Skip to main content

Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface

  • Reference work entry
  • First Online:
  • 2178 Accesses

Abstract

This chapter concerns simple experimental approaches for constructing metallic nanoarrays on a solid surface for applications to miniaturized optical devices, sensors, and single-molecule detection. Simple interface (air-liquid) moving leads to the controlled formation of one-dimensional (1D) nanoarrays of DNA or its nanofiber without special equipment. The assembly of metallic nanoparticles onto DNA can be driven by electrostatic binding of gold nanoparticles with positive charges, leading the formation of 1D metallic nanoarrays. Specially, a method based on the process of evaporation-induced self-assembly with DNA and drying front movement leads to highly aligned 1D metallic nanoarrays with a longer scale. Higher anisotropic coupling of localized plasmon is observed in the arrays when the light is polarized parallel to the arrays, indicating a uniaxial alignment of Au nanoparticles along the arrays. Finally, the fabrication and patterning of metallic nanoarrays achieved with transfer-printing techniques are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.A. Maier, Plasmonics: Fundamentals and Application (Springer, New York, 2007)

    Google Scholar 

  2. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requichia, H. Atwater, Adv. Mater. 13, 1501 (2001)

    Google Scholar 

  3. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A. Requichia, Nat. Mater. 2, 229 (2003)

    ADS  Google Scholar 

  4. W. Nomura, T. Yatsui, M. Ohtsu, Appl. Phys. Lett. 86, 181108 (2005)

    ADS  Google Scholar 

  5. T. Yatsui, W. Nomura, M. Ohtsu, Nano Lett. 5, 2548 (2008)

    ADS  Google Scholar 

  6. R. Garrell, Anal. Chem. 61, 401A (1989)

    Google Scholar 

  7. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)

    Google Scholar 

  8. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2987 (1999)

    Google Scholar 

  9. J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Google Scholar 

  10. B.P. Khanal, E.R. Zubarev, Angew. Chem. Int. Ed. 46, 2195 (2007)

    Google Scholar 

  11. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Chem. Rev. 108, 494 (2008)

    Google Scholar 

  12. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008)

    Google Scholar 

  13. S. Yamada, Anal. Sci. 25, 1059 (2009)

    Google Scholar 

  14. C.X. Yu, J. Irudayaraj, Anal. Chem. 79, 572 (2007)

    Google Scholar 

  15. J.Y. Chang, H.M. Wu, H. Chen, Y.C. Ling, W.H. Tan, Chem. Commun. 1092 (2005)

    Google Scholar 

  16. K.G. Thomas, S. Barazzouk, B.I. Ipe, S.T.S. Joseph, P.V.J. Kamat, Phys. Chem. B 108, 13066 (2004)

    Google Scholar 

  17. K.K. Caswell, J.N. Wilson, U.H.F. Bunz, C.J. Murphy, J. Am. Chem. Soc. 125, 13914 (2003)

    Google Scholar 

  18. N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, C.J. Murphy, J. Mater. Chem. 12, 2909 (2002)

    Google Scholar 

  19. C.J. Orendorff, P. Hankins, C.J. Murphy, Langmuir 21, 2022 (2005)

    Google Scholar 

  20. G.A. DeVries, M. Brunnbauer, Y. Hu, A.M. Jackson, B. Long, B.T. Neltner, O. Uzun, B.H. Wunsch, F. Stellacci, Science 315, 358 (2007)

    ADS  Google Scholar 

  21. A.M. Jackson, J.W. Myerson, F. Stellacci, Nat. Mater. 3, 330 (2004)

    ADS  Google Scholar 

  22. Q.H. Wei, K.H. Su, S. Durant, X. Zhang, Nano Lett. 4, 1067 (2004)

    ADS  Google Scholar 

  23. C.R. Barry, N.Z. Lwin, W. Zheng, H.O. Jacobs, Appl. Phys. Lett. 83, 5527 (2003)

    ADS  Google Scholar 

  24. L.M. Demers, D.S. Ginger, S.J. Park, Z. Li, S.W. Chung, C.A. Mirkin, Science 296, 1836 (2002)

    ADS  Google Scholar 

  25. Y. Cui, M.T. Bjork, J.A. Liddle, C. Sonnichsen, B. Boussert, A.P. Alivisatos, Nano Lett. 4, 1093 (2004)

    ADS  Google Scholar 

  26. Y. Yin, Y. Lu, Y. Xia, J. Am. Chem. Soc. 123, 771 (2001)

    Google Scholar 

  27. S. Hong, R. Eby, S. Myung, B.Y. Lee, S.G. Rao, J. Jang, Dip-pen nanolithography, in Scanning Probe Microscopies Beyond Imaging, ed. by P. Samorí (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006), pp. 141–174

    Google Scholar 

  28. R.J. Barsotti Jr., F. Stellacci, J. Mater. Chem. 16, 962 (2006)

    Google Scholar 

  29. S.W. Chung, G. Markovich, J.R. Heath, J. Phys. Chem. B 102, 6685 (1998)

    Google Scholar 

  30. R.P. Sear, S.-W. Chung, G. Markovich, W.M. Gelbart, J.R. Heath, Phys. Rev. E 59, R6255 (1999)

    ADS  Google Scholar 

  31. P. Yang, F. Kim, Chem. Phys. Chem. 3, 503 (2002)

    Google Scholar 

  32. J. Huang, A.R. Tao, S. Connor, R. He, P. Yang, Nano Lett. 6, 524 (2006)

    ADS  Google Scholar 

  33. K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001)

    ADS  Google Scholar 

  34. S.O. Lumsdon, D.M. Scott, Langmuir 21, 4874 (2005)

    Google Scholar 

  35. K.H. Bhatt, O.D. Velev, Langmuir 20, 467 (2004)

    Google Scholar 

  36. N. Ranjan, H. Vinzelberg, M. Mertig, Small 2, 1490 (2002)

    Google Scholar 

  37. W.A. Lopes, H.M. Jaeger, Nature 414, 735 (2001)

    ADS  Google Scholar 

  38. D. Wyrwa, N. Beyer, G. Schmid, Nano Lett. 2, 419 (2002)

    ADS  Google Scholar 

  39. T. Reuter, O. Vidoni, V. Torma, G. Schmid, L. Nan, M. Oleiche, L. Chi, H. Fuchs, Nano Lett. 2, 709 (2002)

    ADS  Google Scholar 

  40. J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)

    ADS  Google Scholar 

  41. J.D. Hartgerink, E. Beniash, S.I. Stupp, Proc. Natl. Acad. Sci. USA 99, 5133 (2002)

    ADS  Google Scholar 

  42. M. Reches, E. Gazit, Science 300, 625 (2003)

    ADS  Google Scholar 

  43. L. Li, S.I. Stuppe, Angew. Chem. Int. Ed. 44, 1833 (2005)

    Google Scholar 

  44. W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Adv. Mater. 11, 253 (1999)

    Google Scholar 

  45. L.W. Yin, Y. Bando, Y.C. Zhu, D. Golberg, M.S. Li, Adv. Mater. 16, 929 (2004)

    Google Scholar 

  46. W.Q. Han, A. Zettl, Nano Lett. 3, 681 (2003)

    ADS  Google Scholar 

  47. Y. Wang, Z. Tang, X. Liang, L.M. Liz-Marzán, N.A. Kotov, Nano Lett. 4, 225 (2004)

    ADS  Google Scholar 

  48. G. Ren, Y. Xing, Nanotechnology 17, 5596 (2006)

    Google Scholar 

  49. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Science 293, 2227 (2001)

    ADS  Google Scholar 

  50. M.P. Zach, K.H. Ng, R.M. Penner, Science 290, 2120 (2000)

    ADS  Google Scholar 

  51. S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc. 124, 10192 (2002)

    Google Scholar 

  52. O. Harnack, W.E. Ford, A. Yasuda, J.M. Wessels, Nano Lett. 2, 919 (2002)

    ADS  Google Scholar 

  53. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Silvan, E. Braun, Science 72, 297 (2002)

    Google Scholar 

  54. M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe, A.D. Vita, Nano Lett. 2, 841 (2002)

    ADS  Google Scholar 

  55. M.G. Warnerd, J.E. Hutchison, Nat. Mater. 2, 272 (2003)

    ADS  Google Scholar 

  56. T. Yonezawa, S. Onoue, S. Kimizuka, Chem. Lett. 31, 1172 (2002)

    Google Scholar 

  57. J.D. Le, Y. Pinto, N.C. Seeman, K. Musier-Forsyth, T.A. Taton, R.A. Kiehl, Nano Lett. 4, 2343 (2004)

    ADS  Google Scholar 

  58. P. Alivisatos, K.P. Johnson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996)

    ADS  Google Scholar 

  59. R. Elghanian, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277, 1078 (1997)

    Google Scholar 

  60. N.C. Seeman, Trends Biotechnol. 17, 437 (1999)

    Google Scholar 

  61. H. Yan, S.H. Park, G. Finkelstein, J.H. Park, T.H. LaBean, Science 301, 1882 (2003)

    ADS  Google Scholar 

  62. Y. He, T. Ye, M. Su, C. Zhang, A.E. Ribbe, W. Jinag, C. Mao, Nature 452, 198 (2008)

    ADS  Google Scholar 

  63. E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J.S. Pedersen, V. Birkedal, F. Besenbacher, K.V. Gothelf, J. Kjems, Nature 459, 73 (2009)

    ADS  Google Scholar 

  64. S.M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W.M. Shih, Nature 459, 414 (2009)

    ADS  Google Scholar 

  65. C. Erler, M. Mertig, J. Vac. Sci. Technol. B 27, 939 (2009)

    Google Scholar 

  66. K. Otobe, T. Ohtani, Nucleic Acid Res. 29, e109 (2001)

    Google Scholar 

  67. H. Yokota, D.A. Nickerson, B.J. Trask, G. Van Den Engh, M. Hirst, I. Sadowski, R. Aebersold, Anal. Biochem. 264, 158 (1998)

    Google Scholar 

  68. D. Bensimon, A.J. Simon, V. Croquette, A. Bension, Phys. Rev. Lett. 74, 4754 (1995)

    ADS  Google Scholar 

  69. X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, M. Slegtenhorst, J. Wolfe, S. Povey, J.S. Beckmann, A. Bensimon, Science 277, 1518 (1997)

    Google Scholar 

  70. J.F. Allemand, D. Bensimon, L. Jullien, A. Bensiom, V. Croquette, Biophys. J. 73, 2064 (1997)

    Google Scholar 

  71. A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, V. Heslot, D. Bensimon, Science 265, 2096 (1994)

    ADS  Google Scholar 

  72. Y. Okahata, T. Kobayashi, K. Tanaka, Langmuir 12, 1326 (1996)

    Google Scholar 

  73. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, Appl. Phys. Lett. 77, 1399 (2000)

    ADS  Google Scholar 

  74. X. Liang, K.J. Morton, R.H. Austin, S.Y. Chou, Nano Lett. 7, 3774 (2007)

    ADS  Google Scholar 

  75. M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999)

    Google Scholar 

  76. J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartman, Nano Lett. 2, 55 (2002)

    ADS  Google Scholar 

  77. Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita Jr., H. Itoh, Nature 399, 446 (1999)

    ADS  Google Scholar 

  78. S.B. Smith, L. Finzi, C. Bustamante, Science 258, 1122 (1992)

    ADS  Google Scholar 

  79. A.T. Woolley, R.T. Kelly, Nano Lett. 1, 345 (2001)

    ADS  Google Scholar 

  80. H. Nakao, H. Hayashi, T. Yoshino, S. Sugiyama, K. Otobe, T. Ohtani, Nano Lett. 2, 475 (2002)

    ADS  Google Scholar 

  81. H. Nakao, Anal. Sci. 25, 1387 (2009)

    Google Scholar 

  82. J.M. Kim, T. Ohtani, S. Sugiyama, T. Hirose, H. Muramatsu, Amal. Chem. 73, 5984 (2001)

    Google Scholar 

  83. T. Thundat, D.P. Allison, R.J. Warmack, Nucleic Acids Res. 22, 4224 (1994)

    Google Scholar 

  84. T. Yamamoto, T. Shimizu, E. Kurokawa, React. Funct. Polym. 43, 79 (2000)

    Google Scholar 

  85. D. Yang, T. Strode, H.P. Spielmann, A.H.J. Wang, T.G. Burke, J. Am. Chem. Soc. 120, 2979 (1998)

    Google Scholar 

  86. Y.-F. Song, P. Yang, Polyhedron 20, 501 (2001)

    Google Scholar 

  87. A. Kumar, M. Pattarkine, M. Bhadhade, A.B. Mandale, K.N. Ganesh, S.S. Datar, C.V. Dharmadhikari, M. Sastry, Adv. Mater. 13, 341 (2001)

    Google Scholar 

  88. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, H.K. Schackert, Adv. Mater. 12, 507 (2000)

    Google Scholar 

  89. W.E. Ford, O. Harnack, A. Yasuda, J.M. Wessels, Adv. Mater. 13, 1793 (2001)

    Google Scholar 

  90. D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, A.P. Alivisatos, Nano Lett. 1, 32 (2001)

    ADS  Google Scholar 

  91. M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe, A. De Vita, Nano Lett. 2, 841 (2002)

    ADS  Google Scholar 

  92. Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn, Angew. Chem. Int. Ed. 4, 95 (2003)

    Google Scholar 

  93. G. Wang, R.W. Murray, Nano Lett. 4, 95 (2004)

    ADS  Google Scholar 

  94. F. Patolsky, Y. Weizmann, O. Lioubashevski, I. Willner, Angew. Chem. Int. Ed. 41, 2323 (2002)

    Google Scholar 

  95. G. Wang, J. Zhang, R.W. Murray, Anal. Chem. 74, 4320 (2002)

    Google Scholar 

  96. H. Nakao, H. Shiigi, Y. Yamamoto, T. Tokonami, T. Nagaoka, S. Sugiyama, T. Ohtani, Nano Lett. 3, 1391 (2003)

    ADS  Google Scholar 

  97. H. Shiigi, Y. Yamamoto, N. Yoshi, H. Nakao, T. Nagaoka, Chem. Commun. 4288 (2006)

    Google Scholar 

  98. H. Shiigi, R. Morita, Y. Yamamoto, S. Tokonami, H. Nakao, T. Nagaoka, Chem. Commun. 3615 (2009)

    Google Scholar 

  99. H. Nakao, H. Hayashi, F. Iwata, H. Karasawa, S. Sugiyama, T. Ohtani, Lamgmuir 21, 7945 (2005)

    Google Scholar 

  100. H. Nakao, H. Hayashi, K. Okita, Anal. Sci. 17, 545 (2001)

    Google Scholar 

  101. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution (Dekker, New York, 1985)

    Google Scholar 

  102. M.C. Gimeno, The chemistry of gold, in Modern Supramolecular Gold Chemistry, ed. by A. Lagna (WILEY-VHC Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 41–48

    Google Scholar 

  103. G.T. Walker, M.C. Little, J.G. Nadeau, D.D. Shank, Proc. Natl. Acad. Sci. USA 89, 392 (1992)

    ADS  Google Scholar 

  104. A. Fire, S.-Q. Xu, Proc. Natl. Acad. Sci. USA 92, 4641 (1995)

    ADS  Google Scholar 

  105. H. Takahashi, K. Yamamoto, T. Ohtani, S. Sugiyama, BioTechniques 47, 609 (2009)

    Google Scholar 

  106. L. Blanco, A. Bernad, J.M. Lázaro, G. Martin, C. Garmendia, M. Salas, J. Biol. Chem. 264, 8935 (1989)

    Google Scholar 

  107. S. Beyer, P. Nickels, F.C. Simmel, Nano Lett. 5, 719 (2005)

    ADS  Google Scholar 

  108. O.I. Wilner, S. Shimron, Y. Weizmann, Z.-G. Wang, I. Willner, Nano Lett. 9, 2040 (2009)

    ADS  Google Scholar 

  109. H. Nakao, T. Taguchi, H. Shiigi, K. Miki, Chem. Commun. 1858 (2009)

    Google Scholar 

  110. H. Nakao, H. Hayashi, H. Shiigi, K. Miki, Anal. Sci. 25, 1175 (2009)

    Google Scholar 

  111. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 77402 (2002)

    ADS  Google Scholar 

  112. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, D. Hanstorp, Nano Lett. 4, 115 (2004)

    ADS  Google Scholar 

  113. H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999)

    ADS  Google Scholar 

  114. H. Nakao, M. Gad, S. Sugiyama, K. Otobe, T. Ohtani, J. Am. Chem. Soc. 125, 7161 (2003)

    Google Scholar 

  115. C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem. 77, 3261 (2005)

    Google Scholar 

  116. K. Sokolov, G. Chumanov, T.M. Cotton, Anal. Chem. 70, 3898 (1998)

    Google Scholar 

  117. J. Malicka, I. Gryzczynski, J.R. Lakowicz, Anal. Chem. 75, 4408 (2003)

    Google Scholar 

  118. A. Parfenov, I. Gryzczynski, J. Malicka, C.D. Geddes, J.R. Lakowicz, J. Phys. Chem. B 107, 8829 (2003)

    Google Scholar 

  119. J.R. Lakowicz, C.D. Geddes, I. Gryzczynski, J. Malicka, Z. Gryzczynski, K. Aslan, J. Lukomski, E. Matveera, J. Zhang, R. Badugn, J. J. Huang, Fluorescence 14, 425 (2004)

    Google Scholar 

Download references

Acknowledgements

The author is grateful for all the contributions from their collaborators, with special thanks to Dr. H. Hayashi (Nagoya Municipal Industrial Research Institute), Prof. H. Shiigi (Osaka Prefecture University), Mr. H. Karasawa, and Prof. F. Iwata (Shizuoka University). The author thanks Dr. H. T. Miyazaki (National Institute for Materials Science), Dr. S. Sugiyama, and Dr. T. Ohtani (National Agricultural and Food Research Organization) for the many most useful and inspiring scientific discussions. Financial support for these studies was provided by Iketani Science and Technology Foundation and Grants-in-Aid for Basic Sciences from the Ministry of Education, Science, Sports, and Culture, Japan (No. 18710106, No. 18310089 and No. 22550136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenobu Nakao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nakao, H. (2013). Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface. In: Ohtsu, M. (eds) Handbook of Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31066-9_23

Download citation

Publish with us

Policies and ethics