Skip to main content

Biofuels

  • Reference work entry
Book cover The Prokaryotes

Abstract

Increasing pressure to move towards energy sustainability and reduce society’s dependence on fossil fuels has led to much research and development in the area of biofuels. First-generation biofuel production (e.g., ethanol from corn) is a mature technology, but competition with food crops raises questions about sustainability. Second-generation biofuels are produced from waste biomass and thus are perceived as more viable, but technology is not ready for large-scale implementation particularly due to the hydrolysis challenge. The third generation of biofuels captures sunlight directly as fuels or fuel precursors via photosynthesis. Prokaryotic organisms play a crucial role in the majority of the processes involved in biofuel production. Pure culture bioproduction includes ethanol from Zymomonas mobilis, modified Escherichia coli, and Clostridia. However, pure cultures are only efficient at the conversion of sugary biomass, not lignocellulosic biomass. They have thus limited applicability towards second-generation biofuel production.  Pure culture prokaryotic biodiesel production is also being investigated (mostly using cyanobacteria). However, similarly to eukaryotic biodiesel production, energy efficiencies are still poor. Mixed culture production is thus far the most successful process at converting complex waste biomass to usable fuels, mainly methane through anaerobic digestion, which is perceived by many as the biofuel technology with highest potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol: Methods Methane Metabol, Pt A 494:327–351

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  PubMed  CAS  Google Scholar 

  • Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36:7443–7459

    Article  CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan IK (2008a) Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int J Hydrog Energy 33:7405–7412

    Article  CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan FK, Oztekin R (2008b) Biohydrogen production by dark fermentation of wheat powder solution: effects of c/n and c/p ratio on hydrogen yield and formation rate. Int J Hydrog Energy 33:1813–1819

    Article  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Axsen J, Kurani KS, Burke A (2010) Are batteries ready for plug-in hybrid buyers? Transp Policy 17:173–182

    Article  Google Scholar 

  • Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42

    Article  CAS  Google Scholar 

  • Batstone D, Jensen P (2011) Anaerobic processes. In: Wilderer P (ed) Treatise on water science. Elsevier, Oxford

    Google Scholar 

  • Batstone DJ, Picioreanu C, van Loosdrecht MCM (2006) Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res 40:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Campbell JE, Lobell DB, Field CB (2009) Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324:1055–1057

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2008) Response to reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26:351–352

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  PubMed  CAS  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    PubMed  CAS  Google Scholar 

  • Evans K (2009) The future of electric vehicles: setting the record straight on lithium availability. J Ener Secur:7. http://www.ensec.org/index.php?option=com_content&view=article&id=213:the-future-of-electric-vehicles-setting-the-record-straight-on-lithium-availability&catid=98:issuecontent0809&Itemid=349

  • Ferry JG (1993) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman and Hall, New York

    Google Scholar 

  • Fong JC, Svenson CJ, Nakasugi K, Leong CT, Bowman JP, Chen B, Glenn DR, Neilan BA, Rogers PL (2006) Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles: Life Under Extrem Cond 10:363–372

    Article  CAS  Google Scholar 

  • Fu PC (2009) Genome-scale modeling of Synechocystis sp. Pcc 6803 and prediction of pathway insertion. J Chem Tech Biotechnol 84(4):473–483

    Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    Article  PubMed  CAS  Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Article  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  PubMed  CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic-engineering of ethanol-production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    PubMed  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Jain S, Lala AK, Bhatia SK, Kudchadker AP (1992) Modeling of hydrolysis controlled anaerobic-digestion. J Chem Technol Biotechnol 53:337–344

    Article  CAS  Google Scholar 

  • Jeon YJ, Xun Z, Rogers PL (2010) Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol 51:518–524

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338

    Article  PubMed  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    Article  PubMed  CAS  Google Scholar 

  • Karatay SE, Donmez G (2011) Microbial oil production from thermophile cyanobacteria for biodiesel production. Applied Energy 88:3632–3635

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  PubMed  CAS  Google Scholar 

  • Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329

    Article  CAS  Google Scholar 

  • Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lee KJ, Lefebvre M, Tribe DE, Rogers PL (1980) High productivity ethanol fermentations with Zymomonas-mobilis using continuous cell recycle. Biotechnol Lett 2:487–492

    Article  CAS  Google Scholar 

  • Lee SF, Forsberg CW, Gibbins LN (1985) Xylanolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol 50:1068–1076

    PubMed  CAS  Google Scholar 

  • Levin DB (2004) Re: biohydrogen production: prospects and limitations to practical application – erratum. Int J Hydrog Energy 29:1425–1426

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Madigan M, Martinko J, Parker J (ed) (2000) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  PubMed  CAS  Google Scholar 

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257

    Article  PubMed  CAS  Google Scholar 

  • Ren NQ, Wang BZ, Huang JC (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428–433

    Article  PubMed  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum M, Schroder U, Scholz F (2005) In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol 39:6328–6333

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115

    Article  PubMed  CAS  Google Scholar 

  • Schink B, Stams AJM (2006) Syntrophism among prokaryotes, vol 2, 3rd edn, Prokaryotes: a handbook on the biology of bacteria., pp 309–335

    Book  Google Scholar 

  • Schnurer A, Schink B, Svensson BH (1996) Clostridium ultunense sp nov, a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J (2009) Engineering direct conversion of CO(2) to biofuel. Nat Biotechnol 27:1128–1129

    Article  PubMed  CAS  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  PubMed  CAS  Google Scholar 

  • Sheridan C (2009) Making green. Nat Biotechnol 27:1074–1076

    Article  PubMed  CAS  Google Scholar 

  • Tilche A, Galatola M (2008) The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Water Sci Technol 57:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Tong X, McCarty PL (1991) Microbial hydrolysis of lignocellulosic materials. In: Isaacson R (ed) Methane from community wastes. Elsevier Applied Science, London, pp 61–100

    Google Scholar 

  • Trohalaki S, Pachter R (2010) The effects of the dimethylether bridging moiety in the h-cluster of the Clostridium pasteurianum hydrogenase on the mechanism of h(2) production: a quantum mechanics/molecular mechanics study. Int J Hydrog Energy 35:13179–13185

    Article  CAS  Google Scholar 

  • Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous-glass for hydrogen photoproduction. J Ferment Bioeng 77:575–578

    Article  CAS  Google Scholar 

  • Tsygankov AA, Fedorov AS, Laurinavichene TV, Gogotov IN, Rao KK, Hall DO (1998) Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol 49:102–107

    Article  CAS  Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  PubMed  CAS  Google Scholar 

  • Warnick TA, Methe BA, Leschine SB (2002) Clostridium phytofermentans sp nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Westerholm M, Roos S, Schnurer A (2010) Syntrophaceticus schinkii gen. Nov., sp nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309:100–104

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Schindler F, Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures of clostridium-sporogenes. FEMS Microbiol Ecol 45:153–161

    Article  CAS  Google Scholar 

  • Xu JF, Ren NQ, Wang AJ, Qiu J, Zhao QL, Feng YJ, Liu BF (2010) Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. Hr-1 isolated from cow dung compost. Int J Hydrog Energy 35:13467–13474

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli ko11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in Ethanologenic Zymomonas-mobilis. Science 267:240–243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

SF, BV, and KR are supported by Australian Research Council grants, LP100200223, and DP0985000, respectively. BV is supported by an Early Career Researcher grant (The University of Queensland). KR acknowledges support by the MRP “biotechnology for a sustainable economy” (Bijzonder Onderzoeksfonds, Ghent University), ARC DP0879245, and CSIRO Energy Transformed Flagship Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Freguia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Freguia, S., Virdis, B., Rabaey, K. (2013). Biofuels. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_33

Download citation

Publish with us

Policies and ethics