Skip to main content

The Family Gallionellaceae

  • Reference work entry
  • First Online:
Book cover The Prokaryotes

Abstract

The family Gallionellaceae comprises the genus Gallionella with one established type species, Gallionella ferruginea. The phylogenetic position of Gallionellaceae, as determined by 16S-rDNA sequence comparisons, is among the β-proteobacteria. Its phylogenetic neighbors are Methylophilaceae, Nitrosomonadaceae, and Spirillaceae. The family contains gram-negative, chemolithoautotrophic, neutrophilic, and aerobic ferrous iron-oxidizing bacteria with the ability to secrete an extracellular twisted stalk composed of numerous fibers. Gallionellaceae can be found where anaerobic groundwater containing ferrous iron reaches an environment that contains oxygen. Large amounts of stalk material are usually produced; this material attracts iron hydroxides and many trace metals, giving it a brown, macroscopic appearance. The stalk and iron hydroxide masses formed may eventually cause severe clogging of ditches, drinking-water wells, and any other facilities utilizing iron-bearing, anaerobic groundwater. The family is relevant to biotechnological processes, as it can be used to remove ferrous iron when producing drinking water from groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler O (1904) Ueber Eisenbakterien in ihrer Beziehung zu den therapeutisch verwendeten natürlichen Eisenwässern. Zentralbl Bakteriol Bd II 11:215–277

    Google Scholar 

  • Anderson CR, Pedersen K (2003) In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1:169–178

    Article  CAS  Google Scholar 

  • Artymiuk PJ, Bauminger ER, Harrison PM, Lawson DM, Nowik PJ, Treffry A, Yewdall SJ (1991) Ferritin: a model system for iron biomineralization. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum Press, New York, pp 269–294

    Chapter  Google Scholar 

  • Balashova VV (1967a) A cumulative culture of Gallionella filamenta n. sp. [In Russian, with English summary]. Microbiologiya 36:541–544

    Google Scholar 

  • Balashova VV (1967b) Structure of the “stalk” fibers in a laboratory culture of Gallionella filamenta. [In Russian, with English summary]. Microbiologiya 36:1050–1053

    CAS  Google Scholar 

  • Balashova VV (1968) Taxonomy of the genus Gallionella. [In Russian, with English summary]. Microbiologiya 37:715–723

    CAS  Google Scholar 

  • Balashova VV, Cherni NE (1970) Ultrastructure of Gallionella filamenta. [In Russian, with English summary]. Microbiologiya 39:348–351

    CAS  Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Thomsen Ebert T, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  CAS  PubMed  Google Scholar 

  • Beger H, Bringmann G (1953) Bisherige Anschauung uber die Morphologie von Gallionella und neuere elektronenmikroskopische Befunde. Zentralbl Bakteriol Parasitenkd, infektkrank Hyg Abt 2 107:305–318

    Google Scholar 

  • Cholodny N (1924) Zur Morphologie der Eisenbakterien Gallionella und Spirophyllum. Ber Deut Bot Ges 42:35–44

    Google Scholar 

  • de Vet WWJM, Dinkla IJT, Abbas BA, Rietveld LC, van Loosdrecht MCM (2011a) Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater. Biotechnol Bioeng 109:904–912

    Article  PubMed  Google Scholar 

  • de Vet WWJM, Dinkla IJT, Rietveld LC, van Loosdrecht MCM (2011b) Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Water Res 45:5389–5398

    Article  PubMed  Google Scholar 

  • Ehrenberg CG (1836) Vorläufige Mittheilung uber das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Ann Phys 38:213–227

    Article  Google Scholar 

  • Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microb 63:4784–4792

    CAS  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2:e667

    Article  PubMed Central  PubMed  Google Scholar 

  • Emerson C, Field E, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T (2013) Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol 4:1–17

    Article  Google Scholar 

  • Ferris FG, Konhauser KO, Lyvén B, Pedersen K (1999) Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiol J 16:181–192

    Article  CAS  Google Scholar 

  • Ferris FG, Hallberg RO, Lyvén B, Pedersen K (2000) Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment. Appl Geochem 15:1035–1042

    Article  CAS  Google Scholar 

  • Hallbeck L, Pedersen K (1990) Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol 136:1675–1680

    Article  Google Scholar 

  • Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137:2657–2661

    Article  CAS  Google Scholar 

  • Hallbeck L, Pedersen K (1995) Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microbial Ecol 30:257–268

    Article  CAS  Google Scholar 

  • Hallbeck L, Ståhl F, Pedersen K (1993) Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 139:1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Hallbeck LE, Pedersen K (2005) Genus I. Gallionella Ehrenberg 1838 166AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. Volume two: the proteobacteria. Part C: the alpha-, beta-, delta- and epsilonproteobacteria. Springer, New York, pp 880–886

    Google Scholar 

  • Hanert HH (1968) Untersuchulngen zur Isolierung, Stoffwechselphysiologie und Morpjologie von Gallionella ferruginea Ehrenberg. Arch Mikrobiol 60:348–376

    Article  CAS  Google Scholar 

  • Hanert HH (1970) Structur und Wachtum von Gallionella ferruginea Ehrenberg am naturlichen Standort in den ersten 6 Stn der Entwicklung. Arch Mikrobiol 75:10–24

    Article  Google Scholar 

  • Hanert HH (1973) Quantifizierungen der Massentwicklung des Eisenbacteriums Gallionella ferruginea unter nautlichen Bedingungen. Arch Mikrobiol 88:225–243

    Article  Google Scholar 

  • Hanert HH (1989) Budding and/or appendaged bacteria. In: Staley MP, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, 1974–1979

    Google Scholar 

  • Hanert HH (2006) The genus Gallionella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K–H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 990–995

    Chapter  Google Scholar 

  • Kappler AK, Straub L (2005) Geomicrobiological cycling of iron. Rev Miner Geochem 59:85–108

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2006) Use of iron-and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Qual Res J Can 41:117–129

    CAS  Google Scholar 

  • Krepski ST, Hanson EE, Chan CS (2012) Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environ Microbiol 14:1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Kucera S, Wolfe RS (1957) A selective enrichment method for Gallionella ferruginea. J Bacteriol 74:344–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lieske R (1911) Beitraig zu Kenntnis der Physiologie von Spirophyllum ferrugeneum. Jahrb Wirtschaftsgesch 49:91–127

    Google Scholar 

  • Lutters S, Hanert HH (1989) The ultrastructure of chemolithotrophic Gallionella ferruginea and Thiobacillus ferrooxidans as revealed by chemical fixation and freeze-etching. Arch Microbiol 151:245–251

    Article  Google Scholar 

  • Martinez RE, Smith DS, Pedersen K, Ferris FG (2003) Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environ Sci Technol 37:5671–5677

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim EG (1949) Iron bacteria. Biol Rev 24:200–245

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Teichmann E (1935) Vergleichende Untersuchungen uber die Kultur und Morphologie einiger Eisenorganismen. Dissertation, Deutche Universität, Prague

    Google Scholar 

  • Van Iterson W (1958) Gallionella ferruginea Ehrenberg in a different light. Academisch Proefschrift, University of Amsterdam, 1–121.N.V. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam

    Google Scholar 

  • Vatter AE, Wolfe R (1956) Electron microscopy of Gallionella ferruginea. J Bacteriol 72:248–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winogradsky S (1888) Ueber Eisenbacterien. Bot Zeit 17:262–269

    Google Scholar 

  • Winogradsky S (1922) Eisenbakterien als Anorgoxydanten. Gustav Fischer, Jena, pp 1–21

    Google Scholar 

  • Zopf W (1879) Entwicklungsgeschichtliche Untersuchung uber Crenothrix polyspora, die ursache der Berliner Wassercalamität. Österr Bot Z 29:372–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotta Hallbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hallbeck, L., Pedersen, K. (2014). The Family Gallionellaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_398

Download citation

Publish with us

Policies and ethics