

  • Benton SA (2001a) Selected papers on three-dimensional displays. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  • Benton SA (2001b) Selected papers on three-dimensional displays. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  • Benton SA, Bove VM Jr (2008a) Chapter 19: Holographic imaging. In: Computational display holography. Wiley-Interscience, Hoboken. ISBN-13: 978–0470068069

    Google Scholar 

  • Benton SA, Bove VM Jr (2008b) Chapter 21: Holographic television. In: Holographic imaging. Wiley-Interscience, Hoboken. ISBN-13: 978–0470068069

    Google Scholar 

  • Benton SA, Bove VM Jr (2008c) Holographic imaging. Wiley-Interscience, Hoboken. ISBN-13: 978–0470068069

    Google Scholar 

  • Bove VM Jr, Plesniak WJ, Quentmeyer T, Barabas J (2005) Real-time holographic video images with commodity PC hardware. In: Proceedings of SPIE, stereoscopic displays and applications, vol 5664. SPIE, pp 255–262

    Google Scholar 

  • Defense Advanced Research Projects Agency (2010) Urban photonic sandtable (UPSD) program. DARPA successfully completes 3D holographic display technology demonstration program. http://www.darpa.mil/NewsEvents/Releases/2011/2011/03/24_DARPA_Successfully_Completes_3D_Holographic_Display_Technology_Demonstration_Program.aspx. Accessed Mar 2011

  • Dodgson NA (2005a) Autostereoscopic 3D displays. Computer 38(8):31–36

    Article  Google Scholar 

  • Dodgson NA (2005b) Autostereoscopic 3D displays. Computer 38(8):31–36

    Article  Google Scholar 

  • Fancello, A. et al. (2013) Optics support structures with tapered walls. US Patent 8,596,838, 2013, Converting 3D data to hogel data. US Patent 8,605,081, 2013, Multi-core processor architecture for active autostereoscopic emissive displays. US Patent 8,736,675, 2014

    Google Scholar 

  • Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38(8):37–44

    Article  Google Scholar 

  • Florence JM, Gale RO (1988) Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane. Appl Opt 27(11):2091–2093

    Article  Google Scholar 

  • Foley JD, Van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice. Addison-Wesley, Reading

    Google Scholar 

  • Fukaya N, Maeno K, Sato K, Honda T (1996) Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both eye observation. Opt Eng 35(6):1545–1549

    Article  Google Scholar 

  • Fukushima S, Kurokawa T, Ohno M (1991) Real-time hologram construction and reconstruction using a high-resolution spatial light modulator. Appl Phys Lett 58(8):787–789

    Article  Google Scholar 

  • Hariharan P (1984) Optical holography: principles, techniques, and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Hashimoto N, Morokawa S (1993) Real-time electroholographic system using liquid crystal television spatial light modulators. J Electron Imaging 2(2):93–99

    Article  Google Scholar 

  • Holliman NS (2006) Three-dimensional display systems. In: Dakin JP, Brown RGW (eds) Handbook of optoelectronics, vol I. Taylor and Francis, New York, pp 1067–1100. ISBN 0750306467

    Google Scholar 

  • Ito T, Okano K (2004) Color electroholography by three colored reference lights simultaneously incident upon one hologram panel. Opt Express 12:4320–4325

    Article  Google Scholar 

  • Ito T, Shimobaba T, Godo H, Horiuchi M (2002) Holographic reconstruction with a 10-micron pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light. Opt Lett 27:1406–1408

    Article  Google Scholar 

  • Kang H, Yaras F, Onural L (2009) Graphics processing unit accelerated computation of digital holograms. Appl Opt 48(34):H137–H143

    Article  Google Scholar 

  • Kohler C, Schwab X, Osten W (2006) Optimally tuned spatial light modulators for digital holography. Appl Opt 45:960–967

    Article  Google Scholar 

  • Kreis T, Aswendt P, Hofling R (2001) Hologram reconstruction using a digital micromirror device. Opt Eng 40:926–933

    Article  Google Scholar 

  • Lucente M (1993) Interactive computation of holograms using a look-up table. J Electron Imaging 2(1):28–34

    Article  Google Scholar 

  • Lucente M (1994) Diffraction-specific fringe computation for electro-holography. PhD Thesis, Department of electrical engineering and computer science, Massachusetts Institute of Technology

    Google Scholar 

  • Lucente M (1994) Unpublished work

    Google Scholar 

  • Lucente M (1996a) Computational holographic bandwidth compression. IBM Syst J 35(3&4):349–365

    Article  Google Scholar 

  • Lucente M (1996b) Holographic bandwidth compression using spatial subsampling. Opt Eng 35(6):1529–1537

    Article  Google Scholar 

  • Lucente M, The first 20 years of holographic video – and the next 20. In: SMPTE 2nd annual international conference on stereoscopic 3D for media and entertainment – Society of Motion Picture and Television Engineers (SMPTE), 2011

    Google Scholar 

  • Lucente M, Galyean TA (1995) Rendering interactive holographic images. In: Proceedings of SIGGRAPH’95, Los Angeles, CA, 6–11 Aug 1995. Computer graphics proceedings, annual conference series. ACM SIGGRAPH, New York, pp 387–394

    Google Scholar 

  • Lucente M, Zwart G-J, George AD (1997) Visualization space: a testbed for deviceless multimodal user interface. Comput Graph 31(2); In: AAAI spring symposium series, Stanford, 23–25 Mar 1998

    Google Scholar 

  • McAllister DF (ed) (1993a) Stereo computer graphics and other true 3D technologies. Princeton University Press, Princeton

    Google Scholar 

  • McAllister DF (ed) (1993b) Stereo computer graphics and other true 3D technologies. Princeton University Press, Princeton

    Google Scholar 

  • McAllister DF (2002) Stereo and 3D display technologies, display technology. In: Hornak JP (ed) (Hardcover) Encyclopedia of imaging science and technology, vol 2, set 2. Wiley, New York, pp 1327–1344. ISBN 978-0-471-33276-3

    Google Scholar 

  • McKenna M, Zeltzer D (1992) Three dimensional visual display systems for virtual environments. Presence Teleop Virt Environ 1(4):421–458

    Article  Google Scholar 

  • Michalkiewicz A, Kujawinskaa M, Kozackia T, Wangb X, Bosb PJ (2004) Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator. In: Proceedings of SPIE, Bellingham, vol 5531. SPIE, pp 85–94

    Google Scholar 

  • Mok F, Diep J, Liu H-K, Psaltis D (1986) Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator. Opt Lett 11(11):748–750

    Article  Google Scholar 

  • Nordin GP, Kulick JH, Lindquist RG, Jones MW, Nasiatka P, Kowel ST (1995) Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architecture. Appl Opt 34(19):3756–3763

    Article  Google Scholar 

  • Onural L, Bozdagi G, Atalar A (1994) New high resolution display device for holographic three dimensional video: principles and simulations. Opt Eng 33(3):835–844

    Article  Google Scholar 

  • Onural L, Gotchev A, Ozaktas H, Stoykova E (2007) A survey of signal processing problems and tools in holographic three-dimensional television. IEEE Trans Circ Syst Vid Technol 17:1631

    Article  Google Scholar 

  • Pappu R (1996) Nonuniformly sampled computer-generated holograms. Opt Eng 35(6):1538–1544

    Article  Google Scholar 

  • Peyghambarian N, Tay S, Blanche P-A, Norwood R, Yamamoto M (2008) Rewritable holographic 3D displays. Opt Photonics News 19(7):22–27

    Article  Google Scholar 

  • Plesniak WJ, Pappu R (1998) Coincident display using haptics and holographic video. In: Proceedings of ACM SIGCHI conference on human factors in computing systems, Los Angeles, Apr 1998

    Google Scholar 

  • Plesniak W, Halle M, Bove VM Jr, Barabas J, Pappu R (2006) Reconfigurable image projection holograms. Opt Eng 45(11):115801

    Article  Google Scholar 

  • Psaltis D, Paek EG, Venkatesh SS (1984) Optical image correlation with a binary spatial light modulator. Opt Eng 23(6):698–704

    Article  Google Scholar 

  • Reichelt S, Haussler R, Leister N, Futterer G, Schwerdtner A (2008) Large holographic 3D displays for tomorrow’s TV and monitors – solutions, challenges, and prospects. In: IEEE 2008 LEOS 21st annual meeting. IEEE, New York, p 194

    Google Scholar 

  • Sanford JL, Schlig ES, Tomooka T, Enami K, Libsch FR (1998) Silicon light-valve array chip for high-resolution reflective liquid crystal projection displays. IBM J Res Dev 42(3/4):347–358

    Article  Google Scholar 

  • Sato K, Sugita A, Morimoto M, Fujii K (2006) Reconstruction of color images of high quality by a holographic display. In: Proceedings of SPIE, vol 6136. SPIE, p 61360V. San Jose, CA

    Google Scholar 

  • Schwerdtner A, Leister N, Häussler R (2007) A new approach to electro-holography for TV and projection displays. In: SID 2007 international symposium, Digest of technical papers, vol. XXXVIII. Society for Information Display, pp 1224–1227. Long Beach, CA

    Google Scholar 

  • Schwerdtner A, Leister N, Häussler R, Reichelt S (2008) Eye-tracking solutions for real-time holographic 3-D display. In: SID 2008 international symposium, Digest of technical papers vol XXXIX. Society for Information Display, pp 345–347. Long Beach, CA

    Google Scholar 

  • Shimobaba T, Hishinuma S, Ito T (2002) Special-purpose computer for holography HORN-4 with recurrence algorithm. Comput Phys Commun 148:160–170

    Article  Google Scholar 

  • Shimobaba T, Masuda N, Ito T (2009) Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt Lett 34:3133–3135

    Article  Google Scholar 

  • Slinger C, Cameron C, Stanley M (2005a) Computer-generated holography as a generic display technology. Computer 38(8):46–53

    Article  Google Scholar 

  • Slinger C, Cameron C, Stanley M (2005b) Computer-generated holography as a generic display technology. Computer 38(8):46–53

    Article  Google Scholar 

  • St Hilaire P (1995) Scalable optical architecture for electronic holography. Opt Eng 34(10):2900–2911

    Article  Google Scholar 

  • St Hilaire P, Benton SA, Lucente M (1992a) Synthetic aperture holography: a novel approach to three dimensional displays. J Opt Soc Am A 9(11):1969–1977

    Article  Google Scholar 

  • St Hilaire P, Benton SA, Lucente M, Hubel PM (1992b) Color images with the MIT holographic video display. In: Benton SA (ed) SPIE proceedings, vol 1667. Practical holography VI. SPIE, Bellingham, pp 73–84

    Google Scholar 

  • Takano K, Sato K (2007) Full-color electroholographic three-dimensional display system employing light emitting diodes in virtual image reconstruction. Opt Eng 46:095801

    Article  Google Scholar 

  • Watlington JA, Lucente M, Sparrell CJ, Bove VM Jr, Tamitani I (1995) A hardware architecture for rapid generation of electro-holographic fringe patterns. In: Benton SA (ed) Practical holography IX, proceedings of the SPIE, Bellingham, vol 2406, paper 2406–23. SPIE, pp 172–183

    Google Scholar 

  • Yamaguchi T, Okabe G, Yoshikawa H (2007a) Full-color image-plane holographic video display. In: Proceedings of SPIE, vol 6488. SPIE, Bellingham, p 64880Q

    Google Scholar 

  • Yamaguchi T, Okabe G, Yoshikawa H (2007b) Real-time image plane full-color and full-parallax holographic video display system. Opt Eng 46:125801

    Article  Google Scholar 

  • Yoshikawa H (2006) Chapter 8: Computer-generated holograms for white light reconstruction. In: Ting-Chung P (ed) Digital holography and three-dimensional display: principles and applications. Springer, New York, pp 235–255

    Chapter  Google Scholar 

  • Yoshikawa H, Tamai J (1996) Holographic image compression by motion picture coding. In: Benton SA (ed) Practical holography X, proceedings of SPIE. SPIE, Bellingham, pp 2–9

    Chapter  Google Scholar 

  • Zebra Imaging Press Release (2010) Zebra Imaging awarded phase II SBIR contract for holographic display by the US air force research laboratory. http://www.zebraimaging.com/news-and-events/news/zebra-imaging-awarded-phase-ii-sbir-contract-for-holographic-display-by-the-us; http://www.zebraimaging.com/products/motion-displays

Download references

Acknowledgments

The author would like to acknowledge the support of the following: the Department of Defense of the United States of America, and in particular the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL); Zebra Imaging, Inc.; the late Professor Stephen A. Benton of the Massachusetts Institute of Technology, and our former colleagues who helped make early holovideo possible, including Michael Halle, Mary Lou Jepsen, Nicholas Negroponte, Wendy J. Plesniak, Pierre St. Hilaire, John D. Sutter, John Underkoffler, and Hiroshi Yoshikawa. The author would also like to acknowledge contributions from the team at Zebra Imaging who helped to create the UPSD prototype display systems: Alex Nankervis, Alton Hill, Amos Smith, Amy Lessner, Angelo Fancello, Anthony Heath, Craig Newswanger, Dan Siegel, Dustin Henry, Eric Huang, Gary McElroy, James Roberts, Keith Gardner, Kendall James, Matt Fowler, Meagan Noble, Michael Weiblen, Oliver Greaves, Sean O’Connell, Rick Tolar, Rudy Guerrero, Thomas Burnett, Tizhi Huang, and Wesley Holler.

The RealityEngine2 graphics framebuffer system was manufactured by Silicon Graphics, Inc., Mountain View, CA. It is the forerunner of video cards and graphics cards, such as the GPU-based technologies from Nvidia Corp., AMD Corp. (and its ATI technology), and Intel Corp.

Some portions of this chapter are based on a previous publication by the author in SIGGRAPH’s “Current, New, and Emerging Display Systems,” Computer Graphics (a publication of ACM SIGGRAPH) volume 31, number 2, pp. 63–67, 1997 May.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Lucente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lucente, M.E. (2015). Electronic Holographic Displays: 20 Years of Interactive Spatial Imaging. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_119-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_119-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics