Skip to main content

Biosurfactants

  • Reference work entry
The Prokaryotes

Abstract

Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids, and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S, and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (1) increasing the surface area of hydrophobic water-insoluble growth substrates, (2) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces, and (3) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water; enhanced oil recovery; replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels, and machinery; use in the detergent industry; formulations of herbicides and pesticides; and formation of stable oil-in-water emulsions for the food and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WR, Meyer H, Yakimov M (1998) Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim Biophys Acta 1393(1):57–62

    PubMed  CAS  Google Scholar 

  • Appaiah AKA, Karanth NGK (1991) Insecticide specific emulsifier production by hexachlorocyclohexane-utilizing Pseudomonas tralucida Ptm+ strain. Biotechnol Lett 13:371–374

    CAS  Google Scholar 

  • Arima K, Kahinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    PubMed  CAS  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45(1–2):162–168

    CAS  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1998) Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J Appl Microbiol 84:769–776

    PubMed  CAS  Google Scholar 

  • Ashtaputre AA, Shah AK (1995) Emulsifying property of a viscous exopolysaccharide from Sphingomonas paucimobilis. World J Microbiol Biotechnol 11:219–222

    CAS  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible use in microbial enhanced oil recovery and oil pollution remediation: a review. Biosource Technol 51:1–12

    CAS  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron E, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    PubMed  CAS  Google Scholar 

  • Beebe JL, Umbreit WW (1971) Extracellular lipid of Thiobacillus thiooxidans. J Bacteriol 108:612–615

    PubMed  CAS  Google Scholar 

  • Belsky I, Gutnick DL, Rosenberg E (1979) Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett 101:175–178

    PubMed  CAS  Google Scholar 

  • Bernheimer AW, Avigad LS (1970) Nature and properties of a cytological agent produced by Bacillus subtilis. J Gen Microbiol 61:361–369

    PubMed  CAS  Google Scholar 

  • Bohringer J, Fischer D, Mosler G, Hengge-Aronis R (1995) UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J Bacteriol 177:413–422

    PubMed  CAS  Google Scholar 

  • Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463

    PubMed  CAS  Google Scholar 

  • Borchert S, Stachelhaus T, Marahiel MA (1994) Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis. J Bacteriol 176:2458–2462

    PubMed  CAS  Google Scholar 

  • Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155–7163

    PubMed  CAS  Google Scholar 

  • Bruheim P, Bredholt H, Eimhjellen K (1997) Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43(1):17–22

    PubMed  CAS  Google Scholar 

  • Bunster L, Fokkema NJ, Shippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1434–1435

    Google Scholar 

  • Burd G, Ward OP (1996) Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can J Microbiol 42:243–252

    PubMed  CAS  Google Scholar 

  • Calvo C, Martinez-Checa F, Mota A, Bejar V, Quesada E (1998) Effect of cations, pH and sulfate content on the viscosity and emulsifying activity on the Halomonas eurihalina. J Ind Microbiol Biotechnol 20:205–209

    CAS  Google Scholar 

  • Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425

    PubMed  CAS  Google Scholar 

  • Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberon-Chavez D (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451

    PubMed  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1984) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    Google Scholar 

  • Cooper DG, Paddock DA (1983) Torulopsis petrophilum and surface activity. Appl Environ Microbiol 46:1426–1429

    PubMed  CAS  Google Scholar 

  • Cooper DG, Zajic JE (1980) Surface active compounds from microorganisms. Adv Appl Microbiol 26:229–253

    CAS  Google Scholar 

  • Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin of B subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  • Cooper DG, Liss SN, Longay R, Zajic JE (1989) Surface activities of Mycobacterium and Pseudomonas. J Ferment Technol 59:97–101

    Google Scholar 

  • Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445

    PubMed  CAS  Google Scholar 

  • Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:21–31

    Google Scholar 

  • Cutler AJ, Light RJ (1979) Regulation of hydroxydocosanoic and sophoroside production in Candida bogoriensis by the level of glucose and yeast extract in the growth medium. J Biol Chem 254:1944–1950

    PubMed  CAS  Google Scholar 

  • Dahan O (1998) Isolation and characterization of alasan mutants in Acinetobacter radioresistens. MSc, Thesis, Tel Aviv University

    Google Scholar 

  • Davila AM, Marchal R, Vandecasteele JP (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl Microbiol Biotechnol 47:496–501

    CAS  Google Scholar 

  • De Acevedo GT, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 16:17–22

    Google Scholar 

  • Desai J, Banat I (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–48

    PubMed  CAS  Google Scholar 

  • Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62(6):1908–1912

    PubMed  CAS  Google Scholar 

  • Espuny MJ, Egido S, Rodon I, Manresa A, Mercade ME (1996) Nutritional requirements of a biosurfactant producing strain Rhodococcus s p 51 T7. Biotechnol Lett 18:521–526

    CAS  Google Scholar 

  • Fabret C, Quentin Y, Guiseppi A, Busuttil J, Haiech J, Denizot F (1995) Analysis of errors in finished DNA sequences: the surfactin operon of Bacillus subtilis as an example. Microbiology 141:345–350

    PubMed  CAS  Google Scholar 

  • Fattom A, Shilo M (1985) Production of emulcyan by Phormidium J-1: its function and activity. FEMS Microbiol Ecol 1:1–7

    Google Scholar 

  • Fiebig R, Schulze D, Chung JC, Lee ST (1997) Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 8:67–75

    CAS  Google Scholar 

  • Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Biotechnol 10:208–217

    PubMed  CAS  Google Scholar 

  • Fraenkel DG (1992) Genetics and intermediary metabolism. Annu Rev Genet 26:159–177

    PubMed  CAS  Google Scholar 

  • Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta 1205:19–28

    PubMed  CAS  Google Scholar 

  • Goldenberg-Dvir V (1998) A new bioemulsifier produced by the oil-degrading Acinetobacter junii V-26. MSc, thesis, Tel Aviv University

    Google Scholar 

  • Goldman S, Shabtai Y, Rubinovitz C, Rosenberg E, Gutnick DL (1982) Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting materials. Appl Environ Microbiol 44:165–170

    PubMed  CAS  Google Scholar 

  • Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KJ (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(2):339–348

    PubMed  Google Scholar 

  • Grau A, Gomez Fernandez JC, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta 1418:307–319

    PubMed  CAS  Google Scholar 

  • Grossman AD (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29:477–508

    PubMed  CAS  Google Scholar 

  • Guerra-Santos LH, Kappeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    CAS  Google Scholar 

  • Gunjar M, Khire JM, Khan MI (1995) Bioemulsifier production by Bacillus stearothermophilus VR8 isolate. Lett Appl Microbiol 21:83–86

    Google Scholar 

  • Gutierrez T, Mulloy B, Bavington C, Black K, Green DH (2007) Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter. Appl Microbiol Biotechnol 76:1017–1026

    PubMed  CAS  Google Scholar 

  • Hauser G, Karnovsky ML (1954) Studies on the production of glycolipid by Pseudomonas aeruginosa. J Bacteriol 68:645–654

    PubMed  CAS  Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692

    Google Scholar 

  • Horowitz S, Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol 7:45–52

    PubMed  CAS  Google Scholar 

  • Inoue S, Itoh S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentation. Biotechnol Lett 4:308–312

    Google Scholar 

  • Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271

    PubMed  CAS  Google Scholar 

  • Itoh S, Inoue S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Appl Environ Microbiol 43:1278–1283

    Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:1233–1235

    Google Scholar 

  • Kaeppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    Google Scholar 

  • Kaeppeli O, Finnerty WR (1980) Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol Bioeng 22:495–501

    CAS  Google Scholar 

  • Kaeppeli O, Walther P, Mueller M, Fiechter A (1984) Structure of cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138:279–282

    CAS  Google Scholar 

  • Kaplan N, Rosenberg E (1982) Exopolysaccharide distribution and bioemulsifier production in Acinetobacter calcoaceticus BD4 and BD413. Appl Environ Microbiol 44:1335–1341

    PubMed  CAS  Google Scholar 

  • Kaplan N, Jann B, Jann K (1985) Structural studies on the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur J Biochem 152:453–458

    PubMed  CAS  Google Scholar 

  • Kaplan N, Zosim Z, Rosenberg E (1987) Acinetobacter calcoaceticus BD4 emulsan: reconstitution of emulsifying activity with pure polysaccharide and protein. Appl Environ Microbiol 53:440–446

    PubMed  CAS  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions. Bacteriol Rev 41:449–458

    PubMed  CAS  Google Scholar 

  • Kelkar DS, Kumar AR, Zinjarde SS (2007) Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester. Bioresour Technol 98:1505–1508

    PubMed  CAS  Google Scholar 

  • Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    PubMed  CAS  Google Scholar 

  • Klekner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Biosurfactants: production, properties, applications, vol 48, Surfactant science series. Marcel Dekker, New York, pp 329–372

    Google Scholar 

  • Koch AK, Kaeppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    PubMed  CAS  Google Scholar 

  • Konz D, Doekel A, Marahiel MA (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140

    PubMed  CAS  Google Scholar 

  • Krauss EM, Chan SI (1983) Complexation and phase transfer of nucleotides by gramicidin S. Biochemistry 22:4280–4285

    PubMed  CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl Environ Microbiol 44:864–870

    PubMed  CAS  Google Scholar 

  • Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily–the phosphopantetheinyl transferases. Chem Biol 3:923–936

    PubMed  CAS  Google Scholar 

  • Lang S, Philip JC (1998) Surface active lipids in Rhodococci. Anton Leeuw Int 74:59–70

    CAS  Google Scholar 

  • Lang S, Wagner F (1987) Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology, vol 25, Surfactant science series. Marcel Dekker, New York, pp 21–47

    Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    PubMed  CAS  Google Scholar 

  • Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343

    PubMed  CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    PubMed  CAS  Google Scholar 

  • Lazazzera BA, Kurtser IG, McQuade RS, Grossman AD (1999) An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 181:5193–5200

    PubMed  CAS  Google Scholar 

  • Li ZY, Lang S, Wagner F, Witte L, Wray V (1984) Formation and identification of interfacial-active glycolipids from resting microbial cells of Arthrobacter sp. and potential use in tertiary oil recovery. Appl Environ Microbiol 48:610–617

    PubMed  CAS  Google Scholar 

  • Lin SC (1996) Biosurfactants: recent advances. J Chem Technol Biotechnol 66(2):109–120

    CAS  Google Scholar 

  • Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38

    PubMed  CAS  Google Scholar 

  • Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388

    PubMed  CAS  Google Scholar 

  • Liu L, Nakano MM, Lee OH, Zuber P (1996) Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 178:5144–5152

    PubMed  CAS  Google Scholar 

  • Liu X, Ren B, Chen M, Wang H, Kokare CR, Zhou X, Wang J, Dai H, Song F, Liu M, Wang J, Wang S, Zhang L (2010) Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl Microbiol Biotechnol 5:1881–1893

    Google Scholar 

  • Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356

    PubMed  CAS  Google Scholar 

  • MacDonald CR, Cooper DG, Zajic JE (1981) Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 41:117–123

    PubMed  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18(1):37–42

    CAS  Google Scholar 

  • Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai F (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70:254–259

    PubMed  CAS  Google Scholar 

  • Marahiel MA (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:4561–4567

    Google Scholar 

  • Marahiel MA, Nakano MM, Zuber P (1993) Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7:631–636

    PubMed  CAS  Google Scholar 

  • Marin M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44:660–667

    CAS  Google Scholar 

  • Matsuyama T, Sogawa M, Yano I (1991) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53:1186–1188

    Google Scholar 

  • Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684

    PubMed  CAS  Google Scholar 

  • Miller RM, Zhang Y (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. Method Biotechnol 2:59–66

    CAS  Google Scholar 

  • Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778

    PubMed  CAS  Google Scholar 

  • Nakano MM, Corbel N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321

    PubMed  CAS  Google Scholar 

  • Nakayama S, Takahashi S, Hirai M, Shoda M (1997) Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Appl Microbiol Biotechnol 48:80–82

    CAS  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    PubMed  CAS  Google Scholar 

  • Navon-Venezia S, Banin E, Ron EZ, Rosenberg E (1998) The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl Microbiol Biotechnol 49:382–384

    CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    PubMed  CAS  Google Scholar 

  • Neu TR, Poralla K (1990) Emulsifying agent from bacteria isolated during screening for cells with hydrophobic surfaces. Appl Microbiol Biotechnol 32:521–525

    CAS  Google Scholar 

  • Neu TR, Dengler T, Jann B, Poralla K (1992) Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J Gen Microbiol 138:2531–2537

    PubMed  CAS  Google Scholar 

  • Neufeld RJ, Zajic JE (1984) The surface activity of Acinetobacter calcoaceticus sp. 2CA2. Biotechnol Bioeng 26:1108–1114

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    PubMed  CAS  Google Scholar 

  • Parra JL, Guinea J, Manresa MR, Mercade ME, Comelles F, Bosch MP (1989) Chemical characterization and physico-chemical behaviour of biosurfactants. J Am Oil Chem Soc 66:141–145

    CAS  Google Scholar 

  • Patel MN, Gopinathan KP (1986) Lysozyme-sensitive bioemulsifier for immiscible organophosphorus pesticides. Appl Environ Microbiol 52:1224–1226

    PubMed  CAS  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    PubMed  CAS  Google Scholar 

  • Persson A, Oesterberg E, Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl Microbiol Biotechnol 29:1–4

    CAS  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    PubMed  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    PubMed  CAS  Google Scholar 

  • Pruthi V, Cameotra SS (1997) Production of a biosurfactant exhibiting excellent emulsification and surface active properties by Serratia marcescens. World J Microbiol Biotechnol 13(1):133–135

    CAS  Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503

    CAS  Google Scholar 

  • Rau U, Manzke C, Wagner F (1996) Influence of substrate supply on the production of sophorose lipids by Candida bombicola ATCC 22214. Biotechnol Lett 18:149–154

    CAS  Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-alkanes. Adv Biochem Eng 19:173–181

    Google Scholar 

  • Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole J (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193

    PubMed  CAS  Google Scholar 

  • Richter M, Willey M, Suessmuth R, Jung G, Fiedler HP (1998) Streptofactin, a novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tue 901/8c. FEMS Microbiol Lett 163(2):165–171

    CAS  Google Scholar 

  • Ristau E, Wagner F (1983) Formation of novel anionic trehalose-tetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett 5:95–100

    CAS  Google Scholar 

  • Robinson K, Ghosh M, Shi Z (1996) Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant. Water Sci Technol 34:303–309

    CAS  Google Scholar 

  • Ron E, Rosenberg E (2010a) Role of biosurfactants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg

    Google Scholar 

  • Ron E, Rosenberg E (2010b) Protein emulsifiers. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg

    Google Scholar 

  • Rosenberg E (1993) Exploiting microbial growth on hydrocarbon: new markets. Trends Biotechnol 11:419–424

    Google Scholar 

  • Rosenberg E, Kaplan N (1987) Surface-active properties of Acinetobacter expolysaccharides. In: Inouye M (ed) Bacteria outer membranes as model systems. Wiley, New York, pp 311–342

    Google Scholar 

  • Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, MA, pp 100–124

    Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1998) Surface active polymers from the genus Acinetobacter. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 281–291

    Google Scholar 

  • Rosenberg E, Ron EZ (1999) High and low molecular mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Perry A, Gibson DT, Gutnick D (1979a) Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate. Appl Environ Microbiol 37:409–413

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979b) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Gottlieb A, Rosenberg M (1983) Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect Immun 39:1024–1028

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988a) Production of biodispersan by Acinetobacter calcoaceticus A2, Appl Environ Microbiol 54:317–322

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988b) Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54:323–326

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Schwartz Z, Tenenbaum A, Rubinovitz C, Legmann R, Ron EZ (1989) A microbial polymer that changes the surface properties of limestone: effect of biodispersan in grinding limestone and making paper. J Dispers Sci Technol 10:241–250

    CAS  Google Scholar 

  • Rosenberg E, Barkay T, Navon-Venezia S, Ron EZ (1999) Role of Acinetobacter bioemulsans in petroleum degradation. In: Fass R et al (eds) Novel approaches for bioremediation of organic pollution. Kluwer/Plenum, New York, pp 171–180

    Google Scholar 

  • Rubinovitz C, Gutnick DL, Rosenberg E (1982) Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J Bacteriol 152:126–132

    PubMed  CAS  Google Scholar 

  • Sapir S (1998) Genes involved in growth of Acinetobacter junii strain V26 on hexadecane. MSc, Thesis, Tel Aviv University

    Google Scholar 

  • Sar N, Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strains. Curr Microbiol 9:309–314

    CAS  Google Scholar 

  • Sekelsky AM, Shreve GS (1999) Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnol Bioeng 63:401–409

    PubMed  CAS  Google Scholar 

  • Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217

    PubMed  CAS  Google Scholar 

  • Sim L, Ward OP, Li ZY (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biol 19:232–238

    CAS  Google Scholar 

  • Solomon JM, Magnuson R, Srivastava A, Grossman AD (1995) Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 9:547–558

    PubMed  CAS  Google Scholar 

  • Stark M (1996) Analysis of the exopolysaccharide gene cluster from Acinetobacter calcoaceticus BD4. PhD thesis, Tel Aviv University

    Google Scholar 

  • Sullivan ER (1998) Molecular genetics of biosurfactant production. Curr Opin Biotechnol 9:263–269

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hayashi K, Fujikawa K, Tsukamoto K (1965) The chemical structure of polymyxin E the identities of polymyxin E1 with colistin A and polymyxin E2 with colistin. J Biol Chem 57:226–227

    CAS  Google Scholar 

  • Suzuki T, Tanaka K, Matsubara J, Kimoshita S (1969) Trehalose lipid and branched-hydroxy fatty acids formed by bacteria grown on n-alkanes. Agric Biol Chem 33:1619–1625

    CAS  Google Scholar 

  • Taylor WH, Juni E (1961) Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Characterization of the organism and polysaccharide. J Bacteriol 81:688–693

    PubMed  CAS  Google Scholar 

  • Toren A, Orr E, Paitan Y, Ron EZ, Rosenberg E (2002a) The active component of the bioemulsifier alasan from Acinetobacter radioresistens KA53 is an OmpA-like protein. J Bacteriol 184:165–170

    PubMed  CAS  Google Scholar 

  • Toren A, Ron EZ, Bekerman R, Rosenberg E (2002b) Solubilization of polyaromatic hydrocarbons by recombinant bioemulsifier AlnA. Appl Microbiol Biotechnol 59:580–584

    PubMed  CAS  Google Scholar 

  • Trebbau-de AG, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 16:1–7

    Google Scholar 

  • Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502

    PubMed  Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed  Google Scholar 

  • Volkering F, Breure A, Rulkens W (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    PubMed  CAS  Google Scholar 

  • Wagner F, Behrendt V, Bock H, Kretschmer A, Lang S, Syldatk C (1983) Production and chemical characterization of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons. In: Zajic JE et al (eds) Microbial enhanced oil recovery. Pennwell, Tulsa, pp 55–60

    Google Scholar 

  • Wang SD, Wand DIC (1990) Mechanisms for biopolymer accumulation in immobilized Acinetobacter calcoaceticus system. Biotechnol Bioeng 36:402–410

    PubMed  CAS  Google Scholar 

  • Wei YH, Chu IM (1998) Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb Technol 22:724–728

    CAS  Google Scholar 

  • Yakimov MM, Golyshin PN (1997) ComA-dependent transcriptional activation of lichenysin A synthetase promoter in Bacillus subtilis cells. Biotechnol Prog 13:757–761

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Kroger A, Slepak TN, Giuliano L, Timmis KN, Golyshin PN (1998) A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim Biophys Acta 1399:141–153

    PubMed  CAS  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    PubMed  CAS  Google Scholar 

  • Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61(6):2247–2251

    PubMed  CAS  Google Scholar 

  • Zhou QH, Kosaric N (1995) Utilization of canola oil and lactose to produce biosurfactant with Candida bombicola. J Am Oil Chem Soc 72:67–71

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rosenberg, E., Ron, E.Z. (2013). Biosurfactants. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_29

Download citation

Publish with us

Policies and ethics