Skip to main content

Anti-Brownian Traps

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armani MD, Chaudhary SV, Probst R et al (2006) Using feedback control of microflows to independently steer multiple particles. J MEMS 15:945–956

    Article  Google Scholar 

  • Banterle N, Lemke EA (2016) Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol 39:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berglund AJ, Mabuchi H (2004) Feedback controller design for tracking a single fluorescent molecule. Appl Phys B Lasers Opt 78:653–659

    Article  CAS  Google Scholar 

  • Berglund AJ, Mabuchi H (2005) Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt Express 13:8069–8082

    Article  PubMed  Google Scholar 

  • Berglund AJ, McHale K, Mabuchi H (2007) Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit. Opt Lett 32:145–147

    Article  PubMed  Google Scholar 

  • Bockenhauer S, Moerner WE (2013) Photo-induced conformational flexibility in single solution-phase peridinin-chlorophyll-proteins. J Phys Chem A 117:8399–8406

    Article  CAS  PubMed  Google Scholar 

  • Bockenhauer S, Fuerstenberg A, Yao JY et al (2011) Conformational dynamics of single G protein-coupled receptors in solution. J Phys Chem B 115:13328–13338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun M, Cichos F (2013) Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7(12):11200–11208

    Article  CAS  PubMed  Google Scholar 

  • Cang H, Wong CM, Xu CS et al (2006) Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts. Appl Phys Lett 88:223901

    Article  Google Scholar 

  • Cang H, Xu CS, Montiel D et al (2007) Guiding a confocal microscope by single fluorescent nanoparticles. Opt Lett 32:2729–2731

    Article  PubMed  Google Scholar 

  • Cang H, Montiel D, Xu CS et al (2008) Observation of spectral anisotropy of gold nanoparticles. J Chem Phys 129:044503–1–044503–5

    Article  Google Scholar 

  • Cohen AE, Moerner WE (2005) Method for trapping and manipulating nanoscale objects in solution. Appl Phys Lett 86:093109

    Article  Google Scholar 

  • Cohen AE, Moerner WE (2007) Principal-components analysis of shape fluctuations of single DNA molecules. Proc Natl Acad Sci U S A 104(31):12622–12627. https://doi.org/10.1073/pnas.0610396104ER

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AE, Moerner WE (2008) Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. Opt Express 16:6941–6956

    Article  CAS  PubMed  Google Scholar 

  • Enderlein J (2000) Tracking of fluorescent molecules diffusing within membranes. Appl Phys B Lasers Opt 71:773–777

    Article  CAS  Google Scholar 

  • Fields AP, Cohen AE (2010) Anti-Brownian traps for studies on single molecules. Methods Enzymol 475:149–174. https://doi.org/10.1016/s0076-6879(10)75007-2

    Article  CAS  PubMed  Google Scholar 

  • Fields AP, Cohen AE (2011) Electrokinetic trapping at the one nanometer limit. Proc Natl Acad Sci U S A 108:8937–8942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields AP, Cohen AE (2012) Optimal tracking of a Brownian particle. Opt Express 20:22589–22601

    Article  Google Scholar 

  • Goldsmith RH, Moerner WE (2010) Watching conformational- and photodynamics of single fluorescent proteins in solution. Nat Chem 2(3):179–186. https://doi.org/10.1038/NCHEM.545ER

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith RH, Tabares LC, Kostrz D et al (2011) Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc Natl Acad Sci U S A 108:17269–17274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Douglas NR, Conley NR et al (2011) Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution. Proc Natl Acad Sci U S A 108:16962–16967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun Y, Bechhoefer J (2012) Virtual potentials for feedback traps. Phys Rev E 86(6):061106

    Article  Google Scholar 

  • Jun Y, Gavrilov M, Bechhoefer J (2014) High-precision test of Landauer’s principle in a feedback trap. Phys Rev Lett 113:190601

    Article  PubMed  Google Scholar 

  • Kayci M, Chang H, Radenovic A (2014) Electron spin resonance of nitrogen-vacancy defects embedded in single nanodiamonds in an ABEL trap. Nano Lett 14(9):5335–5341

    Article  CAS  PubMed  Google Scholar 

  • King JK, Canfield BK, Davis LM (2013) Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution. Appl Phys Lett 103(4):043102. https://doi.org/10.1063/1.4816325.

    Article  Google Scholar 

  • Lessard GA, Goodwin PM, Werner JH (2007) Three-dimensional tracking of individual quantum dots. Appl Phys Lett 91(22):224106–224103

    Article  Google Scholar 

  • Levi V, Ruan QQ, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88(4):2919–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PJ, Sims PA, Oki H et al (2007) Target-locking acquisition with real-time confocal (TARC) microscopy. Opt Express 15(14):8702–8712

    Article  PubMed  Google Scholar 

  • Ropp C, Probst R, Cummins Z et al (2010) Manipulating quantum dots to nanometer precision by control of flow. Nano Lett 10(7):2525–2530

    Article  CAS  PubMed  Google Scholar 

  • Schlau-Cohen GS, Wang Q, Southall J et al (2013) Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states. Proc Natl Acad Sci U S A 110:10899–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlau-Cohen GS, Bockenhauer S, Wang Q et al (2014) Single-molecule spectroscopy of photosynthetic proteins in solution: exploration of structure–function relationships. Chem Sci 5:2933–2939

    Article  CAS  Google Scholar 

  • Schlau-Cohen G, Yang H, Krueger TPJ et al (2015) Single-molecule identification of quenched and unquenched states of LHCII. J Phys Chem Lett 6(5):860–867. https://doi.org/10.1021/acs.jpclett.5b00034

    Article  CAS  PubMed  Google Scholar 

  • Squires AH, Moerner WE (2017) Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc Natl Acad Sci U S A 114(37):9779–9784. https://doi.org/10.1073/pnas.1705435114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanyeri M, Ranka M, Sittipolkul N et al (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Moerner WE (2010) Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl Phys B Lasers Opt 99:23–30

    Article  CAS  Google Scholar 

  • Wang Q, Moerner WE (2012) Lifetime and spectrally resolved characterization of the photodynamics of single fluorophores in solution using the anti-Brownian electrokinetic trap. J Phys Chem B 117:4641–4648

    Article  PubMed  Google Scholar 

  • Wang Q, Moerner WE (2014) Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat Methods 11:555–558

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Moerner WE (2015) Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. Proc Natl Acad Sci U S A 112:13880–13885. https://doi.org/10.1073/pnas.1514027112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Goldsmith RH, Jiang Y et al (2012) Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 45:1955–1964. https://doi.org/10.1021/ar200304t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells NP, Lessard GA, Goodwin PM et al (2010) Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10(11):4732–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsher K, Yang H (2014) Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat Nanotechnol 9(3):198–203

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Moerner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Squires, A.H., Cohen, A.E., Moerner, W.E. (2018). Anti-Brownian Traps. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_486-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_486-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics