Skip to main content

Atomic Force Microscopy (AFM) for Topography and Recognition Imaging at Single-Molecule Level

  • Living reference work entry
  • First Online:
  • 264 Accesses

Synonyms

Simultaneous topography and recognition imaging (TREC); Single-molecule methods

Definition

High-resolution atomic force microscopy (AFM) topography has become a powerful bioanalytical tool when utilized for single-molecule force spectroscopy or simultaneous “topography and recognition imaging” (TREC). These modes allow for mapping of specific ligand-binding sites on biological samples under physiological conditions with nanometer resolution.

Introduction

Atomic force microcopy (AFM) is a version of scanning probe microscopy (SPM) that is extensively used in life sciences because it can be operated in physiological salt solution. In AFM imaging, a sharp probe tip mounted on a microcantilever scans over the specimen line by line, whereby the topographic image of the sample surface is generated by “feeling” rather than “looking.” Tips with high sharpness provide high resolution, and cantilevers with low spring constants allow precise control of the forces between tip and sample....

This is a preview of subscription content, log in via an institution.

References

  • Beaussart A, Baker AE, Kuchma SL, El-Kirat-Chatel S, O’Toole GA, Dufrene YF (2014) Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pPili. ACS Nano 8:10723–10733

    Article  CAS  Google Scholar 

  • Bhushan B, Marti O (2010) Scanning probe microscopy-principle of operation, instrumentation, and probes. In: Bhushan B (ed) Handbook of nanotechnology, 3rd edn. Springer, Heidelberg, pp 573–617

    Chapter  Google Scholar 

  • Dufrêne YF (2015) Sticky microbes: forces in microbial cell adhesion. Trends Microbiol 23:376–382

    Article  Google Scholar 

  • Duman M, Chtcheglova LA, Zhu R, Bozna BL, Polzella P, Cerundolo V, Hinterdorfer P (2013) Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging. J Mol Recognit 26:408–414

    Article  CAS  Google Scholar 

  • Ebner A, Wildling L, Kamruzzahan ASM, Rankl C, Wruss J, Hahn CD, Hölzl M, Zhu R, Kienberger F, Blaas D, Hinterdorfer P, Gruber HJ (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chemistry 18: 1176–1184

    Article  CAS  Google Scholar 

  • Ebner A, Wildling L, Zhu R, Rankl C, Haselgrubler T, Hinterdorfer P, Gruber HJ (2008) Functionalization of probe tips and supports for single-molecule recognition force microscopy. Top Curr Chem 285:29–76

    Article  CAS  Google Scholar 

  • Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  CAS  Google Scholar 

  • Francis LW, Lewis PD, Wright CJ, Conlan RS (2009) Atomic force microscopy comes of age. Biol Cell 102:133–143

    PubMed  Google Scholar 

  • Han W, Lindsay SM, Jing TW (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett 69:4111–4113

    Article  CAS  Google Scholar 

  • Han W, Lindsay SM, Dlakic M, Harrington RE (1997) Kinked DNA. Nature 386:563

    Article  CAS  Google Scholar 

  • Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Meth 3:347–355

    Article  CAS  Google Scholar 

  • Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci 93:3477–3481

    Article  CAS  Google Scholar 

  • Horber JK, Miles MJ (2003) Scanning probe evolution in biology. Science 302:1002–1005

    Article  CAS  Google Scholar 

  • Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773

    Article  CAS  Google Scholar 

  • Leitner M, Stock LG, Traxler L, Leclercq L, Bonazza K, Friedbacher G, Cottet H, Stutz H, Ebner A (2016) Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging. Anal Chim Acta 930:39–48

    Article  CAS  Google Scholar 

  • Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A (2017) Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem 409:2767–2776

    Article  CAS  Google Scholar 

  • Lewis WG, Magallon FG, Fokin VV, Finn M (2004) Discovery and characterization of catalysts for azide− alkyne cycloaddition by fluorescence quenching. J Am Chem Soc 126:9152–9153

    Article  CAS  Google Scholar 

  • Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998

    Article  CAS  Google Scholar 

  • Oh YJ, Brenner MH, Gruber HJ, Cui Y, Traxler L, Siligan C, Park S, Hinterdorfer P (2016) Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci Rep 6:33909

    Article  CAS  Google Scholar 

  • Putman CAJ, Van der Werf KO, De Grooth BG, Van Hulst NF, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl Phys Lett 64:2454–2456

    Article  CAS  Google Scholar 

  • Raab A, Han W, Badt D, Smith-Gill SJ, Lindsay SM, Schindler H, Hinterdorfer P (1999) Antibody recognition imaging by force microscopy. Nat Biotechnol 17:901–905

    Article  CAS  Google Scholar 

  • Stroh CM, Ebner A, Geretschlager M, Freudenthaler G, Kienberger F, Kamruzzahan AS, Smith-Gill SJ, Gruber HJ, Hinterdorfer P (2004a) Simultaneous topography and recognition imaging using force microscopy. Biophys J 87:1981–1990

    Article  CAS  Google Scholar 

  • Stroh CM, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P (2004b) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci U S A 101:12503–12507

    Article  CAS  Google Scholar 

  • You HX, Lau JM, Zhang S, Yu L (2000) Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 82:297–305

    Article  CAS  Google Scholar 

  • Zhu R, Sinwel D, Hasenhuetl PS, Saha K, Kumar V, Zhang P, Rankl C, Holy M, Sucic S, Kudlacek O, Karner A, Sandtner W, Stockner T, Gruber HJ, Freissmuth M, Newman AH, Sitte HH, Hinterdorfer P (2016) Nanopharmacological force sensing to reveal allosteric coupling in transporter binding sites. Angew Chem 55:1719–1722

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hinterdorfer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Duman, M., Oh, Y.J., Zhu, R., Leitner, M., Ebner, A., Hinterdorfer, P. (2018). Atomic Force Microscopy (AFM) for Topography and Recognition Imaging at Single-Molecule Level. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_496-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_496-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics