Skip to main content

Bioremediation

  • Reference work entry

Abstract

Bioremediation is the use of biological systems, usually microorganisms, to treat polluted soils and water. Optimization of bioremediation processes generally requires the addition of inorganic materials (biostimulation), such as utilizable sources of nitrogen, phosphorus, and oxygen. Generally, appropriate microorganisms are present in the polluted material and do not have to be added. However, occasionally natural or genetically engineered microbes may need to be added (bioaugmentation). Treatments can be either ex situ or in situ. The technology can involve aerobic and/or anaerobic bioreactors, biofiltration, air sparging, bioventing, composting, landfarming, and biopiles. Intrinsic remediation refers to the combined effects of all natural processes in contaminated environments that reduce the mobility, mass, and risks of pollutants. The limitations of bioremediation are discussed, including the treatment of petroleum pollution in the sea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Admassu W, Korus RA (1996) Engineering of bioremediation processes: needs and limitations. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, UK, pp 13–34

    Google Scholar 

  • Arnold M, Reittu A, von Wright A, Martikainen PJ, Suihko ML (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744

    PubMed  CAS  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1973) Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ Sci Technol 7:538–541

    PubMed  CAS  Google Scholar 

  • Barbeau C, Deschenes L, Karamanev D, Comeau Y, Samson R (1997) Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using contaminated soil. Appl Microbiol Biotechnol 48:745–752

    PubMed  CAS  Google Scholar 

  • Barton JW, Klasson KT, Koran LT Jr, Davison BH (1997) Microbial removal of alkanes from dilute gaseous waste streams: kinetics and mass transfer considerations. Biotechnol Prog 13:814–821

    PubMed  CAS  Google Scholar 

  • Bennett JW, Faison BD (1997) Use of fungi in biodegradation. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 758–765

    Google Scholar 

  • Bolton H Jr, Gorby YA (1995) An overview of the bioremediation of inorganic contaminants. In: Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics. Battelle, Columbus, OH

    Google Scholar 

  • Bossert ID, Compeau GC (1995) Cleanup of petroleum hydrocarbon contamination in soil. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, NY, pp 77–125

    Google Scholar 

  • Bowlen GF, Kosson DS (1995) In situ processes for bioremediation of BTEX and petroleum fuel products. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, NY, pp 514–542

    Google Scholar 

  • Breitung J, Bruns-Nagel D, Steinbach K, Kaminski L, Gemsa D, von Low E (1996) Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Appl Microbiol Biotechnol 44:795–800

    PubMed  CAS  Google Scholar 

  • Brodkorb TS, Legge RL (1992) Enhanced biodegradation of phenanthrene in oil-tar-contaminated soils supplied with Phanerochaete chrysosporium. Appl Environ Microbiol 58:3117–3121

    PubMed  CAS  Google Scholar 

  • Brunsbach FR, Reineke W (1994) Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol 42:415–420

    PubMed  CAS  Google Scholar 

  • Button DK, Robertson BR, McIntosh D, Juttner F (1992) Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill. Appl Environ Microbiol 58:243–251

    PubMed  CAS  Google Scholar 

  • Büyüksönmez F, Hess TF, Crawford RL, Paszczynski A, Watts RA (1998a) Effects of modified fenton reactions on Xanthobacter flavus FB71. Appl Environ Microbiol 64(10):3759–3764

    PubMed  Google Scholar 

  • Büyüksönmez F, Hess TF, Crawford RL, Paszczynski A, Watts RA (1998b) Simultaneous abiotic-biotic mineralization of perchlorethylene (PCE). In: Proceedings, first international conference on the remediation of chlorinated and recalcitrant compounds, May 1998 Monterey, CA Battelle Press, Columbus, OH, pp 277–282

    Google Scholar 

  • Cornish JE, Goldberg WC, Levine RS, Benemann JR (1995) Phytoremediation of soils contaminated with toxic elements and radionuclides. In: Means JL, Burris DR, Hinchee RE (eds) Bioremediation of inorganics. Battelle, Columbus, OH, pp 55–63

    Google Scholar 

  • Crawford M (1990) Bacteria effective in Alaska cleanup. Science 247:1537

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Remediation of contaminated soils and sludges by green plants. In: Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics. Battelle, Columbus, OH, pp 33–54

    Google Scholar 

  • Deportes I, Benoit-Guyod JL, Zmirou D (1995) Hazard to man and the environment posed by the use of urban waste compost: a review. Sci Total Environ 172:197–222

    PubMed  CAS  Google Scholar 

  • Deshusses MA (1997) Biological waste air treatment in biofilters. Curr Opin Biotechnol 8:335–339

    PubMed  CAS  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (2010) Biofiltration for air pollution control. CRC Press, London

    Google Scholar 

  • Dupont RR (1993) Fundamentals of bioventing applied to fuel-contaminated sites. Environ Progr 12:45–53

    CAS  Google Scholar 

  • Elsgaard L (1998) Ethylene removal by a biofilter with immobilized bacteria. Appl Environ Microbiol 64:4168–4173

    PubMed  CAS  Google Scholar 

  • Evans BS, Dudley CA, Klasson KT (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl Biochem Biotechnol 57/58:885–894

    CAS  Google Scholar 

  • Focht DD (1997) Aerobic biotransformation of polychlorinated biphenyls. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 811–814

    Google Scholar 

  • Fogarty AM, Tuovinen OH (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol Rev 55:225–233

    PubMed  CAS  Google Scholar 

  • Frankenberger WT Jr, Karlson U (1991) Bioremediation of seleniferous soils. In: Hinchee RE, Olfenbuttel RF (eds) On-site bioreclamation: processes for xenobiotic and hydrocarbon treatment. Butterworth-Heinemann, Stoneham, MA, pp 239–254

    Google Scholar 

  • Frankenberger WT Jr, Emerson KD, Turner DW (1989) In situ bioremediation of an underground diesel fuel spill: a case history. Environ Manage 13:325–332

    Google Scholar 

  • Funk SB, Crawford DL, Roberts DJ, Crawford RL (1995a) Two-stage bioremediation of TNT-contaminated soils. In: Schepart BS (ed) Bioremediation of pollutants in soil and water, ASTM STP 125. American Society for Testing and Materials, Philadelphia, PA, pp 177–189

    Google Scholar 

  • Funk SB, Crawford DL, Crawford RL, Mead G, Davis-Hoover W (1995b) Full-scale anaerobic bioremediation of trinitrotoluene (TNT)-contaminated soil: a U.S. EPA SITE program demonstration. Appl Biochem Biotechnol 51/52:625–633

    CAS  Google Scholar 

  • Gabriel F, Weiss J (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci (USA) 100:6308–6312

    CAS  Google Scholar 

  • Gutnick DL, Rosenberg E (1977) Oil tankers and pollution: a microbiological approach. Ann Rev Microbiol 31:379–396

    CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London: Ser A 147:332–351

    CAS  Google Scholar 

  • Hinchee RE, Ong SK (1992) A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soils. J Air Waste Manage Assoc 42:1305–1312

    PubMed  CAS  Google Scholar 

  • Hinchee RE, Downey DC, Dupont RR, Aggarwal P, Miller P (1991a) Enhancing biodegradation of petroleum hydrocarbons through bioventing. J Haz Mat 27:315–325

    CAS  Google Scholar 

  • Hinchee RE, Wilson JT, Downey DC (eds) (1995) Intrinsic bioremediation. Battelle Press, Columbus, OH

    Google Scholar 

  • Hopkins GD, Semprini L, McCarty PL (1993) Microcosm and in situ field studies of enhanced biotransformation of TCE by phenol-utilizing microorganisms. Appl Environ Microbiol 59:2277–2285

    PubMed  CAS  Google Scholar 

  • Jarvis SA, McFarland VA, Honeycutt ME (1998) Assessment of the effectiveness of composting for the reduction of toxicity and mutagenicity of explosive-contaminated soil. Ecotoxicol Environ Safety 39:131–135

    PubMed  CAS  Google Scholar 

  • Kaake RH, Roberts DJ, Stevens TO, Crawford RL, Crawford DL (1992) Bioremediation of soils contaminated with 2-sec-butyl-4,6-dinitrophenol (dinoseb). Appl Environ Microbiol 58:1683–1689

    PubMed  CAS  Google Scholar 

  • Kao C-M, Borden RC (1994) Enhanced aerobic bioremediation of a gasoline-contaminated aquifer by oxygen-releasing barriers. In: Hinchee RE, Alleman BC, Hopple RE, Miller RN (eds) Hydrocarbon bioremediation. Lewis Publishers, Boca Raton, FL, pp 262–266

    Google Scholar 

  • Kaplan DL (1990) Biotransformation pathways of hazardous energetic organo-nitro compounds. In: Kamely D, Chakrabarty A, Omenn GS (eds) Biotechnology and biodegradation. Portfolio Publishing, Houston, TX, pp 152–182

    Google Scholar 

  • Kästner M, Lotter S, Heerenklage J, Breuer-Jammali M, Stegmann R, Mahro B (1995) Fate of 14C-labeled anthracene and hexadecane in compost manured soil. Appl Microbiol Biotechnol, 43:1128–1135

    PubMed  Google Scholar 

  • Keller L, Brunner PH (1983) Waste-related cadmium cycle in Switzerland. Ecotoxicol Environ Safety 7:141–150

    PubMed  CAS  Google Scholar 

  • Kelly RT, Guerin TF (1995) Feasibility of using hyperaccumulating plants to bioremediate metal-contaminated soil. In: Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics. Battelle, Columbus, OH, pp 25–32

    Google Scholar 

  • Kidd DF (1996) Fracturing. In: Nyer E (ed) In situ treatment technology. Lewis Publishers, Boca Raton, FL, pp 245–269

    Google Scholar 

  • King RB (1992) Practical environmental bioremediation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kner M, Lotter S, Heerenklage J, Breuer-Jammali M, Stegmann R, Mahro B (1995) Fate of 14 C-labeled anthracene and hexadecane in compost-manured soil. Appl Microbiol Botechnol 43:1128–1135

    Google Scholar 

  • Knezevich V, Koren O, Ron EZ, Rosenberg E (2006) Petroleum bioremediation in seawater using guano as the fertilizer. Bioremed J 10:83–91

    CAS  Google Scholar 

  • Korda A, Santas P, Tenente A, Santas R (1997) Petroleum hydrocarbon remediation: sampling and analytical techniques, in situ treatments, and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–686

    PubMed  CAS  Google Scholar 

  • Koren O, Knezvic V, Ron EZ, Rosenberg E (2003) Petroleum bioremediation using water insoluble uric acid as the nitrogen source. Appl Environ Microbiol 69:6337–6339

    PubMed  CAS  Google Scholar 

  • Korus RA (1997) Scale-up of processes for bioremediation. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 856–864

    Google Scholar 

  • Kramer JH, Cullen SJ (1997) Bioventilation and modeling of airflow in soil. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 746–752

    Google Scholar 

  • LaGrega MD, Bunkingham PL, Evans JC (1994) Hazardous waste management. McGraw Hill, New York, NY

    Google Scholar 

  • Lamar RT, Schoenike B, Vanden Wymelenberg A, Stewart P, Dietrich DM, Cullen D (1995) Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl Environ Microbiol 61:2122–2126

    PubMed  CAS  Google Scholar 

  • Lashermes G, Houot S, Barriuso E (2010) Sorption and mineralization of organic pollutants during different stages of composting. Chemosphere 79:455–462

    PubMed  CAS  Google Scholar 

  • Leson G, Winer AM (1991) Biofiltration: an innovative air pollution control technology for VOC emissions. J Air Waste Manage Assoc 41:1045–1054

    PubMed  CAS  Google Scholar 

  • Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol 57:2514–2522

    PubMed  CAS  Google Scholar 

  • Marsh PB, Millner PD, Kla JM (1979) A guide to the recent literature on aspergillosis as caused by Aspergillus fumigatus, a fungus frequently found in self-heating organic matter. Mycopathologica 69:67–81

    CAS  Google Scholar 

  • Marsman EH, Appleman JMM, Urlings LG, Bult BA (1994) Biopur, an innovative bioreactor for the treatment of groundwater and soil vapor contaminated with xenobiotics. In: Hinchee RE, Anderson DB, Metting FB Jr (eds) Applied biotechnology for site remediation. Lewis Publishers, Boca Raton, FL, pp 391–399

    Google Scholar 

  • Matteau Y, Ramsay B (1997) Active compost biofiltration of toluene. Biodegradation 8:135–140

    PubMed  CAS  Google Scholar 

  • McMillin SJ, Kerr JM, Gray NR (1993) Microcosm studies of factors that influence bioremediation of crude oil in soil. In: Proceedings, SPE/EPA exploration and production environmental conference, San Antonio, TX, March 7–10, 1993. Society of Petroleum Engineers, Dallas, TX, pp 389–401

    Google Scholar 

  • Michel FC Jr, Reddy CA, Forney LJ (1995) Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during the composting of yard trimmings. Appl Environ Microbiol 61:2566–2571

    PubMed  CAS  Google Scholar 

  • Millner PD, Marsh PB, Snowden RB, Parr JF (1977) Occurrence of Aspergillus fumigatus during composting of sewage sludge. Appl Environ Microbiol 34:765–772

    PubMed  CAS  Google Scholar 

  • Mueller JG, Lanz SE, Baltmann BO, Chapman PJ (1991) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials: slurry-phase bioremediation. Environ Sci Technol 25:1055–1061

    CAS  Google Scholar 

  • Novotny C, Vyas BR, Erbanova P, Kubatova A, Sasek V (1997) Removal of PCBs by various white-rot fungi in liquid cultures. Folia Microbiol (Praha) 42:136–140

    CAS  Google Scholar 

  • Nyer KE (1992) Groundwater treatment technology. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  • Oh YS, Bartha R (1994) Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors. Appl Environ Microbiol 60:2717–2722

    PubMed  CAS  Google Scholar 

  • Ottengraf SPP (1986) Exhaust gas purification. In: Rehm HJ, Reed G (eds) Biotechnology, vol 8. VCH, Weinheim, pp 301–322

    Google Scholar 

  • Palmer WG, Beaman JR, Walters DM, Creasia DA (1997) Bioavailability of TNT residues in composts of TNT-contaminated soil. J Toxicol Environ Health 51:97–108

    PubMed  CAS  Google Scholar 

  • Paszczynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Progr 11:368–379

    CAS  Google Scholar 

  • Pol A, Op den Camp HJ, Mees SG, Kersten MA, van der Drift C (1994) Isolation of a demethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112

    PubMed  CAS  Google Scholar 

  • Pritchard PH, Mueller JG, Rogers JC, Kremer VF, Glaser JA (1992) Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335

    CAS  Google Scholar 

  • Raymond RL, Jamison VW, Hudson JO (1975) Beneficial stimulation of bacterial activity in groundwater containing petroleum products, API Publication 4427. American Petroleum Institute, Washington, DC

    Google Scholar 

  • Rifai HS, Borden RC, Wilson JT, Ward CW (1995) Intrinsic bioattenuation for subsurface restoration. In: Hinchee RE, Wilson JT, Downey DC (eds) Intrinsic bioremediation. Battelle, Columbus, OH, pp 1–29

    Google Scholar 

  • Ron EZ, Rosenberg E (2009) Role of fertilizers: biostimulation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg

    Google Scholar 

  • Rosenberg E, Legmann R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Bittan-Banin G, Shon A, Hershko G, Levy I, Ron EZ (2010) The phage-driven microbial loop in petroleum bioremediation. Microb Biotechnol 3:467–472

    PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    PubMed  CAS  Google Scholar 

  • Sayles GD, Suidan MT (1993) Biological treatment of industrial and hazardous wastewater. In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGraw Hill, New York, NY, pp 245–268

    Google Scholar 

  • Schwab AP, Banks MK (1994) Biologically mediated dissipation of polyaromatic hydrocarbon in the root zone. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, vol 563, ACS Symposium Series. American Chemical Society, Washington, DC, pp 132–141

    Google Scholar 

  • Shuttleworth KL, Cerniglia CE (1997) Practical methods for the isolation of polycyclic aromatic hydrocarbon (PAH)-degrading microorganisms and the determination of PAH mineralization and biodegradation intermediates. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 766–775

    Google Scholar 

  • Tyre BW, Watts RJ, Miller GC (1991) Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J Environ Qual 20:832–838

    CAS  Google Scholar 

  • Unterman R, Folsom BR, Togna AP (1996) Mechanically mixed packed bed reactor. U.S. patent 5,494,574. U.S. Patent Office, Washington, DC

    Google Scholar 

  • Valo R, Salkinoja-Salonen M (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25:68–75

    CAS  Google Scholar 

  • van der Meer JR, Werlen C, Nishino S, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism lead to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193

    PubMed  Google Scholar 

  • Voice TC, Zhao X, Shi J, Hickey RF (1995) Biological activated carbon fluidized-bed system to treat gasoline-contaminated groundwater. In: Hinchee RE, Sayles GD, Skeen RS (eds) Biological unit processes for hazardous waste treatment. Battelle, Columbus, OH, pp 29–36

    Google Scholar 

  • Wackett LP (1997) Biodegradation of halogenated solvents. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 784–789

    Google Scholar 

  • Walter MV (1997) Bioaugmentation. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 753–757

    Google Scholar 

  • Wiedermeier TH, Swanson MA, Wilson JT, Kampbell DH, Miller RN, Hansen JE (1995) Patterns of intrinsic bioremediation at two U.S. Air Force bases. In: Hinchee RE, Wilson JT, Downey DC (eds) Intrinsic bioremediation. Battelle, Columbus, OH, pp 31–51

    Google Scholar 

  • Williams RT, Ziegenfuss PS, Sick WE (1992) Composting of explosives and propellant-contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9:137–144

    Google Scholar 

  • Wu WM, Bhatnagar L, Zeikus JG (1993) Performance of anaerobic granules for degradation of pentachlorophenol. Appl Environ Microbiol 59:389–397

    PubMed  CAS  Google Scholar 

  • Xu R, Lau NLA, Ng KL, Obbard JP (2004) Application of a slow-release fertilizer for oil bioremediation in beach sediment. J Environ Qual 33:1210–1216

    PubMed  CAS  Google Scholar 

  • Xu R, Lau AN, Lim YG, Obbard JP (2005) Bioremediaton of oilcontaminated sediments on an inter-tidal shoreline using a slowrelease fertilizer and chitosan. Mar Pollut Bull 51:1062–1070

    PubMed  CAS  Google Scholar 

  • Yudelson JM, Tinari PD (1995) Economics of biofiltration for remediation projects. In: Hinchee RE, Sayles GD, Skeen RS (eds) Biological unit processes for hazardous waste treatment. Battelle, Columbus, OH, pp 205–209

    Google Scholar 

Additional References for Specific Topics Biofiltration

  • Alonso C, Smith PJ, Suidan MT, Sorial GA, Biswas P, Smith FL, Brenner RC (1995) Gas treatment in trickle-bed biofilters: a modeling approach and experimental study. In: Proceedings of the water environmental federation 68th annual conference and exposition, Miami Beach, FL, October 21–25

    Google Scholar 

  • Alonso C, Suidan MT, Kim BR, Kim BJ (1996). Dynamical mathematical model for the biodegradation of voc's in a biofilter: biomass accumulation study. In: Proceedings of the water environmental federation 69th annual conference and exposition, Dallas, TX, October 5–9

    Google Scholar 

  • Alonso C, Suidan MT, Sorial GA, Smith FL, Biswas P, Smith PJ, Brenner RC (1997a) Gas treatment in trickle-bed biofilters: biomass, how much is enough? Biotechnol Bioeng 54:583–594

    PubMed  CAS  Google Scholar 

  • Alonso C, Zhu X, Suidan MT, Kim BR, Kim BJ (1997b) Effect of nitrate on VOC removal in a gas phase biofilter. In: Proceedings of the water environmental federation 70th annual conference and exposition, Chicago, IL

    Google Scholar 

  • Alonso C, Zhu X, Suidan MT, Kim BR, Kim BJ (1997c) Nutrients and electron acceptors effect in a vapor phase bioreactor. In: Proceedings of the in situ and on-site bioremediation, 4th iinternational symposium, New Orleans, LA

    Google Scholar 

  • Apel WA, Turick CE (1993) The use of denitrifying bacteria for the removal of nitrogen oxides from combustion gases. Fuel 72(12):1715–1718

    CAS  Google Scholar 

  • Apel WA, Kant WD, Colwell FS, Singleton B, Lee BD, Andrews GE, Espinosa AM, Johnson EG (1994a) Chapter 9. Removal of gasoline vapors from air streams by biofiltration. In: Tedder DW, Pohland FG (eds) Emerging technologies in hazardous waste management, IV. American Chemical Society, Washington DC, pp 142–159

    Google Scholar 

  • Apel WA, Walton MR, Dugan PR (1994b) An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams. Fuel Process Technol 40:139–149

    CAS  Google Scholar 

  • Apel WA, Barnes JM, Barrett KB (1995a) Biofiltration of nitrogen oxides from fuel combustion gas streams. In: Proceedings of the 88th annual meeting of the air and waste management association, Paper 95-TP9C.04, San Antonio, TX, June 1995

    Google Scholar 

  • Apel WA, Lee BD, Walton MR, Cook LL, Dinerstein KB (1995b) Removal of α-pinene from off-gases by biofiltration. In: Proceedings of the 88th annual meeting of the air and waste management association. Paper No. 95-TP9C.07, San Antonio, TX, June 1995

    Google Scholar 

  • Barnes JM, Apel WA, Barrett KB (1995) Removal of nitrogen oxides from gas streams using biofiltration. J Haz Mat 41:315–326

    CAS  Google Scholar 

  • Bohn H (1992) Consider biofiltration for decontaminating gases. Chem Eng Progr 88(4):34–40

    CAS  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1998) Biofiltration for air pollution control. CRC Lewis Publishers, Boca Raton, FL, 320 pp

    Google Scholar 

  • Lee BD, Apel WA, Barnes JM, Walton MR, Barrett KB, Cook LL (1995) Biofiltration using different modes of biodegradation. In: Proceedings of the 1995 conference on biofiltration, University of Southern California, Los Angeles, CA, October 1995, pp 309–316

    Google Scholar 

  • Lee BD, Apel WA, Cook LL, Nichols KM (1996) Effect of bed medium moisture on alpha-pinene removal by biofilters. In: Proceedings of the 1996 conference on biofiltration. University of Southern California, Los Angeles, CA. October 1996

    Google Scholar 

  • Lee BD, Apel WA, Walton MR, Cook LL (1996) Treatment of methanol contaminated air streams using biofiltration. In: Proceedings of the 89th annual meeting of the air and waste management association. Paper 96-RP87C.03. Nashville, TN. June 1996

    Google Scholar 

  • Lee BD, Apel WA, Walton MR (1997) Utilization of toxic gases and vapors as alternate electron acceptors in biofilters. In: Proceedings of the 90th annual meeting of the air and waste management association. Paper 97-WA71A.05, Toronto, Canada, June 1997

    Google Scholar 

  • Smith FL, Sorial GA, Suidan MT, Breen AW, Biswas P, Brenner RC (1996) Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings. Environ Sci Technol 30:1744–1751

    CAS  Google Scholar 

  • Sorial GA, Smith FL, Suidan MT, Biswas P (1995) Evaluation of trickle bed biofilter media for toluene removal. J Air Waste Manage Assoc 45:801–810

    CAS  Google Scholar 

  • Zhu X, Rihn MJ, Suidan MT, Kim BJ, Kim BR (1996a) The effect of nitrate on voc removal in trickle bed biofilters. Water Sci Technol 34(3–4):573–581

    CAS  Google Scholar 

  • Zhu XM, Rihn J, Suidan MT, Kim BJ, Kim BR, Paik BC (1996b) Role of nitrate in trickle bed biofilters: nutrient or electron acceptor. In: Proceedings of the water environmental federation 69th annual conference and exposition, Dallas, TX, October 5–9

    Google Scholar 

Bioventing

  • Hinchee RE (1993) Bioventing of petroleum hydrocarbons. In: Handbook of bioremediation. Lewis Publication, Boca Raton, FL, pp 39–59

    Google Scholar 

  • Hinchee RE, Ong SK, Hoeppel R (1991) A treatability test for bioventing. In: Proceedings of the 84th annual meeting and exhibition, air and waste management association, Vancouver, BC, pp 91–19.4

    Google Scholar 

  • Hinchee RE, Ong SK, Miller RN, Downey DC (1992) Report to AFCEE. Brooks AFB, TX

    Google Scholar 

  • Hoeppel RE, Hinchee RE, Arthur MF (1991) Bioventing soils contaminated with petroleum hydrocarbons. J Ind Microbiol 8:141–146

    CAS  Google Scholar 

  • Leeson A, Hinchee RE (1996a) Principles and practices of bioventing, vol 2: bioventing principles, vol 2. Battelle Memorial Institute for U.S. Air Force and U.S EPA, Columbus, OH

    Google Scholar 

  • Leeson A, Hinchee RE (1996b) Principles and practices of bioventing, vol 2: bioventing design, vol 2. Battelle Memorial Institute for U.S. Air Force and U.S EPA, Columbus, OH

    Google Scholar 

  • Norris RD, Hinchee RE, Brown RA, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bower EJ, Borden RC, Vogel TM, Thomas JM, Ward CH (1994) Handbook of bioremediation. CRC Press, Boca Raton, FL

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (1991a) Guide for conducting treatability studies under CERCLA: aerobic biodegradation remedy screening. Office of Emergency and Remedial Response, Washington, DC, EPA/540/2-91/013A

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (1991b) Soil vapor extraction technology: reference handbook. Office of Research and Development, Cincinnati, OH, EPA/540/2-91/003

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (1991c) Guide for conducting treatability studies under CERCLA: soil vapor extraction. Office of Emergency and Remedial Response, Washington, DC, EPA/540/2-91/019A

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (1993) Decision-support software for soil vapor extraction technology application: hyperVentilate. Office of Research and Development, Cincinnati, OH, EPA/600/R-93/028

    Google Scholar 

  • USAEC (1997) Bioventing of POL contaminated soils. In: Innovative technology demonstration, evaluation and transfer activities, FY 96 annual report, report no. SFIM-AEC-ET-CR-97013, pp 75–76

    Google Scholar 

  • Wisconsin Department of Natural Resources (DNR) (1993) Guidance for design, installation and operation of soil venting systems. Emergency and Remedial Response Section, Madison, WI, PUBL-SW185-93

    Google Scholar 

Phytoremediation

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Crawford, R.L., Rosenberg, E. (2013). Bioremediation. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_30

Download citation

Publish with us

Policies and ethics