Skip to main content

Theory and Principles of Operation of Nanophotonic Functional Devices

  • Reference work entry
  • First Online:
Handbook of Nano-Optics and Nanophotonics

Abstract

In a nanometric light-matter coupling system, characteristic features, such as local excitation, unidirectional energy transfer, and state-filling effect, can be used for signal transfer and control. In this chapter, optical near-field coupling is formulated in detail by using the second quantization, and then, switching, logic, and some typical operations are discussed theoretically and numerically as examples of nanophotonic functional devices the above features used. Especially, coherence and/or decoherence of matter excitation and spatial symmetry of a system play important roles in such device operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco Visual Networking Index: Forecast and Methodology, 2010–2015 (2011), http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

  2. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Q. Electron. 8, 839 (2002)

    Article  Google Scholar 

  3. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971)

    Google Scholar 

  4. J.W. Goodmann, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, Tokyo, 1996)

    Google Scholar 

  5. M. Ohtsu (ed.), Progress in Nanophotonics 1 (Springer, Berlin/Heidelberg, 2011), pp. 1–58

    Google Scholar 

  6. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243 (2006)

    Article  ADS  Google Scholar 

  7. T. Yatsui, S. Sangu, K. Kobayashi, T. Kawazoe, M. Ohtsu, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 94, 083113 (2009)

    Article  ADS  Google Scholar 

  8. M. Naruse, T. Kawazoe, T. Yatsui, S. Sangu, K. Kobayashi, M. Ohtsu, Architectural approach to nanophotonics for information and communication systems, in Progress in Nano-Electro-Optics V, ed. by M. Ohtsu (Springer, Berlin/Heidelberg, 2006), pp. 163–182

    Chapter  Google Scholar 

  9. N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, M. Ohtsu, Opt. Expr. 18, 7497 (2010)

    Article  Google Scholar 

  10. W. Nomura, T. Yatsui, Y. Yanase, K. Suzuki, M. Fujita, A. Kamata, M. Naruse, M. Ohtsu, Appl. Phys. B 99, 75 (2010)

    Article  ADS  Google Scholar 

  11. T. Yatsui, K. Hirata, Y. Tabata, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Nanotechnology 21, 355303 (2010)

    Article  ADS  Google Scholar 

  12. T. Yatsui, K. Hirata, Y. Tabata, Y. Miyake, Y. Akita, M. Yoshimoto, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 103, 527 (2011)

    Article  ADS  Google Scholar 

  13. T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104, 747 (2011)

    Article  ADS  Google Scholar 

  14. I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, G.L. Snider, Science 284, 289 (1999)

    Article  ADS  Google Scholar 

  15. M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999)

    Book  Google Scholar 

  16. Th. Förster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, ed. by O. Sinanoğlu (Academic, London, 1965), pp. 93–137

    Google Scholar 

  17. S. Sangu, K. Kobayashi, T. Kawazoe, A. Shojiguchi, M. Ohtsu, J. Appl. Phys. 93, 2937 (2003)

    Article  ADS  Google Scholar 

  18. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002)

    Article  ADS  Google Scholar 

  19. K. Cho, Optical Responses of Nanostructures: Microscopic Nonlocal Theory (Springer, Tokyo, 2003)

    Book  Google Scholar 

  20. C. Cohen-Tannoudji, J. Depont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York, 1989)

    Google Scholar 

  21. D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic, London, 1984)

    Google Scholar 

  22. R. Guy Woolley, Handbook of Molecular Physics and Quantum Chemistry, Vol.1 (Wiley, Chichester, 2003)

    Google Scholar 

  23. J. Knoester, S. Mukamel, Phys. Rev. A 39, 1899 (1989)

    Article  ADS  Google Scholar 

  24. J.R. Zurita-Sanchez, L. Novotny, J. Opt. Soc. Am. B 19, 1355 (2002)

    Article  ADS  Google Scholar 

  25. K. Kobayashi, M. Ohtsu, J. Microsc. 194, 249 (1999)

    Article  Google Scholar 

  26. K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu, Phys. Rev. A 63, 013806 (2001)

    Article  ADS  Google Scholar 

  27. S. Sangu, K. Kobayashi, M. Ohtsu, J. Microsc. 202, 279 (2001)

    Article  MathSciNet  Google Scholar 

  28. M. Ohtsu, K. Kobayashi, Optical Near Fields: Electromagnetic Phenomena in Nanometric Space (Springer, Tokyo, 2003)

    Google Scholar 

  29. E. Hanamura, Phys. Rev. B 37, 1273 (1988)

    Article  ADS  Google Scholar 

  30. K. Kobayashi, S. Sangu, M. Ohtsu, Quantum theoretical approach to optical near-fields and some related applications, in Progress in Nano-Electro-Optics I, ed. by M. Ohtsu (Springer, Tokyo, 2003), pp. 119–158

    Chapter  Google Scholar 

  31. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1995)

    Book  Google Scholar 

  32. Y. Masumoto, M. Ikezawa, B.-R. Hyun, K. Takemoto, M. Furuya, Phys. Status Solidi b 224, 613 (2001)

    Article  ADS  Google Scholar 

  33. K. Kobayashi, T. Kawazoe, S. Sangu, M. Ohtsu, Technical Digest of the 4th Pacific Rim Conference on Laser and Electro-Optics (Makuhari Messe, Japan, 2001), pp. I192–I193

    Google Scholar 

  34. N. Sakakura, Y. Masumoto, Phys. Rev. B 56, 4051 (1997)

    Article  ADS  Google Scholar 

  35. T. Kataoka, T. Tokizaki, A. Nakamura, Phys. Rev. B 48, 2815 (1993)

    Article  ADS  Google Scholar 

  36. H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  37. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995)

    Book  Google Scholar 

  38. K. Akahane, N. Ohtani, Y. Okada, M. Kawabe, J. Cryst. Growth 245, 31 (2002)

    Article  ADS  Google Scholar 

  39. W.I. Park, G.-C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 15, 526 (2003)

    Article  Google Scholar 

  40. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)

    Article  ADS  Google Scholar 

  41. K. Lindenberg, B. West, Phys. Rev. A 30, 568 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  42. H. Hori, Electronic and electromagnetic properties in nanometer scales, in Optical and Electronic Process of Nano-Matters, ed. by M. Ohtsu (KTK Scientific/Kluwer Academic, Tokyo/Dordecht, 2001), pp. 1–55

    Google Scholar 

  43. S. Sangu, K. Kobayashi, A. Shojiguchi, M. Ohtsu, Phys. Rev. B 69, 115334 (2004)

    Article  ADS  Google Scholar 

  44. S. De Rinaldis, I. D’Amico, F. Rossi, Appl. Phys. Lett. 81, 4236 (2002)

    Article  ADS  Google Scholar 

  45. F. Troiani, U. Hohenester, E. Molinari, Phys. Rev. B 65, 161301 (2002)

    Article  ADS  Google Scholar 

  46. E. Biolatti, R.C. Iotti, P. Zanardi, F. Rossi, Phys. Rev. Lett. 85, 5647 (2000)

    Article  ADS  Google Scholar 

  47. L. Quiroga, N.F. Johnson, Phys. Rev. Lett. 83, 2270 (1999)

    Article  ADS  Google Scholar 

  48. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997), pp. 222–225

    Book  Google Scholar 

  49. P. Zanardi, F. Rossi, Phys. Rev. Lett. 81, 4752 (1998)

    Article  ADS  Google Scholar 

  50. M. Thorwart, P. Hănggi, Phys. Rev. A 65, 012309 (2001)

    Article  ADS  Google Scholar 

  51. B. Coffey, Phys. Rev. A 17, 1033 (1978)

    Article  ADS  Google Scholar 

  52. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Opt. Lett. 30, 201 (2005)

    Article  ADS  Google Scholar 

  53. H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98 283 (2010)

    Article  ADS  Google Scholar 

  54. G. Parascandolo, V. Savona, Phys. Rev. B 71, 045335 (2005)

    Article  ADS  Google Scholar 

  55. T. Kawazoe, K. Kobayashi, M. Ohtsu, IEICE Trans. Electron. E88-C (2005)

    Google Scholar 

  56. T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoyo, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 81, 3651 (2002)

    Article  ADS  Google Scholar 

  57. W. Nomura, T. Yatsui, M. Ohtsu, Appl. Phys. Lett. 86, 181108 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The most part of this work was carried out at the project of ERATO, Japan Science and Technology Agency, from 1998 to 2003. The authors are grateful to H. Hori, I. Banno (Yamanashi University), T. Yatsui (The University of Tokyo), and M. Naruse (National Institute of Information and Communications Technology) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suguru Sangu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sangu, S., Kobayashi, K., Shojiguchi, A., Kawazoe, T., Ohtsu, M. (2013). Theory and Principles of Operation of Nanophotonic Functional Devices. In: Ohtsu, M. (eds) Handbook of Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31066-9_6

Download citation

Publish with us

Policies and ethics