Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Antibody Modeling, Engineering, and Design

  • Sharon Fischman
  • Yanay OfranEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_10083-1


Antibodies, which are primary components of adaptive immunity, are responsible for the body’s recognition of foreign material and subsequent elicitation of immune response to clear these substances. The specific determinant on the antigen that is recognized and bound by the antibody is called the epitope. The region of the antibody that binds the epitope is called the paratope. The immune system can generate a specific binder for virtually any molecular structure by reshuffling and mutating a set of genes that encodes fragments of the antibody. These genes are known as V, D, and J. Over the last few decades, antibodies have become a major reagent in biotechnology and biomedical research and the fastest growing type of therapeutics (Carter and Lazar 2017; Ecker et al. 2015). The fact that antibodies can bind almost any structure is related to the nature of the antibody three-dimensional structure. While there are several classes, also known as isotypes, of antibodies in...
This is a preview of subscription content, log in to check access.


  1. Almagro JC, Teplyakov A, Luo J, Sweet RW, Kodangattil S, Hernandez-Guzman F, Gilliland GL (2014) Second antibody modeling assessment (AMA-II). Proteins 82(8):1553–1562CrossRefPubMedGoogle Scholar
  2. Baran D, Pszolla MG, Lapidoth GD, Norn C, Dym O, Unger T, Albeck S, Tyka MD, Fleishman SJ (2017) Principles for computational design of binding antibodies. Proc Natl Acad Sci USA 114(41): 10900–10905CrossRefPubMedGoogle Scholar
  3. Bujotzek A, Dunbar J, Lipsmeier F, Schäfer W, Antes I, Deane CM, Georges G (2015) Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 83(4):681–695CrossRefPubMedGoogle Scholar
  4. Burkovitz A, Sela-Culang I, Ofran Y (2014) Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity. FEBS J 281(1):306–319CrossRefPubMedGoogle Scholar
  5. Carter PJ, Lazar GA (2017) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17:197CrossRefPubMedGoogle Scholar
  6. Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H (2006) Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 15(5):949–960CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dunbar J, Fuchs A, Shi J, Deane CM (2013) ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 26(10):611–620CrossRefPubMedGoogle Scholar
  8. Dunbrack RL (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16(3): 374–384CrossRefPubMedGoogle Scholar
  9. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14CrossRefPubMedGoogle Scholar
  10. Entzminger KC, Hyun JM, Pantazes RJ, Patterson-Orazem AC, Qerqez AN, Frye ZP, Hughes RA, Ellington AD, Lieberman RL, Maranas CD, Maynard JA (2017) De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide. Sci Rep 7(1):10295CrossRefPubMedPubMedCentralGoogle Scholar
  11. Farady CJ, Sellers BD, Jacobson MP, Craik CS (2009) Improving the species cross-reactivity of an antibody using computational design. Bioorg Med Chem Lett 19(14):3744–3747CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17(4):467–473CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gao J, Kurgan L (2014) Computational prediction of B cell epitopes from antigen sequences. Methods Mol Biol 1184:197–215CrossRefPubMedGoogle Scholar
  14. Glanville J, D’Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury AR (2015) Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 33:146–160CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goldsmith-Fischman S, Honig B (2003) Structural genomics: computational methods for structure analysis. Protein Sci 12(9):1813–1821CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gromiha MM, Yugandhar K, Jemimah S (2017) Protein-protein interactions: scoring schemes and binding affinity. Curr Opin Struct Biol 44:31–38CrossRefPubMedGoogle Scholar
  17. Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C (2017) Computationally-driven identification of antibody epitopes. elife 6:e29023CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kilambi KP, Gray JJ (2017) Structure-based cross-docking analysis of antibody-antigen interactions. Sci Rep 7(1):8145CrossRefPubMedPubMedCentralGoogle Scholar
  19. Koenig P, Lee CV, Walters BT, Janakiraman V, Stinson J, Patapoff TW, Fuh G (2017a) Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding. Proc Natl Acad Sci USA 114(4):E486–E495CrossRefPubMedGoogle Scholar
  20. Koenig P, Sanowar S, Lee CV, Fuh G (2017b) Tuning the specificity of a Two-in-One Fab against three angiogenic antigens by fully utilizing the information of deep mutational scanning. MAbs 9(6):959–967CrossRefPubMedPubMedCentralGoogle Scholar
  21. Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, Schröter C, Sellmann C, Hock B, Kolmar H (2017) Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 45:10–16CrossRefPubMedGoogle Scholar
  22. Krawczyk K, Baker T, Shi J, Deane CM (2013) Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel 26(10):621–629CrossRefPubMedGoogle Scholar
  23. Krawczyk K, Liu X, Baker T, Shi J, Deane CM (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30(16):2288–2294CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26:599CrossRefPubMedGoogle Scholar
  25. Lapidoth GD, Baran D, Pszolla GM, Norn C, Alon A, Tyka MD, Fleishman SJ (2015) AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83(8):1385–1406CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leem J, Dunbar J, Georges G, Shi J, Deane CM (2016) ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8(7):1259–1268CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lensink MF, Velankar S, Wodak SJ (2016) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359CrossRefPubMedGoogle Scholar
  28. Li T, Pantazes RJ, Maranas CD (2014) OptMAVEn – a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. PLoS One 9(8):e105954CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lindl T (1996) Development of human monoclonal antibodies: a review. Cytotechnology 21(3):183–193CrossRefPubMedGoogle Scholar
  30. Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25(10):1171–1176CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu JK (2014) The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg (Lond) 3(4): 113–116CrossRefGoogle Scholar
  32. Liu X, Taylor RD, Griffin L, Coker SF, Adams R, Ceska T, Shi J, Lawson AD, Baker T (2017) Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping. Sci Rep 7:41306CrossRefPubMedPubMedCentralGoogle Scholar
  33. Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24(17):1953–1954CrossRefPubMedGoogle Scholar
  34. Marks C, Deane CM (2017) Antibody H3 structure prediction. Comput Struct Biotechnol J 15:222–231CrossRefPubMedPubMedCentralGoogle Scholar
  35. Marze NA, Lyskov S, Gray JJ (2016) Improved prediction of antibody VL-VH orientation. Protein Eng Des Sel 29(10):409–418CrossRefPubMedPubMedCentralGoogle Scholar
  36. Norn CH, Lapidoth G, Fleishman SJ (2017) High-accuracy modeling of antibody structures by a search for minimum-energy recombination of backbone fragments. Proteins 85(1):30–38CrossRefPubMedGoogle Scholar
  37. North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256CrossRefPubMedGoogle Scholar
  38. Ofran Y, Schlessinger A, Rost B (2008) Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes. J Immunol 181(9):6230–6235CrossRefPubMedGoogle Scholar
  39. Pantazes RJ, Maranas CD (2010) OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng Des Sel 23(11):849–858CrossRefPubMedGoogle Scholar
  40. Poosarla VG, Li T, Goh BC, Schulten K, Wood TK, Maranas CD (2017) Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnol Bioeng 114(6):1331–1342CrossRefPubMedPubMedCentralGoogle Scholar
  41. Regep C, Georges G, Shi J, Popovic B, Deane CM (2017) The H3 loop of antibodies shows unique structural characteristics. Proteins 85(7):1311–1318CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sela-Culang I, Alon S, Ofran Y (2012) A systematic comparison of free and bound antibodies reveals binding-related conformational changes. J Immunol 189(10):4890–4899CrossRefPubMedGoogle Scholar
  43. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sela-Culang I, Benhnia MR, Matho MH, Kaever T, Maybeno M, Schlossman A, Nimrod G, Li S, Xiang Y, Zajonc D, Crotty S, Ofran Y, Peters B (2014) Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure 22(4):646–657CrossRefPubMedGoogle Scholar
  45. Sela-Culang I, Ashkenazi S, Peters B, Ofran Y (2015) PEASE: predicting B-cell epitopes utilizing antibody sequence. Bioinformatics 31(8):1313–1315CrossRefPubMedGoogle Scholar
  46. Sheehan J, Marasco WA (2015) Phage and yeast display. Microbiol Spectr 3(1):AID-0028-2014CrossRefPubMedGoogle Scholar
  47. Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37(Web Server):W474–W479CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sirin S, Apgar JR, Bennett EM, Keating AE (2016) AB-bind: antibody binding mutational database for computational affinity predictions. Protein Sci 25(2):393–409CrossRefPubMedGoogle Scholar
  49. Weitzner BD, Kuroda D, Marze N, Xu J, Gray JJ (2014) Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 82(8):1611–1623CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wrenbeck EE, Faber MS, Whitehead TA (2017) Deep sequencing methods for protein engineering and design. Curr Opin Struct Biol 45:36–44CrossRefPubMedGoogle Scholar
  51. Yang D, Kroe-Barrett R, Singh S, Roberts CJ, Laue TM (2017) IgG cooperativity – is there allostery? Implications for antibody functions and therapeutic antibody development. MAbs 9(8):1231–1252CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang Q, Feng T, Xu L, Sun H, Pan P, Li Y, Li D, Hou T (2016) Recent advances in protein-protein docking. Curr Drug Targets 17(14):1586–1594CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2018

Authors and Affiliations

  1. 1.Biolojic Design, Ltd.Givat ShmuelIsrael
  2. 2.The Goodman Faculty of Life SciencesBar Ilan UniversityRamat GanIsrael

Section editors and affiliations

  • Franca Fraternali

There are no affiliations available