Skip to main content

Organic Acid and Solvent Production: Butanol, Acetone, and Isopropanol; 1,3- and 1,2-Propanediol Production; and 2,3-Butanediol Production

  • Reference work entry
The Prokaryotes

Abstract

The versatility of bacteria in the production of commercially useful chemicals is well represented by the fermentations that produce butanol, acetone, isopropanol, 1,3- and 1,2-propanediol, and 2,3-butanediol. Most of these chemicals can be synthesized from petroleum-derived feedstock chemicals. The merit of industrial applications of these fermentations ultimately depends on the economics of the bioprocesses or the need for a chiral product, which is more easily achieved through a bioprocess. Butanol, acetone, and isopropanol were traditionally used as solvents, and the industrial fermentation producing these chemicals was thus known as the solvent fermentation. Solvent fermentation is performed by several species of Clostridia, and it was the first industrial fermentation utilizing pure cultures and aseptic techniques. Its large scale was also unprecedented. Butanol has desirable properties as an automobile fuel, and this potential use has received much attention. Current efforts in improving butanol fermentation for industrial uses focus on the development of less expensive raw materials, a higher final product concentration, and bacterial strains that are more amenable to genetic manipulations. Whereas 1,2-propanediol is produced in large quantities by a chemical process, 1,3-propanediol has been more difficult to produce via chemical synthesis. Because of the usefulness of 1,3-propanediol as a monomer for the production of polyester for fiber applications, industrial interest in bioproduction of this monomer remains high. 2,3-Butanediol is produced by a number of bacteria, and it is a commercial chemical intermediate. Perhaps the greatest potential for 2,3-butanediol lies in high-value, special-product uses, which may make a fermentation route competitive.

āˆ—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbad-Andaloussi S, Manginot-Durr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413ā€“4417

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Abbad-Andaloussi S, Durr C, Raval G, Petitdemange H (1996) Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and glucose. Microbiology 142:1149ā€“1158

    CASĀ  Google ScholarĀ 

  • Adler HI, Crow W (1987) A technique for predicting the solvent-producing ability of Clostridium acetobutylicum. Appl Environ Microbiol 53:2496ā€“2499

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Afschar AS, Bellgardt KH, Vaz Rossell CE, Czok A, Schaller K (1991) The production of 2,3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol 34:582ā€“585

    CASĀ  Google ScholarĀ 

  • Afschar AS, Vas Rossell CE, Jonas R, Quesada Chanto A, Schaller K (1993) Microbial production and downstream processing of 2,3-butanediol. J Biotechnol 27:317ā€“329

    CASĀ  Google ScholarĀ 

  • Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. III: enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioengin 59:544ā€“552

    CASĀ  Google ScholarĀ 

  • Alam S, Capit F, Weigand WA, Hong J (1990) Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: effect of initial substrate concentration and aeration. J Chem Tech Biotechnol 47:71ā€“84

    CASĀ  Google ScholarĀ 

  • Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 41:539ā€“541

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Allcock ER, Reid SJ, Jones DT, Woods DR (1981) Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol 42:929ā€“935

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180ā€“1185

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Altaras NE, Cameron DC (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16:940ā€“946

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Altaras NE, Etzel MR, Cameron DC (2001) Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 17:52ā€“56

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Annous B, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 57:2544ā€“2548

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Anonymous (1956) Trends of world solvents production for the past ten years and the management of the Chiai (Taiwan) Solvents Works (in Chinese). Petroleum Communications China Petroleum Corporation Taiwan China June, Issue 60, pp 42ā€“57

    Google ScholarĀ 

  • Anonymous (1958) New direction of development for the Chiai (Taiwan) solvents works (in Chinese) Petroleum Communications China Petroleum Corporation, Taiwan China May, Issue 83, pp 6ā€“7

    Google ScholarĀ 

  • Anonymous (1996a) Chemical profile: propylene glycol. Chem Mark Rep 249:37

    Google ScholarĀ 

  • Anonymous (1996b) Facts and figures for the chemical industry: production by the US chemical industry. Chem Eng News June 24, 41

    Google ScholarĀ 

  • Anonymous (1997) Facts and figures for the chemical industry ā€“ production: mixed in 1996. Chem Eng News June 23, 41

    Google ScholarĀ 

  • Anonymous (1999a) Shell Chemicals Research Team wins ACS 2000 award for innovation. Chem Mark Rep 256

    Google ScholarĀ 

  • Anonymous (1999b) All-microbial route yields chiral building blocks. Chem Eng News 77(8):57

    Google ScholarĀ 

  • Anonymous (2001a) Chemical prices. Chem Mark Rep 259:8ā€“21

    Google ScholarĀ 

  • Anonymous (2001b) Chemical profile: isopropanol. Chem Mark Rep, November 12, 31

    Google ScholarĀ 

  • Arzberger CF, Peterson WH, Fred EB (1920) Certain factors that influence acetone production by Bacillus acetoethylicum. J Biol Chem 44:465ā€“479

    CASĀ  Google ScholarĀ 

  • Azeddoug H, Hubert J, Reysset G (1992) Stable inheritance of shuttle vectors based on plasmid pIM13 in a mutant strain of Clostridium acetobutylicum. J Gen Microbiol 138:1371ā€“1378

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Babb BL, Collett HJ, Reid SJ, Woods DR (1993) Transposon mutagenesis of Clostridium acetobutylicum P262: isolation and characterization of solvent deficient and metronidazole resistant mutants. FEMS Microbiol Lett 114:343ā€“348

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bahl H, Andersch WA, Braun K, Gottschalk G (1982a) Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Eur J Appl Microbiol Biotechnol 14:17ā€“20

    CASĀ  Google ScholarĀ 

  • Bahl H, Andersch W, Gottschalk G (1982b) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15:201ā€“205

    CASĀ  Google ScholarĀ 

  • Baldus JM, Green BD, Youngman P, Morgan CP Jr (1994) Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol 176:296ā€“306

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ballongue J, Amine J, Masion E, Petitdemange H, Gay R (1985) Induction of acetoacetate decarboxylase in Clostridium acetobutylicum. FEMS Microbiol Lett 29:273ā€“277

    CASĀ  Google ScholarĀ 

  • Barber JM, Robb FT, Webster JR, Woods DR (1979) Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol 37:433ā€“437

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Camarasa-Claret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism: enterobacter agglomerans. Appl Microbiol Biotechnol 43:786ā€“793

    CASĀ  Google ScholarĀ 

  • Barbirato F, Grivet JP, Soucaille P, Bories A (1996a) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448ā€“1451

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Soucaille P, Bories A (1996b) Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans. Appl Environ Microbiol 62:4405ā€“4409

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Chedaille D, Bories A (1997a) Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 47:441ā€“446

    CASĀ  Google ScholarĀ 

  • Barbirato F, Astruc S, Soucaille P, Camarasa C, Salmon JM, Bories A (1997b) Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations. Microbiology 143:2423ā€“2432

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 7:281ā€“289

    CASĀ  Google ScholarĀ 

  • Bata RM, Elrod AC, Lewandowski TP (1991) Butanol as a blending agent with gasoline for I. C. engines. In: Hurn RW, Marshall WF, Allsup JR (eds) Oxygenates in motor fuel formulation. Society of Automotive Engineers, Warrendale, pp 35ā€“40

    Google ScholarĀ 

  • Beesch SC (1952) Acetone-butanol fermentation of sugars. Ind Engin Chem 44:1677ā€“1682

    CASĀ  Google ScholarĀ 

  • Beesch SC (1953) Acetone-butanol fermentation of starches. Appl Microbiol 1:85ā€“95

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bennett GN, Rudolph FB (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17:241ā€“249

    CASĀ  Google ScholarĀ 

  • Bennett GN, San KY (2001) Microbial formation, biotechnological production and application of 1,2-propanediol. Appl Microbiol Biotechnol 55:1ā€“9

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079ā€“1085

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Beronio PB Jr, Tsao GT (1993) Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol Bioengin 42:1263ā€“1269

    CASĀ  Google ScholarĀ 

  • Bertram J, DĆ¼ P (1989) Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum. Arch Microbiol 151:551ā€“557

    CASĀ  Google ScholarĀ 

  • Bertram J, Kuhn A, DĆ¼ P (1990) Tn916-induced mutants of Clostridium acetobutylicum defective in regulation of solvent formation. Arch Microbiol 153:373ā€“377

    CASĀ  Google ScholarĀ 

  • Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum: measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35:701ā€“705

    CASĀ  Google ScholarĀ 

  • Biebl H, Marten S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15ā€“19

    CASĀ  Google ScholarĀ 

  • Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592ā€“597

    CASĀ  Google ScholarĀ 

  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24ā€“29

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289ā€“297

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Billig E (1992) Butyl alcohols. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 4, 4th edn. Wiley, New York, pp 691ā€“700

    Google ScholarĀ 

  • Birrer GA, Chesbro WR, Zsigray RM (1994) Electro-transformation of Clostridium beijerinckii NRRL B-592 with shuttle plasmid pHR106 and recombinant derivatives. Appl Microbiol Biotechnol 41:32ā€“38

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Blaschek H, Annous B, Formanek J, Chen CK (2002) Method of producing butanol using a mutant strain of Clostridium beijerinckii. US Patent 6358717

    Google ScholarĀ 

  • Blomqvist K, Nikkola M, Lehtovaara P, Suihko M-L, Airaksinen U, Straby KB, Knowles JKC, Penttila ME (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392ā€“1404

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453ā€“457

    CASĀ  Google ScholarĀ 

  • Bolt JA (1980) A Survey of alcohol as a motor fuel. In: Alcohols as motor fuels. Society of Automotive Engineers, Warrendale, pp 21ā€“33

    Google ScholarĀ 

  • Bouvet OMM, Lenormand P, Carlier JP, Grimont PAD (1994) Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res Microbiol 145:129ā€“139

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165ā€“1170

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bowring SN, Morris JG (1985) Mutagenesis of Clostridium acetobutylicum. J Appl Bacteriol 58:577ā€“584

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Boynton ZL, Bennett GN, Rudolph FB (1996a) Cloning, sequencing and expression of clustered genes encoding Ī²-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015ā€“3024

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Boynton ZL, Bennett GN, Rudolph FB (1996b) Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 62:2758ā€“2766

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bryant RS (1990) Microbial enhanced oil recovery and compositions therefor. US Patent 4905761

    Google ScholarĀ 

  • Bryn K, Stormer FC (1976) Decreased riboflavin formation in mutants of Aerobacter (Enterobacter) aerogenes deficient in the butanediol pathway. Biochim Biophys Acta 428:257ā€“259

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bulthuis BA, Gatenby AA, Laynie SL, Hsu AK, Lareau RD (1998) Method for the production of glycerol by recombinant organisms. Patent Cooperation Treaty (PCT) Application WO 98/21340

    Google ScholarĀ 

  • Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(āˆ’)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Biotechnology 4:651ā€“654

    CASĀ  Google ScholarĀ 

  • Cameron DC, Tong IT, Skraly FA (1993) Metabolic engineering for the production of 1,3-propanediol. In: Chianelli RR, Davison BH (eds) ACS symposium on bioremediation and bioprocessing, vol 38. American Chemical Society, Denver CO, pp 294ā€“295

    Google ScholarĀ 

  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:16ā€“125

    Google ScholarĀ 

  • Cameron DC, Shaw AJ, Altaras NE (2000) Microbial production of 1,2-propanediol from sugar. US Patent 6087140

    Google ScholarĀ 

  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium Prazmowski 1880. In: Sneath HA, Mair NS, Sharpe ME, Holt JG (eds) Bergeyā€™s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1141ā€“1200

    Google ScholarĀ 

  • Champluvier B, Decallonne J, Rouxhet PG (1989) Influence of sugar source (lactose, glucose, galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199. Arch Microbiol 152:411ā€“414

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen J-S (1993) Properties of acid-and solvent-forming enzymes of clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 51ā€“76

    Google ScholarĀ 

  • Chen JS (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 17:263ā€“273

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen C-K, Blaschek HP (1999a) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170ā€“173

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen C-K, Blaschek H (1999b) Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration. Appl Environ Microbiol 65:499ā€“505

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen J-S, Hiu SF (1986) Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol Lett 8:371ā€“376

    CASĀ  Google ScholarĀ 

  • Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta 1543:434ā€“455

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Clark SW, Bennett GN, Rudolph FB (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A: acetate/butyrate: coenzyme A-transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl Environ Microbiol 55:970ā€“976

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cocks GT, Aguilar J, Lin ECC (1974) Evolution of L-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism. J Bacteriol 118:83ā€“88

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Colby GD (1993) CoA-transferase and 3-hydroxybutyryl-CoA Dehydrogenases: acetoacetyl-CoA-reacting enzymes from Clostridium beijerinckii NRRL B593. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg VA

    Google ScholarĀ 

  • Colby GD, Chen J-S (1992) Purification and properties of 3-hydroxybutyryl-coenzyme A dehydrogenase from Clostridium beijerinckii (ā€œClostridium butylicumā€) NRRL B593. Appl Environ Microbiol 58:3297ā€“3302

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Colin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54:201ā€“205

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812ā€“826

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Compere AL, Griffith WL (1979) Evaluation of substrates for butanol production. Dev Ind Microbiol 20:509ā€“517

    Google ScholarĀ 

  • Compere AL, Griffith WL, Googin JM (1985) Solvents production by clostridia as a function of wood stream organic toxicant concentration. Dev Ind Microbiol 26:535ā€“541

    CASĀ  Google ScholarĀ 

  • Cornillot E, Soucaille P (1996) Solvent-forming genes in clostridia. Nature 380:489

    CASĀ  Google ScholarĀ 

  • Cornillot E, Croux C, Soucaille P (1997a) Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome. J Bacteriol 179:7426ā€“7434

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cornillot E, Nair RV, Papoutsakis ET, Soucaille P (1997b) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J Bacteriol 179:5442ā€“5447

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Croux C, Garcia JL (1991) Sequence of the lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC 824: comparison with other lytic enzymes. Gene 104:25ā€“31

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Croux C, Garcia JL (1992) Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli. FEMS Microbiol Lett 95:13ā€“20

    CASĀ  Google ScholarĀ 

  • Croux C, Canard B, Goma G, Soucaille P (1992a) Autolysis of Clostridium acetobutylicum ATCC 824. J Gen Microbiol 138:861ā€“869

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Croux C, Canard B, Goma G, Soucaille P (1992b) Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan. Appl Environ Microbiol 58:1075ā€“1081

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cueto PH, Mendez BS (1990) Direct selection of Clostridium acetobutylicum fermentation mutants by a protein suicide method. Appl Environ Microbiol 56:578ā€“580

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cummins C, Johnson JL (1971) Taxonomy of the clostridia: wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia. J Gen Microbiol 67:33ā€“46

    Google ScholarĀ 

  • Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233ā€“1239

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Daniel R, Gottschalk G (1992) Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii dha regulon. FEMS Microbiol Lett 100:281ā€“286

    CASĀ  Google ScholarĀ 

  • Daniel R, Boenigk R, Gottschalk G (1995a) Purification of 1,3-propanediol dehydrogenase from iand cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151ā€“2156

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Daniel R, Stuertz K, Gottschalk G (1995b) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177:4392ā€“4401

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Daniel R, Bobik TA, Gottschalk G (1999) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553ā€“566

    Google ScholarĀ 

  • de Mas C, Jansen NB, Tsao GT (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioengin 31:366ā€“377

    Google ScholarĀ 

  • Deckwer WD (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16:143ā€“149

    CASĀ  Google ScholarĀ 

  • Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobytylicum. Appl Environ Microbiol 65:936ā€“945

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Diaz-Torres M, Dunn-Coleman NS, Chase MW, Trimbur D (2000) Method for the recombinant production of 1,3-propanediol. US Patent 6136576

    Google ScholarĀ 

  • DĆ¼rre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639ā€“648

    Google ScholarĀ 

  • DĆ¼rre P, Bahl H (1996) Microbial production of acetone/butanol/isopropanol. In: Roehr M (ed) Products of primary metabolism, vol 6, 2nd edn. VCH, Weinheim, pp 229ā€“268

    Google ScholarĀ 

  • DĆ¼rre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, StĆ¼rzenhofecker B, Ullmann S, Winzer K, Sauer U (1995) Solventogenic enzymes of Clostridium acetobutylicum, catalytic properties, genetic organization and transcriptional regulation. FEMS Microbiol Rev 17:251ā€“262

    PubMedĀ  Google ScholarĀ 

  • DĆ¼rre P, Bohringer M, Nakotte S, Schaffer S, Thormann K, Zickner B (2002) Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Molec Microbiol Biotechnol 4:295ā€“300

    Google ScholarĀ 

  • Eiteman MA, Miller JH (1995) Effect of succinic acid on 2,3-butanediol production by Klebsiella oxytoca. Biotechnol Lett 17:1057ā€“1062

    CASĀ  Google ScholarĀ 

  • Ennis BM, Maddox IS (1985) Use of Clostridium acetobutylicum P262 for production of solvents from whey permeate. Biotechol Lett 7:601ā€“606

    CASĀ  Google ScholarĀ 

  • Evans VJ, Liyanage H, Ravagnani A, Young M, Kashket ER (1998) Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 64:1780ā€“1785

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fernbach A, Strange EH (1911) Acetone and higher alcohols (amyl, butyl or ethyl alcohols and butyric, propionic or acetic acid) from starches, sugars and other carbohydrates. British Patent 15203ā€“15204

    Google ScholarĀ 

  • Fischer RJ, Helms J, DĆ¼ P (1993) Cloning, sequencing and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175:6959ā€“6969

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fond O, Jansen NB, Tsao GT (1985) A model of acetic acid and 2,3-butanediol inhibition of the growth and metabolism of Klebsiella oxytoca. Biotechnol Lett 7:727ā€“732

    CASĀ  Google ScholarĀ 

  • Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1986a) The acetone butanol fermentation on glucose and xylose. I: regulation and kinetics in batch cultures. Biotechnol Bioengin 28:160ā€“166

    CASĀ  Google ScholarĀ 

  • Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1986b) The acetone butanol fermentation on glucose and xylose. II: regulation and kinetics in fed-batch cultures. Biotechnol Bioengin 28:167ā€“175

    CASĀ  Google ScholarĀ 

  • Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821ā€“830

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413ā€“419

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Forage RG, Lin ECC (1982) Dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591ā€“599

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Frazer FR, McCaskey TA (1991) Effect of components of acid-hydrolyzed hardwood on conversion of D-xylose to 2,3-butanediol by Klebsiella pneumoniae. Enz Microb Technol 13:110ā€“115

    CASĀ  Google ScholarĀ 

  • Freier-Schroeder D, Wiegel J, Gottschalk G (1989) Butanol formation by Clostridium thermosaccharolyticum at neutral pH. Biotechnol Lett 11:831ā€“836

    CASĀ  Google ScholarĀ 

  • Gabriel CL (1928) Butanol fermentation process. Ind Engin Chem 20:1063ā€“1067

    CASĀ  Google ScholarĀ 

  • Gabriel CL, Crawford FM (1930) Development of the butyl-acetonic fermentation industry. Ind Engin Chem 22:1163ā€“1165

    CASĀ  Google ScholarĀ 

  • Gapes JR (2000a) The economics of the acetone-butanol fermentation: theoretical and market considerations. J Molec Microbiol Biotechnol 2:27ā€“32

    CASĀ  Google ScholarĀ 

  • Gapes JR (2000b) The history of the acetone-butanol project in Austria. J Molec Microbiol Biotechnol 2:5ā€“8

    CASĀ  Google ScholarĀ 

  • Gapes JR, Nimcevic D, Friedl A (1996) Long-term continuous cultivation of Clostridium beijerinckii in a two-stage chemostat with on-line solvent removal. Appl Environ Microbiol 62:3210ā€“3219

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Biores Technol 51:103ā€“109

    CASĀ  Google ScholarĀ 

  • George HA, Chen J-S (1983) Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum). Appl Environ Microbiol 46:321ā€“327

    PubMedĀ  CASĀ  Google ScholarĀ 

  • George HA, Johnson JL, Moore WEC, Holdeman LV, Chen J-S (1983) Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45:1160ā€“1163

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gerischer U, DĆ¼ P (1990) Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum. J Bacteriol 172:6907ā€“6918

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ghazvinizadeh H, Turtura GC, Zambonelli C (1972) The fermentation of L-rhamnose by clostridia. Ann Microbiol 22:155ā€“158

    CASĀ  Google ScholarĀ 

  • Gibbs DF (1983) The rise and fall (ā€¦and rise?) of acetone/butanol fermentations. Trends Biotechnol 1:12ā€“15

    CASĀ  Google ScholarĀ 

  • Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: Rle of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433ā€“6438

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11ā€“16

    CASĀ  Google ScholarĀ 

  • Girbal L, Croux C, Vasconcelos I, Soucaille P (1995a) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287ā€“297

    CASĀ  Google ScholarĀ 

  • Girbal L, Vasoncelos I, Saint-Amans S, Soucaille P (1995b) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151ā€“162

    CASĀ  Google ScholarĀ 

  • Godin C, Engasser JM (1990) Two-stage continuous fermentation of Clostridium acetobutylicum: effects of pH and dilution rate. Appl Microbiol Biotechnol 33:269ā€“273

    CASĀ  Google ScholarĀ 

  • Gottwald M, Gottschalk G (1985) The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol 143:42ā€“46

    CASĀ  Google ScholarĀ 

  • Gottwald M, Hippe H, Gottschalk G (1984) Formation of n-butanol from D-glucose by strains of the ā€œClostridium tetanomorphumā€ group. Appl Environ Microbiol 48:573ā€“576

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Goupil-Feuillerat N, Cocaign-Bousquet M, Godon J-J, Ehrlich SD, Renault P (1997) Dual role of a-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179:6285ā€“6293

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 57/58:213ā€“221

    CASĀ  Google ScholarĀ 

  • Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079ā€“2086

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Greenberg K (1999) New PDO technologies create opportunities. Chem Mark Rep 255 4 and 9

    Google ScholarĀ 

  • Grove LH (1982) Process for the production of organic fuel. US Patent 4326032

    Google ScholarĀ 

  • Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol 58:3896ā€“3902

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gunzel B, Yonsel S, Deckwer WD (1991) Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Appl Microbiol Biotechnol 36:289ā€“294

    Google ScholarĀ 

  • Gutierrez NA, Maddox IS (1992) Product inhibition in a nonmotile mutant of Clostridium acetobutylicum. Enz Microbiol Technol 14:101ā€“105

    CASĀ  Google ScholarĀ 

  • Hamilton GA, Westheimer FH (1959) A crystalline decarboxylase without biotin. J Am Chem Soc 8:2277

    Google ScholarĀ 

  • Hancock KR, Rockman E, Young CA, Pearce L, Maddox IS, Scott DB (1991) Expression and nucleotide sequence of the Clostridium acetobutylicum Ī²-galactosidase gene cloned in Escherichia coli. J Bacteriol 173:3084ā€“3095

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Harris J, Mulder R, Kell DB, Walter RP, Morris JG (1986) Solvent production by Clostridium pasteurianum in media of high sugar content. Biotechnol Lett 8:889ā€“892

    CASĀ  Google ScholarĀ 

  • Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioengin 67:1ā€“11

    CASĀ  Google ScholarĀ 

  • Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586ā€“3597

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hartmanis MGN (1987) Butyrate kinase from Clostridium acetobutylicum. J Biol Chem 262:617ā€“621

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hasting JJH (1978) Acetone-butyl alcohol fermentation. In: Rose AH (ed) Primary products of metabolism. Academic, London, pp 31ā€“45

    Google ScholarĀ 

  • Hastings JJH (1971) Development of the fermentation industries in Great Britain. Adv Appl Microbiol 14:1ā€“45

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Haynie SL, Wagner LW (1997) Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 5599689

    Google ScholarĀ 

  • Hermann M, Fayolle F, Marchal R, Podvin L, Sebald M, Vandecasteele J-P (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238ā€“1243

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Heyndrickx M, De Vos P, Vancanneyt M, De Ley J (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212 t2 and 1213 t1 and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34:637ā€“642

    CASĀ  Google ScholarĀ 

  • Himmi EH, Bories A, Barbirato F (1999) Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Biores Technol 67:123ā€“138

    CASĀ  Google ScholarĀ 

  • Hiu SF, Zhu C-X, Yan R-T, Chen J-S (1987) Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl Environ Microbiol 53:697ā€“703

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hoffman J (2001) Butadiene hit hard by sharp drop in derivatives demand. Chem Mark Rep 260:1 and 12

    Google ScholarĀ 

  • Holt RA, Stephens GM, Morris JG (1984) Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH. Appl Environ Microbiol 48:1166ā€“1170

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Holt RA, Cairns AJ, Morris JG (1988) Production of butanol by Clostridium puniceum in batch and continuous culture. Appl Microbiol Biotechnol 27:319ā€“324

    CASĀ  Google ScholarĀ 

  • Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121ā€“126

    CASĀ  Google ScholarĀ 

  • Hong R (1999) The cloning of a putative regulatory gene and the sol region from Clostridium beijerinckii. M.S. thesis Virginia Polytechnic Institute and State University, Blacksburg VA

    Google ScholarĀ 

  • Hongo M, Murata A (1965a) Bacteriophages of Clostridium saccharoperbutylacetonicum. Part I: some characteristics of the twelve phages obtained from the abnormally fermented broths. Agric Biol Chem 29:1135ā€“1139

    Google ScholarĀ 

  • Hongo M, Murata A (1965b) Bacteriophages of Clostridium saccharoperbutylacetonicum. Part II: enumeration of phages by the application of the plaque count technique and some factors influencing the plaque formation. Agric Biol Chem 29:1140ā€“1145

    Google ScholarĀ 

  • Houben MCM (1995) Oxygenated blending components for gasoline-alcohols and ethers. In: Marshall EL, Owen K (eds) Motor gasoline: critical reports on applied chemistry, vol 34, Royal Society of Chemistry. Cambridge, UK, pp 45ā€“71

    Google ScholarĀ 

  • Howard WL (1991) Acetone. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 1, 4th edn. Wiley, New York, pp 176ā€“194

    Google ScholarĀ 

  • Huang K-X, Rudolph FB, Bennett GN (1999) Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol. Appl Environ Microbiol 65:3244ā€“3247

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Huang K-X, Huang S, Rudolph FB, Bennett GN (2000) Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. J Molec Microbiol Biotechnol 2:33ā€“38

    CASĀ  Google ScholarĀ 

  • Husemann M, Papoutsakis ET (1986) Effect of acetoacetate, butyrate, and uncoupling ionophores on growth and product formation of Clostridium acetobutylicum. Biotechnol Lett 8:37ā€“42

    Google ScholarĀ 

  • Husemann MHW, Papoutsakis ET (1988) Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol Bioengin 32:843ā€“852

    CASĀ  Google ScholarĀ 

  • Husemann MHW, Papoutsakis ET (1989) Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Appl Microbiol Biotechnol 30:585ā€“595

    CASĀ  Google ScholarĀ 

  • Inoue Y, Kimura A (1995) Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol 37:177ā€“227

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ismaiel AA, Chen JS (1998) Purification of the aldehyde-alcohol dehydrogenase encoded by the aad gene from Clostridium acetobutylicum ATCC 824. In: Abstracts of the 98th general meeting of the American Society of Microbiology American Society for Microbiology, Washington, DC, pp O-40 400

    Google ScholarĀ 

  • Ismaiel AA, Zhu C-X, Colby GD, Chen J-S (1993) Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175:5097ā€“5105

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jansen NB, Tsao GT (1983) Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. In: Fiechter A, Jeffries TW (eds) Advances in biochemical engineering/biotechnology, vol 27. Springer, New York, pp 85ā€“99

    Google ScholarĀ 

  • Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioengin 26:362ā€“369

    CASĀ  Google ScholarĀ 

  • Johansen L, Bryn K, Stormer FC (1975) Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol 123:1124ā€“1130

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Johnson JL (1984) Bacterial classification. III: nucleic acids in bacterial classification. In: Krieg NR, Holt JG (eds) Bergeyā€™s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 8ā€“11

    Google ScholarĀ 

  • Johnson JL, Chen J-S (1995) Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms. FEMS Microbiol Rev 17:233ā€“240

    CASĀ  Google ScholarĀ 

  • Johnson JL, Toth J, Santiwatanakul S, Chen J-S (1997) Cultures of ā€œClostridium acetobutylicumā€ from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation. Int J Syst Bacteriol 47:420ā€“424

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17:223ā€“232

    CASĀ  Google ScholarĀ 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484ā€“524

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jones DT, Jones WA, Woods DR (1985) Production of recombinants after protoplast fusion in Clostridium acetobutylicum P262. J Gen Microbiol 131:1213ā€“1216

    Google ScholarĀ 

  • Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial AB fermentation process. J Molec Microbiol Biotechnol 2:21ā€“26

    CASĀ  Google ScholarĀ 

  • Junelles A-M, Janati-Idrissi R, El Kanouni A, Petitdemange H, Gay R (1987) Acetone-butanol fermentation by mutants selected for resistance to acetate and butyrate halogen analogues. Biotechnol Lett 9:175ā€“178

    CASĀ  Google ScholarĀ 

  • Juni E, Heym GA (1956) A cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol, and diacetyl. I: general aspects of the 2,3-butanediol cycle. J Bacteriol 71:425ā€“432

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kashket ER, Cao ZY (1995) Clostridial strain degeneration. FEMS Microbiol Rev 17:307ā€“315

    CASĀ  Google ScholarĀ 

  • Keis S, Bennett CF, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol 45:693ā€“705

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Keis S, Shaheen R, Jones DT (2001a) Emended description of Clostridium acetobutylicum and Clostridium beijerinckii and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095ā€“2103

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Keis S, Sullivan JT, Jones DT (2001b) Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome. Microbiology 147:1909ā€“1922

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kelly FC (1936) One thing leads to another. Houghton Mifflin, Boston

    Google ScholarĀ 

  • Killeffer DH (1927) Butanol and acetone from corn. Ind Engin Chem 19:46ā€“50

    CASĀ  Google ScholarĀ 

  • Korkhin Y, Kalb (Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Molec Biol 278:67ā€“981

    Google ScholarĀ 

  • Kutzenok A, Aschner M (1952) Degenerative processes in a strain of Clostridium butylicum. J Bacteriol 64:829ā€“836

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ladisch MR (1991) Fermentation-derived butanol and scenarios for its uses in energy-related applications. Enz Microbiol Technol 13:280ā€“283

    CASĀ  Google ScholarĀ 

  • Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. US Patent 5686276

    Google ScholarĀ 

  • Laffend LA, Nagarajan V, Nakamura CE (2000) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. US Patent 6025184

    Google ScholarĀ 

  • Largier ST, Long S, Santangelo JD, Jones DT, Woods DR (1985) Immobilized Clostridium acetobutylicum P 262 mutants for solvent production. Appl Environ Microbiol 50:477ā€“481

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Larsen SH, Stormer FC (1973) Diacetyl (Acetoin) reductase from Aerobacter aerogenes. Eur J Biochem 34:100ā€“106

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Laube VM, Groleau D, Martin SM (1984) 2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa. Biotechnol Lett 6:257ā€“262

    CASĀ  Google ScholarĀ 

  • Lee HK, Maddox IS (1986) Continuous production of 2,3-butanediolfrom whey permeate using Klebsiella pneumoniae immobilized in calcium alginate. Enz Microb Technol 8:409ā€“411

    CASĀ  Google ScholarĀ 

  • Lee SF, Forsberg CW, Gibbins LN (1985) Cellulolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol 50:220ā€“228

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lee SY, Bennett GN, Papoutsakis ET (1992) Construction of Escherichia coli-Clostridium acetobutylicum shuttle vectors and transformation of Clostridium acetobutylicum strains. Biotechnol Lett 14:427ā€“432

    CASĀ  Google ScholarĀ 

  • Lemme CJ, Frankiewicz JR (1985) Strains of Clostridium acetobutylicum and process for its preparation. US Patent 4521516

    Google ScholarĀ 

  • Lemmel SA (1985) Mutagenesis in Clostridium acetobutylicum. Biotechnol Lett 7:711ā€“716

    CASĀ  Google ScholarĀ 

  • Lemmel SA, Datta R, Frankiewicz JR (1986) Fermentation of xylan by Clostridium acetobutylicum. Enz Microbiol Technol 8:217ā€“221

    CASĀ  Google ScholarĀ 

  • Lenz TG, Moreira AR (1980) Economic evaluation of the acetone-butanol fermentation. Ind Engin Chem Prod Res Devel 19:478ā€“483

    CASĀ  Google ScholarĀ 

  • Lepage C, Fayolle F, Hermann M, Vandecasteele J-P (1987) Changes in membrane liquid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133:103ā€“110

    CASĀ  Google ScholarĀ 

  • Li G (1998) Development of a reporter system for the study of gene expression for solvent production in Clostridium beijerinckii NRRL B582 and Clostridium acetobutylicum ATCC 824. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg VA

    Google ScholarĀ 

  • Lin Y-L, Blaschek HP (1984) Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA. Appl Environ Microbiol 48:737ā€“742

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Logsdon JE, Loke RA (1996) Isopropyl alcohol. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 20, 4th edn. Wiley, New York, pp 216ā€“240

    Google ScholarĀ 

  • Logsdon JE, Loke RA (1999) Isopropyl alcohols. In: Kroschwitz JI (ed) Kirk-Othmer concise encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 1654ā€“1656

    Google ScholarĀ 

  • Luers FM, Seyfried R, Daniel R, Gottschalk G (1997) Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 154:337ā€“345

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lund BM, Brocklehurst TF, Wyatt GM (1981) Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium. J Gen Microbiol 122:17ā€“26

    Google ScholarĀ 

  • Macis L, Daniel R, Gottschalk G (1998) Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum. FEMS Microbiol Lett 164:21ā€“28

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maddox IS (1980) Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951. Biotechnol Lett 2:493ā€“498

    CASĀ  Google ScholarĀ 

  • Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of ā€œacid crashā€ and ā€œacidogenic fermentationsā€ during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Molec Microbiol Biotechnol 2:95ā€“100

    CASĀ  Google ScholarĀ 

  • Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13:127ā€“130

    CASĀ  Google ScholarĀ 

  • Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16:76ā€“79

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Marchal R, Ropars M, Pourquie J, Fayolle F, Vandecasteele JP (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part II: conversion into acetone-butanol. Biores Technol 42:205ā€“217

    CASĀ  Google ScholarĀ 

  • Mattsson DM, Rogers P (1994) Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation. J Ind Microbiol 13:258ā€“268

    PubMedĀ  CASĀ  Google ScholarĀ 

  • McCoy E, Fred EB (1941) The stability of a culture for industrial fermentation. J Bacteriol 41:90ā€“91

    Google ScholarĀ 

  • McCoy E, McClung LS (1935) Studies on anaerobic bacteria. J Infect Dis 56:333ā€“346

    Google ScholarĀ 

  • McCoy E, Fred EB, Peterson WH, Hastings EG (1926) A cultural study of the acetone butyl alcohol organism. J Infect Dis 39:457ā€“483

    Google ScholarĀ 

  • McCutchan WN, Hickey RJ (1954) The butanol-acetone fermentations. In: Underkofler LA, Hickey RJ (eds) Industrial fermentations, vol 1. Chemical Publishing, New York, pp 347ā€“388

    Google ScholarĀ 

  • McNeil B, Kristiansen B (1986) The acetone butanol fermentation. Adv Appl Microbiol 31:61ā€“92

    CASĀ  Google ScholarĀ 

  • Meinecke B, Bahl H, Gottschalk G (1984) Selection of an asporogenous strain of Clostridium acetobutylicum in continuous culture under phosphate limitation. Appl Environ Microbiol 48:1064ā€“1065

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enz Microbiol Technol 20:82ā€“86

    CASĀ  Google ScholarĀ 

  • Mermelstein LD, Papoutsakis ET (1993a) Evaluation of macrolide and lincosamide antibiotics for plasmid maintenance in low pH Clostridium acetobutylicum ATCC 824 fermentations. FEMS Microbiol Lett 113:71ā€“76

    CASĀ  Google ScholarĀ 

  • Mermelstein LD, Papoutsakis ET (1993b) In vivo methylation in Escherichia coli by the Bacillus subtilis phage 3 T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077ā€“1081

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10:190ā€“195

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioengin 42:1053ā€“1060

    CASĀ  Google ScholarĀ 

  • Mickelson MN, Werkman CH (1940) Formation of trimethyleneglycol from glycerol by Aerobacter. Enzymologia 8:252ā€“256

    CASĀ  Google ScholarĀ 

  • Minton NP, Oultram JD (1988) Host:vector systems for gene cloning in Clostridium. Microbiol Sci 5:310ā€“315

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31ā€“130

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Monot F, Engasser J-M, Petitdemange H (1984) Influence of pH and undissociated butyric acid in the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 19:422ā€“426

    CASĀ  Google ScholarĀ 

  • Montoya D, Arevalo C, Gonzales S, Aristizabal F, Schwarz WH (2001) New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27:329ā€“335

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Moore SK (1999) DuPont, Genencor close in on biological propanediol route. Chem Week 161:17

    Google ScholarĀ 

  • Moreira AR, Ulmer DC, Linden JC (1981) Butanol toxicity in butylic fermentation. Biotechnol Bioengin Symp 11:567ā€“579

    CASĀ  Google ScholarĀ 

  • Nagarajan V, Nakamura CE (1998) Production of 1,3-propanediol from glycerol by recombinant bacteria expressing recombinant diol dehydratase. US Patent 5821092

    Google ScholarĀ 

  • Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an alcohol/aldehyde dehydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871ā€“885

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nakamura CE, Gatenby AA, Hsu AK, LaReau RD, Haynie SL, Diaz-Torres R, Trimbur DE, Whited GM, Nagarajan A, Payne MS, Picataggio SK, Nair RV (2000) Method for the production of 1,3-propanediol by recombinant microorganisms. US Patent 6013494

    Google ScholarĀ 

  • Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW (1983) System development for linked-fermentation production of solvents from algal biomass. Appl Environ Microbiol 46:1017ā€“1023

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:113ā€“1138

    Google ScholarĀ 

  • Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N (2000) Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng 90:661ā€“664

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nakotte S, Schaffer S, Bohringer M, DĆ¼ P (1998) Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 50:564ā€“567

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nativel F, Pourquie J, Ballerini D, Vandecasteele JP, Renault P (1992) The biotechnology facilities at Soustons for biomass conversion. Int J Solar Energy 11:219ā€“229

    Google ScholarĀ 

  • Nilegaonkar S, Bhosale SB, Kshirsagar DC, Kapadi AH (1992) Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J Microbiol Biotechnol 8:378ā€“381

    CASĀ  Google ScholarĀ 

  • Nimcevic D, Gapes JR (2000) The acetone-butanol fermentation in pilot plant and pre-industrial scale. J Molec Microbiol Biotechnol 2:15ā€“20

    CASĀ  Google ScholarĀ 

  • Nimcevic D, Schuster M, Gapes JR (1998) Solvent production by Clostridium beijerinckii NRRL B592 growing on different potato media. Appl Microbiol Biotechnol 50:426ā€“428

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nƶlling J, Breton G, Omelchenko MV, Markarova KS, Zeng Q, Gibson R, Lee HM, DuBois J, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823ā€“4838

    Google ScholarĀ 

  • Noon R (1982) Power-grade butanol. Chemtech 12:681ā€“683

    CASĀ  Google ScholarĀ 

  • Northrop JH, Ashe LH, Senior JK (1919) Biochemistry of Bacillus acetoethylicum with reference to the formation of acetone. J Biol Chem 39:1ā€“21

    CASĀ  Google ScholarĀ 

  • Ogata S, Hongo M (1979) Bacteriophages of the genus Clostridium. Adv Appl Microbiol 25:241ā€“273

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Oiwa H, Naganuma M, Ohnuma S-I (1987) Acetone-butanol production from dahlia inulin by Clostridium pasteurianum var. I-53. Agric Biol Chem 51:2819ā€“2820

    CASĀ  Google ScholarĀ 

  • O'Neill H, Mayhew SG, Butler G (1998) Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii. J Biol Chem 273:21015ā€“21024

    PubMedĀ  Google ScholarĀ 

  • Osuna J, Soberon X, Morett E (1997) A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition. Protein Sci 6:543ā€“555

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Oude Elferink SJWH, Krooneman J, Gorrschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125ā€“132

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ouellette J (2000) PO and PG markets face tight margins. Chem Mark Rep 257 5 and 14

    Google ScholarĀ 

  • Oultram JD, Young M (1985) Conjugal transfer of plasmid pAMĪ²1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum. FEMS Microbiol Lett 27:129ā€“134

    CASĀ  Google ScholarĀ 

  • Oultram JD, Davies A, Young M (1987) Conjugal transfer of a small plasmid from Bacillus subtilis to Clostridium acetobutylicum by cointegrate formation with plasmid pAMĪ²1. FEMS Microbiol Lett 42:113ā€“119

    CASĀ  Google ScholarĀ 

  • Oultram JD, Loughlin M, Swinfield T-J, Brehm JK, Thompson DE, Minton NP (1988) Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett 56:83ā€“88

    CASĀ  Google ScholarĀ 

  • Oultram JD, Burr ID, Elmore MJ, Minton NP (1993) Cloning and sequence analysis of the genes encoding phosphotransbutyrylase and butyrate kinase from Clostridium acetobutylicum NCIMB 8052. Gene 131:107ā€“112

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Owen K, Coley T (1990) Oxygenated blend components for gasoline. In: Automotive fuels handbook. Society of Automotive Engineers, Warrendale PA, pp 221ā€“259

    Google ScholarĀ 

  • Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170:2971ā€“2976

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191ā€“208

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Papoutsakis ET, Meyer CL (1985) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol Bioengin 27:50ā€“66

    CASĀ  Google ScholarĀ 

  • Paquet V, Croux C, Goma G, Soucaille P (1991) Purification and characterization of the extracellular Ī±-amylase from Clostridium acetobutylicum. Appl Environ Microbiol 57:212ā€“218

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pedroni P, Volpe A, Galli G, Mura GM, Pratesi C, Grandi G (1995) Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases. Microbiology 141:449ā€“458

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Peguin S, Goma G, Delorme P, Soucaille P (1994) Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition. Appl Microbiol Biotechnol 42:611ā€“616

    CASĀ  Google ScholarĀ 

  • Peretz M, Bogin O, Tel-Or S, Cohen A, Li G, Chen J-S, Burstein Y (1997) Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenase from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe 3:259ā€“270

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Petersen DJ, Welch RW, Rudolph FB, Bennett GN (1991) Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824. J Bacteriol 173:1831ā€“1834

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Petersen DJ, Cary JW, Vanderleyden J, Bennett GN (1993) Sequence and arrangement of genes encoding enzymes of the acetone-production pathway of Clostridium acetobutylicum ATCC 824. Gene 123:93ā€“97

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Petitdemange E, Durr C, Abbad-Andalousi S, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Indust Microbiol 15:498ā€“502

    CASĀ  Google ScholarĀ 

  • Pflugmacher U, Gottschalk G (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol 41:313ā€“316

    CASĀ  Google ScholarĀ 

  • Pierce SM, Wayman M (1983) Diesel fuel by fermentation of wastes. US Patent 4368056

    Google ScholarĀ 

  • Potera C (1997) Genencor and DuPont create ā€œgreenā€ polyester. Genet Eng News 17:17

    Google ScholarĀ 

  • Prescott SC, Dunn CG (1949) The acetone-butanol fermentation. In: Prescott SC, Dunn CG (eds) Industrial microbiology, 2nd edn. McGraw-Hill, New York, pp 312ā€“351

    Google ScholarĀ 

  • Prescott SC, Dunn CG (1959a) The acetone-butanol fermentation. In: Prescott SC, Dunn CG (eds) Industrial microbiology, 3rd edn. McGraw-Hill, New York, pp 250ā€“284

    Google ScholarĀ 

  • Prescott SC, Dunn G (1959b) The acetone-ethanol fermentation. In: Prescott SC, Dunn G (eds) Industrial microbiology, 3rd edn. McGraw-Hill, New York, pp 295ā€“298

    Google ScholarĀ 

  • Prescott SC, Dunn CG (1959c) The butanol-isopropanol fermentation. In: Prescott SC, Dunn CG (eds) Industrial microbiology, 3rd edn. McGraw-Hill, New York, pp 285ā€“294

    Google ScholarĀ 

  • Qureshi N, Blaschek HP (2001) ABE production from corn: a recent economic evaluation. J Indust Microbiol Biotechnol 27:292ā€“297

    CASĀ  Google ScholarĀ 

  • Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Indust Microbiol Biotechnol 26:290ā€“295

    CASĀ  Google ScholarĀ 

  • Rakhley G, Zhou ZH, Adams MWW, Kovacs KL (1999) Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis. Eur J Biochem 266:1158ā€“1165

    Google ScholarĀ 

  • Ramachandran KB, Goma G (1988) 2,3-Butanediol production from glucose by Klebsiella pneumoniae in a cell recycle system. J Biotechnol 9:39ā€“46

    CASĀ  Google ScholarĀ 

  • Rao G, Mutharasan R (1986) Alcohol production by Clostridium acetobutylicum induced by methyl viologen. Biotechnol Lett 8:893ā€“896

    CASĀ  Google ScholarĀ 

  • Rao G, Mutharasan R (1987) Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl Environ Microbiol 53:1232ā€“1235

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rao G, Mutharasan R (1988) Altered electron flow in a reduced environment in Clostridium acetobutylicum. Biotechnol Lett 10:129ā€“132

    CASĀ  Google ScholarĀ 

  • Raspoet D, Pot B, De Deyn D, De Vos P, Kersters K, De Ley J (1991) Differentiation between 2,3-butanediol producing Bacillus licheniformis and B. polymyxa strains by fermentation product profiles and whole-cell protein electrophoretic patterns. Syst Appl Microbiol 14:1ā€“7

    CASĀ  Google ScholarĀ 

  • Ravagnani A, Jennert KCB, Steiner E, Grunberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Molec Microbiol 37:1172ā€“1185

    CASĀ  Google ScholarĀ 

  • Rayner A (1926) The occurrence, properties, and uses of trimethylene glycol, and the fermentation of glycerin lyes. J Soc Chem Indust 45:265Tā€“266T

    Google ScholarĀ 

  • Reid SJ, Allcock ER, Jones DT, Woods DR (1983) Transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA. Appl Environ Microbiol 45:305ā€“307

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Reimann A, Biebl H (1996) Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture: feeding strategy for glycerol and ammonium. Biotechnol Lett 18:827ā€“832

    CASĀ  Google ScholarĀ 

  • Reimann A, Abbad-Andaloussi S, Biebl H, Petitdemange H (1998a) 1,3-propanediol formation with product-tolerant mutants of Clostridium butyricum DSM 5431 in continuous culture: productivity, carbon and electron flow. J Appl Microbiol 84:1125ā€“1130

    CASĀ  Google ScholarĀ 

  • Reimann A, Biebl H, Deckwer WD (1998b) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49:359ā€“363

    CASĀ  Google ScholarĀ 

  • Reysset G, Sebald M (1985) Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum. Ann Inst Pasteur/Microbiol 136B:275ā€“282

    CASĀ  Google ScholarĀ 

  • Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv Appl Microbiol 31:1ā€“60

    CASĀ  Google ScholarĀ 

  • Rogers P (1999) Clostridia: solvent formation. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 2. Wiley, New York, pp 670ā€“687

    Google ScholarĀ 

  • Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 25ā€“50

    Google ScholarĀ 

  • Rogers P, Palosaari N (1987) Clostridium acetobutylicum mutants that produce butyraldehyde and altered quantities of solvents. Appl Environ Microbiol 53:2761ā€“2766

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Roos JW, McLaughlin JK, Papoutsakis ET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum. Biotechnol Bioengin 27:681ā€“694

    CASĀ  Google ScholarĀ 

  • Rose N (1986) Chaim Weizmann. Penguin Books, New York

    Google ScholarĀ 

  • Rosenberg SL (1980) Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enz Microb Technol 2:185ā€“193

    CASĀ  Google ScholarĀ 

  • Ross D (1961) The acetone-butanol fermentation. Progr Indust Microbiol 3:71ā€“90

    CASĀ  Google ScholarĀ 

  • Ryden R (1958) Development of anaerobic fermentation processes: acetone-butanol. In: Steel R (ed) Biochemical engineering. Macmillan, New York, pp 125ā€“148

    Google ScholarĀ 

  • Sablayrolles JM, Goma G (1984) Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation. Biotechnol Bioengin 26:148ā€“155

    CASĀ  Google ScholarĀ 

  • Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321ā€“326

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Saint-Amans S, Perlot P, Goma G, Soucaille P (1994) High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnol Lett 16:831ā€“836

    CASĀ  Google ScholarĀ 

  • Sanchez-Riera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the production of R(-)-1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 9:449ā€“454

    CASĀ  Google ScholarĀ 

  • Sass C, Walter J, Bennett GN (1993) Isolation of mutants of Clostridium acetobutylicum ATCC 824. Curr Microbiol 26:151ā€“154

    CASĀ  Google ScholarĀ 

  • Sauer U, DĆ¼rre P (1995) Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol Lett 125:115ā€“120

    CASĀ  Google ScholarĀ 

  • Schneider Z, Larsen EG, Jacobson G, Johnson BC, Pawelkiewicz J (1970) Purification and properties of glycerol dehydrase. J Biol Chem 245:3388ā€“3396

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schoutens GH, Groot WJ (1985) Economic feasibility of the production of iso-propanol-butanol-ethanol fuels from whey permeate. Process Biochem 20:117ā€“121

    CASĀ  Google ScholarĀ 

  • Schoutens GH, Nieuwenhuizen MCH, Kossen NWF (1984) Butanol from whey ultrafiltrate: batch experiments with Clostridium beijerinckii LMD 27.6. Appl Microbiol Biotechnol 19:203ā€“206

    CASĀ  Google ScholarĀ 

  • Schoutens GH, Nieuwenhuizen MCH, Kossen NWF (1985) Continuous butanol production from whey permeate with immobilized Clostridium beijerinckii LMD 27.6. Appl Microbiol Biotechnol 21:282ā€“286

    CASĀ  Google ScholarĀ 

  • Schuster KC, Goodacre R, Gapes JR, Young M (2001) Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells. J Ind Microbiol Biotechnol 27:314ā€“321

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Seifert C, Bowien S, Gottschalk G, Daniel R (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 268:2369ā€“2378

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178:5793ā€“5796

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Shelley S, Dā€™Aquino RL (1999) Three routes vie for the 1,3-propanediol market. Chem Engin 106:56

    Google ScholarĀ 

  • Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Env Microbiol 64:98ā€“105

    CASĀ  Google ScholarĀ 

  • Solomon BO, Zeng AP, Biebl H, Ejiofor AO, Posten C, Deckwer WD (1994) Effects of substrate limitation on product distribution and H2/CO2 ratio in Klebsiella pneumoniae during anaerobic fermentation of glycerol. Appl Microbiol Biotechnol 42:222ā€“226

    CASĀ  Google ScholarĀ 

  • Solomon BO, Zeng A-P, Biebl H, Schlieker H, Posten C, Deckwer W-D (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39:107ā€“117

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Solomons GL (1976) Solvents from carbohydrates: some economic considerations. Process Biochem 11:32ā€“37

    CASĀ  Google ScholarĀ 

  • Somrutai W, Takagi M, Yoshida T (1996) Acetone-butanol fermentation by Clostridium aurantibutyricum ATCC 17777 from a model medium for palm oil mill effluent. J Ferment Bioengin 81:543ā€“547

    CASĀ  Google ScholarĀ 

  • Spivey MJ (1978) The acetone/butanol/ethanol fermentation. Process Biochem 13:2ā€“25

    CASĀ  Google ScholarĀ 

  • Sprenger GA, Hammer BA, Johnson EA, Lin EC (1989) Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J Gen Microbiol 135:1255ā€“1262

    PubMedĀ  CASĀ  Google ScholarĀ 

  • St Martin EJ, Freedberg WB, Lin ECC (1977) Kinase replacement by a dehydrogenase for Escherichia coli glycerol utilization. J Bacteriol 131:1026ā€“1028

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846ā€“849

    CASĀ  Google ScholarĀ 

  • Stephens GM, Holt RA, Gottschal JC, Morris JG (1985) Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture. J Appl Bacteriol 59:597ā€“605

    Google ScholarĀ 

  • Stevens D, Alam S, Bajpai R (1988) Fermentation of cheese whey by a mixed culture of Clostridium beijerinckii and Bacillus cereus. J Ind Microbiol 3:15ā€“19

    CASĀ  Google ScholarĀ 

  • Stieb M, Schink B (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov.sp.nov., possessing various fermentation pathways. Arch Microbiol 140:139ā€“146

    CASĀ  Google ScholarĀ 

  • Stim-Herndon KP, Petersen DJ, Bennett GN (1995) Molecular characterization of the acetyl coenzyme A acetyltransferase (thiolase) from Clostridium acetobutylicum ATCC 824. Gene 154:81ā€“85

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stormer FC (1975) 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. In: Wood WA (ed) Methods in enzymology, vol 41. Academic, New York, pp 518ā€“533

    Google ScholarĀ 

  • Streekstra H, Teixera de Mattos MJ, Neijssel OM, Tempest DW (1987) Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol 147:268ā€“275

    CASĀ  Google ScholarĀ 

  • Suzuki T, Onishi H (1968) Aerobic dissimilation of L-rhamnose and the production of L-rhamnonic acid and 1,2-propanediol by yeasts. Agric Biol Chem 32:888ā€“893

    CASĀ  Google ScholarĀ 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10ā€“18

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Szmant HH (1989) Organic building blocks of the chemical industry. Wiley, New York, pp 347ā€“348

    Google ScholarĀ 

  • Tang JCT, Ruch FE, Lin ECC (1979) Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism. J Bacteriol 140:182ā€“187

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tang JCT, Forage RG, Lin ECC (1982) Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae. J Bacteriol 152:1169ā€“1174

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Taylor MB, Juni E (1960) Stereoisomeric specificities of 2,3-butanediol dehydrogenases. Biochim Biophys Acta 39:448ā€“457

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Terracciano JS, Kashket ER (1986) Intracellular conditions required of initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol 52:86ā€“91

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Thayer A (2000) Challenges of a biobased economy C %26 EN May 29 40

    Google ScholarĀ 

  • Thompson DK, Chen J-S (1990) Purification and properties of an acetoacetyl coenzyme A-reacting phosphotransbutyrylase from Clostridium beijerinckii (ā€œClostridium butylicumā€) NRRL B593. Appl Environ Microbiol 56:607ā€“613

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Thomson AW, O'Neill JG, Wilkinson JF (1976) Acetone production by methylobacteria. Arch Microbiol 109:243ā€“246

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Thormann K, Feustel L, Lorenz K, Nakotte S, DĆ¼ P (2002) Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 184:1966ā€“1973

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tobimatsu T, Hara T, Sakaguchi M, Kishimoto Y, Wada Y, Isoda M, Sakai T, Toraya T (1995) Molecular cloning, sequencing, and expression of the genes encoding adenosylcobalamin-dependent diol dehydrase of Klebsiella oxytoca. J Biol Chem 270:712ā€“7148

    Google ScholarĀ 

  • Tobimatsu T, Azuma M, Matsubara H, Takatori H, Niida T, Nishinoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem 271:22352ā€“22357

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tobimatsu T, Kjiura H, Yunoki M, Azuma M, Toraya T (1999) Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J Bacteriol 181:4110ā€“4113

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tong IT, Cameron DC (1992) Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expression Klebsiella pneumoniae dha regulon genes. Appl Biochem Biotechnol 34/35:149ā€“159

    Google ScholarĀ 

  • Tong I-T, Liao HH, Cameron DC (1991) 1,3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Env Microbiol 57:3541ā€“3546

    CASĀ  Google ScholarĀ 

  • Toth J, Ismaiel AA, Chen J-S (1999) Purification of a coenzyme A-acylating aldehyde dehydrogenase and cloning of the structural gene from Clostridium beijerinckii NRRL B593. Appl Environ Microbiol 65:4973ā€“4980

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tran-Din K, Gottschalk G (1985) Formation of D(āˆ’)-1,2-propanediol and D(āˆ’)-lactate from glucose by Clostridium sphenoides under phosphate limitation. Arch Microbiol 142:87ā€“92

    CASĀ  Google ScholarĀ 

  • Truffaut N, Hubert J, Reysset G (1989) Construction of shuttle vectors useful for transforming Clostridium acetobutylicum. FEMS Microbiol Lett 58:15ā€“20

    CASĀ  Google ScholarĀ 

  • Trunger V, Boos W (1994) Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydratase. J Bacteriol 176:1796ā€“1800

    Google ScholarĀ 

  • Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65:3793ā€“3799

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Turner KW, Roberton AM (1979) Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Appl Environ Microbiol 38:7ā€“12

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ui S, Masuda H, Muraki H (1983) Laboratory-scale production of 2,3-butanediol isomers (D(āˆ’), L(+), and Meso) by bacterial fermentations. J Ferment Technol 61:253ā€“259

    CASĀ  Google ScholarĀ 

  • Ui S, Masuda T, Masuda H, Muraki H (1986) Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa. J Ferment Technol 64:481ā€“486

    CASĀ  Google ScholarĀ 

  • Ui S, Odagiri M, Mimura A, Kanai H, Kobayashi T, Kudo T (1996) Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butandiol dehydrogenase gene. J Ferment Bioeng 81:386ā€“389

    CASĀ  Google ScholarĀ 

  • Ui S, Okajima Y, Mimura A, Kanai H, Kudo T (1997) Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J Ferment Bioeng 84:185ā€“189

    CASĀ  Google ScholarĀ 

  • Ui S, Hosaka T, Watanabe K, Mimura A (1998) Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4. J Ferment Bioeng 85:79ā€“83

    CASĀ  Google ScholarĀ 

  • van der Westhuizen A, Jones DT, Woods DR (1982) Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44:1277ā€“1281

    Google ScholarĀ 

  • Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443ā€“1450

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Verhasselt P, Poncelet F, Vits K, van Gool A, Vanderleyden J (1989) Cloning and expression of a Clostridium acetobutylicum Ī±-amylase gene in Escherichia coli. FEMS Microbiol Lett 59:135ā€“140

    CASĀ  Google ScholarĀ 

  • Voget CE, Mignone CF, Ertola RJ (1985) Butanol production from apple pomace. Biotechnol Lett 7:43ā€“46

    CASĀ  Google ScholarĀ 

  • Voloch M, Ladisch MR, Rodwell VW, Tsao GT (1983) Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model. Biotechnol Bioengin 25:173ā€“183

    CASĀ  Google ScholarĀ 

  • Wagner TO, Gray DS, Zarah BY, Kozinski AA (1980) Practicality of alcohols as motor fuel. Alcohols as motor fuels society of automotive engineers, Warrendale PA, pp 249ā€“265

    Google ScholarĀ 

  • Walter KA, Bennett GN, Papoutsakis ET (1992) Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174:7149ā€“7158

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Walter KA, Nair RV, Cary JW, Bennett GN, Papoutsakis ET (1993) Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824. Gene 134:107ā€“111

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Walton MT, Martin JL (1979) Production of butanol-acetone by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1, 2nd edn. Academic, New York, pp 187ā€“209

    Google ScholarĀ 

  • Waterson RM, Castellino FJ, Hass GM, Hill RL (1972) Purification and characterization of crotonase from Clostridium acetobutylicum. Biol Chem 247:5266ā€“5271

    CASĀ  Google ScholarĀ 

  • Webster JR, Reid SJ, Jones DT, Woods DR (1981) Purification and characterization of an autolysin from Clostridium acetobutylicum. Appl Environ Microbiol 41:371ā€“374

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Weimer PJ (1984a) Control of product formation during glucose fermentation by Bacillus macerans. J Gen Microbiol 130:103ā€“111

    CASĀ  Google ScholarĀ 

  • Weimer PJ (1984b) Fermentation of 6-deoxyhexoses by Bacillus macerans. Appl Environ Microbiol 47:263ā€“267

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Weizmann C (1915) Improvements in bacterial fermentation of carbohydrates and in bacterial cultures for the same. British Patent 4845

    Google ScholarĀ 

  • Welch RW (1991) Purification and studies of two butanol (ethanol) dehydrogenases and the effects of rifampicin and chloramphenicol on other enzymes important in the production of butyrate and butanol in Clostridium acetobutylicum ATCC 824. PhD thesis, Rice University, Houston TX

    Google ScholarĀ 

  • Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). Arch Biochem Biophys 273:309ā€“318

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Welling H (1998) Fibers industry get ready. Apparel Industry Magazine 59:65ā€“66

    Google ScholarĀ 

  • Weyer ER, Rettger LF (1927) A comparative study of six different strains of the organism commonly concerned in large-scale production of butyl alcohol and acetone by the biological process. J Bacteriol 14:399ā€“424

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Whitfield CD, Mayhew SG (1974) Purification and properties of electron-transferring flavoprotein from Peptostreptococcus elsdenii. J Biol Chem 249:2801ā€“2810

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54:2717ā€“2722

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989a) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol 55:323ā€“329

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989b) Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl Environ Microbiol 55:317ā€“322

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wilke D (1999) Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl Microbiol Biotechnol 52:135ā€“145

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wilkinson SR, Young M (1994) Targeted integration of genes into the Clostridium acetobutylicum chromosome. Microbiology 140:89ā€“95

    CASĀ  Google ScholarĀ 

  • Wilkinson SR, Young M (1995) Physical map of the Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052 chromosome. J Bacteriol 177:439ā€“448

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136:819ā€“826

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Winzer K, Lorenz K, DĆ¼ P (1997) Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiology 143:3279ā€“3286

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Winzer K, Lorenz K, Zickner B, DĆ¼ P (2000) Differential regulation of two thiolase genes from Clostridium acetobutylicum DSM 792. J Molec Microbiol Biotechnol 2:531ā€“541

    CASĀ  Google ScholarĀ 

  • Wittlich P, Themann A, Vorlop K-D (2001) Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain. Biotechnol Lett 23:463ā€“466

    CASĀ  Google ScholarĀ 

  • Wood A (2001) DuPont Genencor extend alliance. Chem Week 163:38

    Google ScholarĀ 

  • Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259ā€“264

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Woolley RC, Morris JG (1990) Stability of solvent production by Clostridium acetobutylicum in continuous culture: strain differences. J Appl Bacteriol 69:718ā€“728

    CASĀ  Google ScholarĀ 

  • Woolley RC, Pennock A, Ashton RJ, Davies A, Young M (1989) Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid 22:169ā€“174

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yan R-T (1991) Enzymology of butanol formation in Clostridium beijerinckii NRRL B592. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg VA

    Google ScholarĀ 

  • Yan R-T, Chen J-S (1990) Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl Environ Microbiol 56:2591ā€“2599

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yan R-T, Zhu C-X, Golemboski C, Chen J-S (1988) Expression of solvent-forming enzymes and onset of solvent production in batch cultures of Clostridium beijerinckii (ā€œClostridium butylicumā€). Appl Environ Microbiol 54:642ā€“648

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yeh C-S (1955) Butanol-acetone fermentation (in Chinese). In: Petroleum Communications China Petroleum Corporation Taiwan China December, Issue 54, pp10ā€“19

    Google ScholarĀ 

  • Yoon K-H, Lee J-K, Kim BH (1991) Construction of a Clostridium acetobutylicum-Escherichia coli shuttle vector. Biotechnol Lett 13:1ā€“6

    CASĀ  Google ScholarĀ 

  • Yoshino S, Yoshino T, Hara S, Ogata S, Hayashida S (1990) Construction of shuttle vector plasmid between Clostridium acetobutylicum and Escherichia coli. Agric Biol Chem 54:437ā€“441

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63:301ā€“326

    CASĀ  Google ScholarĀ 

  • Youngleson JS, Santangelo JD, Jones DT, Woods DR (1988) Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli. Appl Environ Microbiol 54:676ā€“682

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Youngleson JS, Jones DT, Woods DR (1989) Homology between hydroxybutyryl and hydroxyacyl coenzyme A dehydrogenase enzymes from Clostridium acetobutylicum fermentation and vertebrate fatty acid Ī²-oxidation pathways. J Bacteriol 171:6800ā€“6807

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Youngleson JS, Lin F-P, Reid SJ, Woods DR (1995) Structure and transcription of genes within the Ī²-hbd-adh1 region of Clostridium acetobutylicum P262. FEMS Microbiol Lett 125:185ā€“192

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yu P-L, Pearce LE (1986) Conjugal transfer of streptococcal antibiotic resistance plasmids into Clostridium acetobutylicum. Biotechnol Lett 8:469ā€“474

    CASĀ  Google ScholarĀ 

  • Yu EKC, Saddler JN (1982) Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbiol 44:777ā€“784

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yu EKC, Saddler JN (1983) Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol 46:630ā€“635

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yu EKC, Saddler JN (1985) Biomass conversion to butanediol by simultaneous saccharification and fermentation. Trends Biotechnol 3:100ā€“104

    CASĀ  Google ScholarĀ 

  • Yu EKC, Levitin N, Saddler JN (1982) Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid-hydrolyzed wood hemicellulose. Biotechnol Lett 4:741ā€“746

    CASĀ  Google ScholarĀ 

  • Yu EKC, Deschatelets L, Louis-Seize G, Saddler JN (1985) Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum. Appl Environ Microbiol 50:924ā€“929

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zappe H, Jones DT, Woods DR (1986) Cloning and expression of Clostridium acetobutylicum endoglucanase, cellobiase and amino acid biosynthesis genes in Escherichia coli. J Gen Microbiol 132:1367ā€“1372

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zappe H, Jones DT, Woods DR (1987) Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli. Appl Microbiol Biotechnol 27:57ā€“63

    CASĀ  Google ScholarĀ 

  • Zappe H, Jones WA, Jones DT, Woods DR (1988) Structure of an endo-Ī²-1,4-glucanase gene from Clostridium acetobutylicum P262 showing homology with endoglucanase genes from Bacillus spp. Appl Environ Microbiol 54:1289ā€“1292

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zeng A-P (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc Engin 14:169ā€“175

    CASĀ  Google ScholarĀ 

  • Zeng A-P, Deckwer W-D (1991) A model for multiproduct-inhibited growth of Enterobacter aerogenes in 2,3-butanediol fermentation. Appl Microbiol Biotechnol 35:1ā€“3

    CASĀ  Google ScholarĀ 

  • Zeng A-P, Biebl H, Deckwer W-D (1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microbiol Biotechnol 33:485ā€“489

    CASĀ  Google ScholarĀ 

  • Zeng A-P, Biebl H, Schlieker H, Deckwer W-D (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enz Microbol Technol 15:770ā€“779

    CASĀ  Google ScholarĀ 

  • Zeng A-P, Byun T-G, Posten C, Deckwer W-D (1994a) Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioengin 44:1107ā€“1114

    CASĀ  Google ScholarĀ 

  • Zeng A-P, Ross A, Biebl H, Tag C, Gunzel B, Deckwer W-D (1994b) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioengin 44:902ā€“911

    CASĀ  Google ScholarĀ 

  • Zeng A-P, Biebl H, Deckwer WD (1997) Microbial conversion of glycerol to 1,3-propanediol: recent progress. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. Oxford Press, Oxford UK. ACS Symposium Series 666, pp 264ā€“279

    Google ScholarĀ 

  • Zhou X, Traxler RW (1992) Enhanced butanol production and reduced autolysin activity after chloramphenicol treatment of Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 37:293ā€“297

    CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chen, JS., Zidwick, M.J., Rogersāˆ—, P. (2013). Organic Acid and Solvent Production: Butanol, Acetone, and Isopropanol; 1,3- and 1,2-Propanediol Production; and 2,3-Butanediol Production. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_386

Download citation

Publish with us

Policies and ethics