Skip to main content

Luminescent Nanomaterials for Molecular-Specific Cellular Imaging

  • Reference work entry
  • First Online:
Handbook of Nano-Optics and Nanophotonics

Abstract

Imaging of molecular trafficking in cells and biological tissue aided by molecular-specific fluorescent labeling is very attractive, since it affords capturing the key processes in comprehensive biological context. Several shortcomings of the existing organic dye labeling technology, however, call for development of alternative molecular reporters, with improved photostability, reduced cytotoxicity, and an increased number of controllable surface moieties. Such alternative molecular reporters are represented by inorganic luminescent nanoparticles (NP) whose optical, physical, and chemical properties are discussed on the examples of luminescent nanodiamonds (LND) and upconversion nanoparticles (UCNP). The emission origins of these nanomaterials differ markedly. LND emission results from individual nitrogen-vacancy color-centers in a biocompatible nanodiamond host whose properties can be controlled via size and surface groups. Photophysics of UCNP is governed by the collective, nonlinear excitation transfer processes, resulting in conversion of longer-wavelength excitation to the shorter-wavelength emission. The emission/excitation spectral properties of UCNP falling within the biological tissue transparency window open new opportunities of almost complete suppression of the cell/tissue autofluorescence background. The developed surface of these nanoparticles represents a flexible platform populated with biocompatible surface moieties onto which cargo and targeting biomolecules can be firmly docked through a process called bioconjugation. These bioconjugated modules, e.g., nanodiamond-antibody, (quantum dot)-somatostatin, or (upconversion nanoparticle)-(mini-antibody) can gain admission into the cells by initiating the cell-specific, cell-recognized communication protocol. In this chapter, we aim to demonstrate the whole bottom-up bio-nano-optics approach for optical biological imaging capturing luminescent nanoparticle design, surface activation, and bioconjugation and the resultant bioconjugate module deployment in specific internalization in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.E. Moerner: Proc. Natl. Acad. Sci. 104, 12596 (2007)

    Article  ADS  Google Scholar 

  2. G. Seisenberger, M.U. Ried, T. Endre, H. Bning, M. Hallek, C. Bruchle: Science 294, 1929 (2001)

    Article  ADS  Google Scholar 

  3. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann: Proc. Natl. Acad. Sci. 104, 727 (2007)

    Article  ADS  Google Scholar 

  4. S.W. Wu, G. Han, D.J. Milliron, S. Aloni, V. Altoe, D.V. Talapin, B.E. Cohen, P.J. Schuck: Proc. Natl. Acad. Sci. U.S.A. 106, 10917 (2009)

    Article  ADS  Google Scholar 

  5. A.M. Schrand, H. Huang, C. Carlson, J.J. Schlager, E. sawa, S.M. Hussain, L. Dai: J. Phys. Chem. B 111, 2 (2006)

    Google Scholar 

  6. T.Y. Cao, Y. Yang, Y.A. Gao, J. Zhou, Z.Q. Li, F.Y. Li: Biomaterials 32, 2959 (2011)

    Article  Google Scholar 

  7. J.L. Yuan, G.L. Wang: Trac-Trends in Analytical Chemistry, 25, 490 (2006)

    Article  Google Scholar 

  8. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi: J. Am. Chem. Soc. 128, 11635 (2006)

    Article  Google Scholar 

  9. V. Dolmatov, M. Veretennikova, V. Marchukov, V. Sushchev: Phys. Solid State 46, 611 (2004)

    Article  ADS  Google Scholar 

  10. E. Osawa: Pure Appl. Chem. 80, 1365 (2008)

    Article  Google Scholar 

  11. S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo: Adv. Funct. Mater. 19, 2116 (2009)

    Article  Google Scholar 

  12. F.K. de Theije, O. Roy, N.J. van der Laag, W.J.P. van Enckevort: Diam. Relat. Mater. 9, 929 (2000)

    Article  ADS  Google Scholar 

  13. F.K. de Theije, N.J. van der Laag, M. Plomp, W.J.P. van Enckevort: PhilosophicalMagazine A 80, 725 (2000)

    ADS  Google Scholar 

  14. R.R. Nimmagadda, A. Joshi, W.L. Hsu: J. Mater. Res. 5, 2445 (1990)

    Article  ADS  Google Scholar 

  15. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Borsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, J. Wrachtrup: ACS Nano 3, 1959 (2009)

    Article  Google Scholar 

  16. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu: Phys. Status Solidi A 204, 2881 (2007)

    Article  ADS  Google Scholar 

  17. B.R. Smith, M. Niebert, T. Plakhotnik, A.V. Zvyagin: J. Lumin. 127, 260 (2007)

    Article  Google Scholar 

  18. I.I. Vlasov, A.S. Barnard, V.G. Ralchenko, O.I. Lebedev, M.V. Kanzyuba, A.V. Saveliev, V.I. Konov, E. Goovaerts: Adv. Mater. 21, 808 (2009)

    Article  Google Scholar 

  19. A. Smith, A. Mainwood, M. Watkins: Diam. Relat. Mater. 11, 312 (2002)

    Article  ADS  Google Scholar 

  20. I. Aharonovich, S. Castelletto, D.A. Simpson, A.D. Greentree, S. Prawer: Phys. Rev. A 81, 043813 (2010)

    Article  ADS  Google Scholar 

  21. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski: Science 276, 2012 (1997)

    Article  Google Scholar 

  22. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.C. Chang, V. Jacques, J.F. Roch: Phys. Rev. B 82, 115449 (2010)

    Article  ADS  Google Scholar 

  23. T.-L. Wee, Y.-K. Tzeng, C.-C. Han, H.-C. Chang, W. Fann, J.-H. Hsu, K.-M. Chen, Y.-C. Yu: J. Phys. Chem. A 111, 9379 (2007)

    Article  Google Scholar 

  24. A.V. Zvyagin, N.B. Manson: Adv. Nanodiam. Sci. Technol. in press (2012)

    Google Scholar 

  25. A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I.Y. Chan, G. Balasubramanian, P.R. Hemmer, F. Jelezko, J. Wrachtrup: Phys. Rev. Lett. 100, 077401 (2008)

    Article  ADS  Google Scholar 

  26. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin: Nature 455, 644 (2008)

    Article  ADS  Google Scholar 

  27. F. Cichos, C. von Borczyskowski, M. Orrit: Science 12, 272 (2007)

    Google Scholar 

  28. R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner: Nature 388, 355 (1997)

    Article  ADS  Google Scholar 

  29. M. Kuno, D.P. Fromm, H.F. Hamann, A. Gallagher, D.J. Nesbitt: J. Chem. Phys. 112, 3117 (2000)

    Article  ADS  Google Scholar 

  30. P.A. Frantsuzov, R.A. Marcus: Phys. Rev. B 72, 155321 (2005)

    Article  ADS  Google Scholar 

  31. T. Jau, R.A. Marcus: J. Chem. Phys. 123, 054704 (2005)

    Article  ADS  Google Scholar 

  32. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, Twamley J., L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau: Nat. Nano 5, 345 (2010)

    Google Scholar 

  33. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, W. Fann: Nat. Nano 3, 284 (2008)

    Article  Google Scholar 

  34. V.K.A. Sreenivasan, E.A. Ivukina, W. Deng, T.A. Kelf, T.A. Zdobnova, S.V. Lukash, B.V. Veryugin, O.A. Stremovskiy, A.V. Zvyagin, S.M. Deyev: J. Mater. Chem. 21, 65 (2011)

    Article  Google Scholar 

  35. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu: J. Am. Chem. Soc. 127, 17604 (2005)

    Article  Google Scholar 

  36. A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, E. Osawa: Diam. Relat. Mater. 16, 2118 (2007)

    Article  ADS  Google Scholar 

  37. A.M. Schrand, S.A. Ciftan Hens, O.A. Shenderova: Crit. Rev. Solid State Mater. Sci. 34, 18 (2009)

    Article  Google Scholar 

  38. D. Ho: Nanodiamonds: Applications in Biology and Nanoscale Medicine. Technology and Engineering (Springer, New York, 2009)

    Google Scholar 

  39. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg: Nat. Nano 6, 358 (2011)

    Article  Google Scholar 

  40. Y.-Y. Chen, H. Shu, Y. Kuo, Y.-K. Tzeng, H.-C. Chang: Diam. Relat. Mater. 20, 803 (2011)

    Article  ADS  Google Scholar 

  41. A. Krger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A. Ya Vul, E. Osawa: Carbon 43, 1722 (2005)

    Article  Google Scholar 

  42. A.S. Barnard, M. Sternberg: J. Phys. Chem. B 109, 17107 (2005)

    Article  Google Scholar 

  43. B.R. Smith, D.W. Inglis, B. Sandnes, J.R. Rabeau, A.V. Zvyagin, D. Gruber, C.J. Noble, R. Vogel, E. Osawa, T. Plakhotnik: Small 5, 1649 (2009)

    Article  Google Scholar 

  44. C. Bradac, T. Gaebel, N. Naidoo, J.R. Rabeau, A.S. Barnard: Nano Lett. 9, 3555 (2009)

    Article  ADS  Google Scholar 

  45. J.R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, J. Wrachtrup: Nano Lett. 7, 3433 (2007)

    Article  ADS  Google Scholar 

  46. P.H. Chung, E. Perevedentseva, C.L. Cheng: Surf. Sci. 601, 3866 (2007)

    Article  ADS  Google Scholar 

  47. K. Iakoubovskii, G.J. Adriaenssens: Philos. Mag. Lett. 80, 441 (2000)

    Article  Google Scholar 

  48. R.R. Nimmagadda, A. Joshi, W.L. Hsu: J. Mater. Res. 5, 2445 (1990)

    Article  ADS  Google Scholar 

  49. Z. Du, A.F. Sarom, J.P. Longwell, C.A. Mims: Energy Fuels 5, 214 (1991)

    Article  Google Scholar 

  50. T. Ando, M. Ishii, M. Kamo, Y. Sato: J. Chem. Soc. Faraday Trans. 89, 1783 (1993)

    Article  Google Scholar 

  51. T. Gaebel, C. Bradac, J. Chen, J.M. Say, L. Brown, P. Hemmer, J.R. Rabeau: Diam. Relat. Mater. 21, 28 (2011)

    Article  ADS  Google Scholar 

  52. C. Bradac, T. Gaebel, C.I. Pakes, J.M. Say, A.V. Zvyagin, J.R. Rabeau: Effect of the Nanodiamond Host on a Nitrogen-Vacancy Color-Centre Emission State. Small, 9:132–139 (2013)

    Article  Google Scholar 

  53. M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido: Phys. Rev. B 83, 081304 (2011)

    Article  ADS  Google Scholar 

  54. C. Santori, P.E. Barclay, K.-M.C. Fu, R.G. Beausoleil: Phys. Rev. B 79, 125313 (2009)

    Article  ADS  Google Scholar 

  55. M.T. Edmonds, C.I. Pakes, S. Mammadov, W. Zhang, A. Tadich, J. Ristein, L. Ley: Appl. Phys. Lett. 98, 102101 (2011)

    Article  ADS  Google Scholar 

  56. K.M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil: Appl. Phys. Lett. 96, 121907 (2010)

    Article  ADS  Google Scholar 

  57. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, C. Huang: Anal. Chem. 81, 930 (2009)

    Article  Google Scholar 

  58. M.P. Hehlen, G. Frei, H.U. Gudel: Phys. Rev. B 50, 16264 (1994)

    Article  ADS  Google Scholar 

  59. R.H. Page, K.I. Schaffers, P.A. Waide, J.B. Tassano, S.A. Payne, W.F. Krupke, W.K. Bischel: J. Opt. Soc. Am. B 15, 996 (1998)

    Article  ADS  Google Scholar 

  60. J.C. Boyer, F. van Veggel: Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale, 2:1417–1419 (2010)

    Article  ADS  Google Scholar 

  61. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu: Nat. Mater. 10, 968 (2011)

    Article  ADS  Google Scholar 

  62. H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-d. Sun, L.-P. You, C.-H. Yan: J. Am. Chem. Soc. 128, 6426 (2006)

    Google Scholar 

  63. H.-X. Mai, Y.-W. Zhang, L.-D. Sun, C.-H. Yan: J. Phys. Chem. C 111, 13721 (2007)

    Article  Google Scholar 

  64. F. Wang, J.A. Wang, X.G. Liu: Angew. Chem. Int. Ed. 49, 7456 (2010)

    Article  Google Scholar 

  65. V.V. Tuchin: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, 2007)

    Book  Google Scholar 

  66. C. Vinegoni, D. Razansky, S.A. Hilderbrand, F.W. Shao, V. Ntziachristos, R. Weissleder: Opt. Lett. 34, 2566 (2009)

    Article  ADS  Google Scholar 

  67. P.R. Selvin: Ann. Rev. Biophys. Biomol. Struct. 31, 275 (2002)

    Article  Google Scholar 

  68. Q. Liu, Y. Sun, T.S. Yang, W. Feng, C.G. Li, F.Y. Li: J. Am. Chem. Soc. 133, 17122

    Google Scholar 

  69. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. Andersson-Engels: ACS Nano 5, 3744 (2011)

    Article  Google Scholar 

  70. A.D. Ostrowski, E.M. Chan, D.J. Gargas, E.M. Katz, G.Han, P. James Schuck, D.J. Milliron, B.E. Cohen: ACS Nano 6, 2686 (2012)

    Article  Google Scholar 

  71. F. Leblond, S.C. Davis, P.A. Valds, B.W. Pogue: J. Photochem. Photobiol. B 98, 77 (2010)

    Article  Google Scholar 

  72. F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup: Nano Lett. 7, 3588 (2007)

    Article  ADS  Google Scholar 

  73. S.M. Deyev, R. Waibel, E.N. Lebedenko, A.P. Schubiger, A. Pluckthun: Nat. Biotechnol. 21, 1486 (2003)

    Article  Google Scholar 

  74. D. Li, B.A. Dong, X. Bai, Y. Wang, H.W. Song: J. Phys. Chem. C 114, 8219 (2010)

    Article  Google Scholar 

  75. H. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, H.J. Tanke: Anal. Biochem. 267, 30 (1999)

    Article  Google Scholar 

  76. J.C. Boyer, M.P. Manseau, J.I. Murray, F. van Veggel: Langmuir 26, 1157 (2010)

    Article  Google Scholar 

  77. S.A. Osseni, S. Lechevallier, M. Verelst, C. Dujardin, J. Dexpert-Ghys, D. Neumeyer, M. Leclercq, H. Baaziz, D. Cussac, V. Santran, R. Mauricot: J. Mater. Chem. 21, 18365 (2011)

    Article  Google Scholar 

  78. R.S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, R. Vallejo: Anal. Biochem. 293, 22 (2001)

    Article  Google Scholar 

  79. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Radler, G. Natile, W.J. Parak: Nano Lett. 4, 703 (2004)

    Article  ADS  Google Scholar 

  80. T.A. Kelf, V.K.A. Sreenivasan, J. Sun, E.J. Kim, E.M. Goldys, A.V. Zvyagin: Nanotechnology 21, 285105 (2010)

    Article  Google Scholar 

  81. M.Z. Strowski, A.D. Blake: Mol. Cell. Endocrinol. 286, 169 (2008)

    Article  Google Scholar 

  82. V.K.A. Sreenivasan, O.A. Stremovskiy, T.A. Kelf, M. Heblinski, A.K. Goodchild, M. Connor, S.M. Deyev, A.V. Zvyagin: Bioconjug. Chem. 22, 1768 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zvyagin, A.V., Song, Z., Nadort, A., Sreenivasan, V.K.A., Deyev, S.M. (2013). Luminescent Nanomaterials for Molecular-Specific Cellular Imaging. In: Ohtsu, M. (eds) Handbook of Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31066-9_15

Download citation

Publish with us

Policies and ethics