Skip to main content

Nucleobase-Ascorbate-Transporter (NAT) Family

Book cover Encyclopedia of Biophysics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Byrne B (2016a) Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nat Com 7:11336

    Article  CAS  Google Scholar 

  • Alguel Y, Cameron AD, Diallinas G, Byrne B (2016b) Transporter oligomerization: form and function. Biochem Soc Trans 44:1737–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Asp Med 34:494–515

    Article  CAS  Google Scholar 

  • Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Iwata S (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350:680–684

    Article  CAS  PubMed  Google Scholar 

  • Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Hediger MA (2013) The sodium-dependent ascorbic acid transporter family SLC23. Mol Asp Med 34:436–454

    Article  CAS  Google Scholar 

  • Byrne B (2017) It takes two to transport via an elevator. Cell Res 27:965–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus aspergillus. Gen Biol 14:28

    Article  CAS  Google Scholar 

  • Diallinas G (2014) Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol 5:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diallinas G (2016) Dissection of transporter function: from genetics to structure. Trends Genet 32:576–590

    Article  CAS  PubMed  Google Scholar 

  • Diallinas G, Gournas C (2008) Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems. Channels 2:363–372

    Article  PubMed  Google Scholar 

  • Evangelinos M, Martzoukou O, Chorozian K, Amillis S, Diallinas G (2016) BsdABsd2-dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: prominent role of selective autophagy. Mol Microbiol 100:893–911

    Article  CAS  PubMed  Google Scholar 

  • Frillingos S (2012) Insights to the evolution of nucleobase-ascorbate transporters (NAT/NCS2) from the Cys-scanning analysis of xanthine permease XanQ. Int J Biochem Mol Biol 3:250–272

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geertsma ER, Chang Y-N, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808

    Article  CAS  PubMed  Google Scholar 

  • Gournas C, Papageorgiou I, Diallinas G (2008) The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol BioSyst 4:404–416

    Article  CAS  PubMed  Google Scholar 

  • Gournas C, Amillis S, Vlanti A, Diallinas G (2010) Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Mol Microbiol 75:246–260

    Article  CAS  PubMed  Google Scholar 

  • Karachaliou M, Amillis S, Evangelinos M, Kokotos AC, Yalelis V, Diallinas G (2013) The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals. Mol Microbiol 88:301–317

    Article  CAS  PubMed  Google Scholar 

  • Krypotou E, Lambrinidis G, Evangelidis T, Mikros E, Diallinas G (2014) Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA. Mol Microbiol 93:129–145

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Yan N (2011) Structure and mechanism of the uracil transporter UraA. Nature 472:243–246

    Article  CAS  PubMed  Google Scholar 

  • Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T (2014) Biochemical characterization and structure-function relationship of two plant NCS2 proteins, the nucleobase transporters NAT3 and NAT12 from Arabidopsis thaliana. Biochim Biophys Acta Biomembr 1838:3025–3035

    Article  CAS  Google Scholar 

  • Pantazopoulou A, Diallinas G (2007) Fungal nucleobase transporters. FEMS Microbiol Rev 31:657–675

    Article  CAS  PubMed  Google Scholar 

  • Papakostas K, Botou M, Frillingos S (2013) Functional identification of the hypoxanthine/guanine transporters YjcD and YgfQ and the adenine transporters PurP and YicO of Escherichia coli K-12. J Biol Chem 288:36827–36840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S (2016) Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta Biomembr 1858:1507–1532

    Article  CAS  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186

    Article  CAS  PubMed  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucl Acids Res 37:D274–D278

    Article  CAS  PubMed  Google Scholar 

  • Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH (2014) Expansion of the APC superfamily of secondary carriers. Proteins Struct Funct Bioinf 82(10):2797–2811

    Article  CAS  Google Scholar 

  • Yamamoto S, Inoue K, Murata T, Kamigaso S, Yasujima T, Maeda JY, Yuasa H (2010) Identification and functional characterization of the first nucleobase transporter in mammals: implication in the species difference in the intestinal absorption mechanism of nucleobases and their analogs between higher primates and other mammals. J Biol Chem 285:6522–6531

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, Yan N (2017) Dimeric structure of the uracil: proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res 27:1020–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Diallinas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies’ Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kourkoulou, A., Scazzocchio, C., Frillingos, S., Mikros, E., Byrne, B., Diallinas, G. (2018). Nucleobase-Ascorbate-Transporter (NAT) Family. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_10090-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_10090-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nucleobase-Ascorbate-Transporter (NAT) Family
    Published:
    22 June 2018

    DOI: https://doi.org/10.1007/978-3-642-35943-9_10090-2

  2. Original

    Nucleobase-Ascorbate-Transporter (NAT) Family
    Published:
    20 April 2018

    DOI: https://doi.org/10.1007/978-3-642-35943-9_10090-1