Skip to main content

The Family Nitrosomonadaceae

  • Reference work entry
  • First Online:
Book cover The Prokaryotes

Abstract

The Nitrosomonadaceae comprise a monophyletic phylogenetic group within the betaproteobacteria, all of whose cultivated representatives are lithoautotrophic ammonia oxidizers. Ammonia oxidizers generally exert control over nitrification by oxidizing ammonia to nitrite, which is subsequently oxidized by bacterial nitrite oxidizers to nitrate. They therefore play major roles in control of the nitrogen cycle in terrestrial, freshwater, and marine environments and in wastewater treatment processes. They are also of significant economic and environmental importance, leading to loss of ammonium-based fertilizers, nitrous oxide production, and nitrate pollution. Ammonia oxidation is also carried out by thaumarchaea, gammaproteobacteria, and anammox organisms.

Phylogeny of the Nitrosomonadaceae is now based on analysis of 16S rRNA genes and amoA genes that encode subunit A of ammonia monooxygenase, which catalyzes the first step in ammonia oxidation. Sequences of cultivated strains and those obtained directly from environmental DNA and RNA suggest two genera, Nitrosomonas and Nitrosospira, each containing seven lineages, although support for these lineages in Nitrosospira is weaker. Two of these lineages are not represented by a laboratory isolate. Genomic analyses are providing insights into the evolution of the Nitrosomonadaceae and into metabolic processes of relevance to ecological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakra Ã…, UtÃ¥ker JB, Nes IF, Bakken LR (1999) An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39:23–31

    Article  CAS  PubMed  Google Scholar 

  • Aakra A, UtÃ¥ker JB, Nes IF (2001a) Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS Microbiol Lett 205:237–242

    Article  CAS  PubMed  Google Scholar 

  • Aakra A, UtÃ¥ker JB, Pommerening-Röser A, Koops HP, Nes IF (2001b) Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. Int J Syst Evol Microbiol 51:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Alawi M, Lipski A, Sanders T, Pfeiffer E-M, Spieck E (2007) Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME J 1:256–264

    Article  CAS  PubMed  Google Scholar 

  • Allison SM, Prosser JI (1993) Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biol Biochem 25:935–941

    Article  CAS  Google Scholar 

  • Armstrong EF, Prosser JI (1988) Growth of Nitrosomonas europaea on ammonia-treated vermiculite. Soil Biol Biochem 20:409–411

    Article  CAS  Google Scholar 

  • Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495

    Article  CAS  PubMed  Google Scholar 

  • Arp DJ, Chain PSG, Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61:503–528

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Sun Q, Wen D, Tang X (2012) Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems. FEMS Microbiol Ecol 80:323–330

    Article  CAS  PubMed  Google Scholar 

  • Bano N, Hollibaugh JT (2000) Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl Environ Microbiol 66:1960–1969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beaumont HJE, Lens SI, Reijnders WNM, Westerhoff HV, van Spanning RJM (2004) Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite sensitive transcription repressor. Mol Microbiol 54:148–158

    Article  CAS  PubMed  Google Scholar 

  • Belser LW, Schmidt EL (1978) Diversity in the ammonia oxidizing nitrifier population of a soil. Appl Environ Microbiol 36:584–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernhard AE, Bollmann A (2010) Estuarine nitrifiers: new players, patterns and processes. Estuar Coast Shelf Sci 88:1–11

    Article  CAS  Google Scholar 

  • Bollmann A, Laanbroek HJ (2001) Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol Ecol 37:211–221

    Article  CAS  Google Scholar 

  • Bollmann A, Laanbroek HJ (2002) Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aq Microbial Ecol 28:239–247

    Article  Google Scholar 

  • Bollmann A, French E, Laanbroek HJ (2011) Isolation, cultivation, and characterization of ammonia-oxidizing bacteria and archaea adapted to low ammonium concentrations. In: Klotz MG, Stein LY (eds) Methods enzymol, vol 46, Research on nitrification and related processes (Pt B). Elsevier Academic Press, San Diego, pp 55–88

    Google Scholar 

  • Bollmann A, Sedlacek CJ, Norton J, Laanbroek HJ, Suwa, Stein LY, Klotz MG, Arp D, Sayavedra-Soto L, Lu M, Bruce D, Detter C, Tapia R, Han J, Woyke T, Lucas SM, Pitluck S, Pennacchio L, Nolan M, Land ML, Huntemann M, Deshpande S, Han C, Chen A, Kyrpides N, Mavromatis K, Markowitz V, Szeto E, Ivanova N, Mikhailova N, Pagani I, Pati A, Peters L, Ovchinnikova G, Goodwin LA (2013) Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Standards Genomic Sci 7:469–482

    Google Scholar 

  • Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RE (1917) Studies on the nomenclature and classification of the bacteria. III. The families of the Eubacteriales. J Bacteriol 2:347–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria. VI. Subdivisions and genera of the Spirillaceae and Nitrobacteriaceae. J Bacteriol 3:175–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burrell PC, Phalen CM, Hovanec TA (2001) Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Appl Environ Microbiol 67:5791–5800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calvó L, Cortey M, García-Marín JL, Garcia-Gil LJ (2005) Polygenic analysis of ammonia-oxidizing bacteria using 16S rDNA, amoA, and amoB genes. Int Microbiol 8:103–110

    PubMed  Google Scholar 

  • Campbell MA, Chain PSG, Dang HY, El Sheikh AF, Norton JM, Ward NL, Ward BB, Klotz MG (2011) Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol Ecol 76:39–48

    Article  CAS  PubMed  Google Scholar 

  • Cantera JJL, Stein LY (2007a) Molecular diversity of nitrite reductase (nirK) genes in nitrifying bacteria. Environ Microbiol 9:765–776

    Article  PubMed  CAS  Google Scholar 

  • Cantera JJL, Stein LY (2007b) Role of nitrite reductase in the ammonia-oxidizing pathway of Nitrosomonas europaea. Arch Microbiol 188:349–354

    Article  CAS  PubMed  Google Scholar 

  • Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M et al (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen GY, Qui SL, Zhou YY (2009) Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu). Res Microbiol 160:173–178

    Article  CAS  PubMed  Google Scholar 

  • Choi JD, Kotay SM, Goel R (2010) Various physico-chemical stress factors cause prophage induction in Nitrosospira multiformis 25196-an ammonia oxidizing bacteria. Water Res 44:4550–4558

    Article  CAS  PubMed  Google Scholar 

  • Coskuner G, Ballinger SJ, Davenport RJ, Pickering RL, Solera R, Head IM, Curtis TP (2005) Agreement between theory and measurement in quantification of ammonia-oxidizing bacteria. Appl Environ Microbiol 71:6325–6334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cua L, Stein LY (2008) Expression of genes involved in NOx metabolism in ammonia oxidizing bacteria. In: 108th general meeting of the ASM, Boston

    Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001a) In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daims H, Purkhold U, Bjerrum L, Arnold E, Wilderer PA, Wagner M (2001b) Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci Technol 43:9–18

    CAS  PubMed  Google Scholar 

  • De Bie MJM, Speksnijder AGCL, Kowalchuk GA, Schuurman T, Zwart G, Stephen JR et al (2001) Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary. Aquat Microb Ecol 23:225–236

    Article  Google Scholar 

  • Dundee L, Hopkins DW (2001) Different sensitivities to oxygen of nitrous oxide production by Nitrosomonas europaea and Nitrosolobus multiformis. Soil Biol Biochem 33:1563–1565

    Article  CAS  Google Scholar 

  • Fox GE, Stackebrandt E (1988) The application of 16s rrna cataloguing and 5s rrna sequencing in bacterial systematics. Method Microbiol 19:405–458

    Article  Google Scholar 

  • Frame CH, Casciotti KL (2010) Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeoscience 7:2695–2709

    Article  CAS  Google Scholar 

  • Francis CA, O’Mullan GD, Ward BB (2003) Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1:129–140

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frankland PF, Frankland GC (1890) The nitrifying process and its specific ferment Part 1. Philos Trans Roy Soc B 181:107–128

    Article  Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ Microbiol 8:684–696

    Article  CAS  PubMed  Google Scholar 

  • French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A (2012) Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 78:5773–5780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garbeva P, Baggs EM, Prosser JI (2007) Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. FEMS Microbiol Lett 266:83–89

    Article  CAS  PubMed  Google Scholar 

  • Garcia JC, Urakawa H, Le VQ, Stein LY, Klotz MG, Nielsen JL (2013) Draft genome sequence of Nitrosospira sp. strain APG3, a psychrotolerant ammonia-oxidizing bacterium isolated from sandy lake sediment. Genome Announc 1(6):e00930–13. doi:10.1128/genomeA.00930-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibbs WM (1920) The isolation and study of nitrifying bacteria. Soil Sci 8:427–481

    Article  Google Scholar 

  • Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould GW, Lees H (1960) The isolation and culture of the nitrifying organisms. I Nitrobacter. Can J Microbiol 6:299–307

    Article  CAS  PubMed  Google Scholar 

  • Graham DW, Knapp CW, Van Vleck E, Bloor K, Lane T, Graham C (2007) Experimental demonstration of chaotic instability in biological nitrification. ISME J 1:385–393

    Article  CAS  PubMed  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA 108:21206–21211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harms H, Koops H-P, Wehrmann H (1976) An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. Arch Microbiol 108:105–111

    Article  CAS  PubMed  Google Scholar 

  • Hatzenpichler R (2012) Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Heylen K, Hoefman S, Vekeman B, Peiren J, De Vos P (2012) Safeguarding bacterial resources promotes biotechnological innovation. Appl Microbiol Biotechnol 94:565–574

    Article  CAS  PubMed  Google Scholar 

  • Hollibaugh JT, Bano N, Ducklow HW (2002) Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl Environ Microbiol 68:1478–1484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hommes NG, Sayavedra-Soto LA, Arp DJ (2003) Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. J Bacteriol 185:6809–6814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horz HP, Rotthauwe JH, Lukow T, Liesack W (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39:197–204

    Article  CAS  PubMed  Google Scholar 

  • Hyman MR, Arp DJ (1995) Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source. J Bacteriol 177:4974–4979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Zhang T, Yan QM (2010) Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Appl Microbiol Biotechnol 87:1167–1176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones RD, Morita RY, Koops HP, Watson SW (1988) A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov. Can J Microbiol 34:1122–1128

    Article  CAS  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kartal B, Wessels H, van der Biezen E, Francoijs KJ, Jetten MSM, Klotz MG, Stein LY (2012) Effects of nitrogen dioxide and anoxia on global gene and protein expression in long-term continuous cultures of Nitrosomonas eutropha C91. Appl Environ Microbiol 78:4788–4794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kayee P, Sonthiphand P, Rongsayamanont C, Limpiyakorn T (2011) Archaeal amoA genes outnumber bacterial amoA genes in municipal wastewater treatment plants in Bangkok. Microb Ecol 62:776–788

    Article  PubMed  Google Scholar 

  • Kingma-Boltjes TY (1935) Untersuchungen über die nitrifizierenden Bakterien. Arch für Mikrobiol 6:79–138

    Article  Google Scholar 

  • Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278:146–156

    Article  CAS  PubMed  Google Scholar 

  • Klotz MG, Stein LY (2011) Genomics of ammonia-oxidizing bacteria and insights to their evolution. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. ASM Press, Washington, DC, pp 57–94

    Chapter  Google Scholar 

  • Klotz MG, Arp DJ, Chain PSG, El-Sheikh AF, Hauser L, Hommes NG et al (2006) The complete genome sequence of the marine, nitrifying purple sulfur bacterium, Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 72:6299–6315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Koops H-P, Harms H (1985) Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria. Arch Microbiol 141:214–218

    Article  CAS  PubMed  Google Scholar 

  • Koops H-P, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  • Koops HP, Bottcher B, Moller UC, Pommerening-Röser A, Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov., and Nitrosomonas halophila sp. nov. J Gen Microbiol 137:1689–1699

    Article  CAS  Google Scholar 

  • Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G, Wagner M (2006) The lithotrophic ammonia-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 5, Proteobacteria: alpha and beta subclass. Springer, New York, pp 778–811

    Chapter  Google Scholar 

  • Koper TE, El-Sheikh AF, Norton JM, Klotz MG (2004) Urease-encoding genes in ammonia-oxidizing bacteria. Appl Environ Microbiol 70:2342–2348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326

    Article  CAS  PubMed  Google Scholar 

  • Kumar Y, Westram RK, Kipfer P, Meier H, Ludwig W (2006) Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package. BMC Bioinformatics 7:240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laanbroek HJ, Gerards S (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Arch Microbiol 159:453–459

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Bär-Gilissen M-J, Hoogveld HL (2002) Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea. Appl Environ Microbiol 68:1454–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Law Y, Lant P, Yuan Z (2012) The effect of pH on N2O production under aerobic conditions in a partial nitration system. Water Res 45:5934–5944

    Article  CAS  Google Scholar 

  • Lehtovirta-Morley LE, Stöcker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108:15892–15897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Lewis RF, Pramer D (1958) Isolation of Nitrosomonas in pure culture. J Bacteriol 76:524–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Limpiyakorna T, Sonthiphand P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102:3694–3701

    Article  CAS  Google Scholar 

  • Macfarlane GT, Herbert RA (1984) Comparative-study of enrichment methods for the isolation of autotrophic nitrifying bacteria from soil, estuarine and marine sediments. FEMS Microbiol Lett 22:127–132

    Article  Google Scholar 

  • Macdonald RM (1986) Nitrification in soil: an introductory history. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, pp 1–16

    Google Scholar 

  • Macdonald RM, Spokes JR (1980) A selective and diagnostic medium for ammonia oxidizing bacteria. FEMS Microbiol Lett 8:143–145

    Article  CAS  Google Scholar 

  • Mateo-Sagasta J, Salian P (2012) Aquastat; global database on municipal wastewater production, collection, treatment, discharge and direct use in agriculture. http://www.fao.org/nr/water/aquastat/main/index.stm

  • McCaig AE, Embley TM, Prosser JI (1994) Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett 120:363–368

    Article  CAS  PubMed  Google Scholar 

  • Meiklejohn J (1950) The isolation of Nitrosomonas europaea in pure culture. J Gen Microbiol 4:185–191

    Article  CAS  PubMed  Google Scholar 

  • Merbt SN, Stahl DA, Casamayor EO, Marti E, Nicol GW, Prosser JI (2012) Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett 327:41–46

    Article  CAS  PubMed  Google Scholar 

  • Miteva V, Sowers T, Brenchley J (2007) Production of N2O by ammonia oxidizing bacteria at subfreezing temperatures as a model for assessing the N2O anomalies in the vostok ice core. Geomicrobiol J 24:451–459

    Article  CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria and the use of microelectrodes. Appl Environ Microbiol 62:2156–2162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mussman M, Brito I, Pitcher A, Sinninghe-Damsté JS, Hatzenpichler R, Richter A, Nielsen JP, Nielsen PH, Muller A, Daims H, Wagner M, Head IM (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA 108:16771–16776

    Article  Google Scholar 

  • Nicolaisen MH, Ramsing NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50:189–203

    Article  CAS  PubMed  Google Scholar 

  • Nold SC, Zhou J, Devol AH, Tiedje JM (2000) Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria. Appl Environ Microbiol 66:4532–4535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norton JM (2011) Diversity and environmental distribution of ammonia-oxidizing bacteria. In: Ward BB, Klotz MG, Arp DJ (eds) Nitrification. ASM Press, Washington, DC, pp 39–56

    Chapter  Google Scholar 

  • Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PSG et al (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Mullan GD, Ward BB (2005) Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, CA. Appl Environ Microbiol 71:697–705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia oxidising archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  PubMed  Google Scholar 

  • Okabe S, Satoh H, Watanabe Y (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 65:3182–3191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643–5647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips CG, Smith Z, Embley TM, Prosser JI (1999) Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl Environ Microbiol 65:779–786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell SJ, Prosser JI (1992) Inhibition of biofilm populations of Nitrosomonas europaea. Microb Ecol 24:43–50

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI (2011) Soil nitrifiers and nitrification. In: Ward BB, Klotz MG, Arp DJ (eds) Nitrification. ASM Press, Washington, DC, pp 347–383

    Chapter  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purkhold U, Wagner M, Timmermann G (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53:1485–1494

    Article  CAS  PubMed  Google Scholar 

  • Radniecki TS, Lauchnor EG (2011) Investigating Nitrosomonas europaea stress biomarkers in batch, continuous culture, and biofilm reactors. In: Klotz MG, Stein LY (eds) Methods enzymol, vol 46, Research on nitrification and related processes (Pt B). Elsevier Academic Press, San Diego, pp 217–246

    Google Scholar 

  • Rowan AK, Snape JR, Fearnside D, Barer MR, Curtis TP, Head IM (2003a) Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43:195–206

    Article  CAS  PubMed  Google Scholar 

  • Rowan AK, Moser G, Gray N, Snape JR, Fearnside D, Curtis TP, Barer MR, Head IM (2003b) A comparative study of ammonia-oxidizing bacteria in lab-scale industrial wastewater treatment reactors. Water Sci Technol 48:17–24

    CAS  PubMed  Google Scholar 

  • Sayavedra-Soto L, Arp DJ (2011) Ammonia-oxidizing bacteria: their biochemistry and molecular biology. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. ASM Press, Washington, DC, pp 11–37

    Chapter  Google Scholar 

  • Sayavedra-Soto LA, Stein LY (2011) Genetic transformation of ammonia-oxidizing bacteria. In: Klotz MG, Stein LY (eds) Methods enzymol, vol 46, Research on nitrification and related processes (Pt B). Elsevier Academic Press, San Diego, pp 389–402

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt I, Zart D, Bock E (2001) Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha. Antonie Van Leeuwenhoek 79:311–318

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, van Spanning RJM, Jetten MSM (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150:4107–4114

    Article  CAS  PubMed  Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer K-H (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62:4641–4647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm A, De Beer D, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm A, De Beer D, Gieseke A, Amann R (2000) Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol 2:680–686

    Article  CAS  PubMed  Google Scholar 

  • Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8:214–222

    Article  CAS  PubMed  Google Scholar 

  • Smith Z, McCaig AE, Stephen JR, Embley TM, Prosser JI (2001) Species diversity of uncultured and cultured populations of soil and marine ammonia oxidising bacteria. Microb Ecol 42:228–237

    Article  CAS  PubMed  Google Scholar 

  • Sonthiphand P, Limpiyakorn T (2011) Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Appl Microbiol Biotechnol 89:843–853

    Article  CAS  PubMed  Google Scholar 

  • Soriano S, Walker N (1968) Isolation of ammonia-oxidizing autotrophic bacteria. J Appl Bacteriol 31:493–497

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Lucker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, Damsté JSS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MCM, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Speksnijder AG, Kowalchuk GA, Roest K, Laanbroek HJ (1998) Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Syst Appl Microbiol 21:321–330

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stehr G, Böttcher B, Dittberner P, Rath G, Koops HP (1995) The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol Ecol 17:177–186

    Article  CAS  Google Scholar 

  • Stein LY (2011) Heterotrophic nitrification and nitrifier denitrification. In: Ward BB, Klotz MG, Arp DJ (eds) Nitrification. ASM Press, Washington, DC, pp 95–114

    Chapter  Google Scholar 

  • Stein LY, Arp DJ (1998) Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64:4098–4102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stein LY, Arp DJ, Hyman MR (1997) Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability. Appl Environ Microbiol 63:4588–4592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stein LY, Arp DJ, Berube PM, Chain PSG, Hauser L, Jetten MSM et al (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007

    Article  CAS  PubMed  Google Scholar 

  • Stephen JR, McCaig AE, Smith Z, Prosser JI, Embley TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72:638–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suwa Y, Norton JM, Bollmann A, Klotz MG, Stein LY, Laanbroek HJ et al (2011) Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia. J Bacteriol 193:5047–5048

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176:6623–6630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuyama T, Mine A, Kamiyama K, Yabe R, Satoh K, Matsumoto H et al (2004) Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant. J Biosci Bioeng 98:309–312

    Article  CAS  PubMed  Google Scholar 

  • van Nielm EWJ, Robertson LA, Kuenen JG (1993) A mathematical description of the behaviour of mixed chemostat cultures of an autotrophic nitrifier and a heterotrophic nitrifier/aerobic denitrifier; a comparison with experimental data. FEMS Microbiol Lett 102:99–108

    Article  Google Scholar 

  • Verhagen FJM, Laanbroek HJ (1991) Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Appl Environ Microbiol 57:3255–3263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voss M, Montoya JP (2009) Nitrogen cycle: oceans apart. Nature 461:49–50

    Article  CAS  PubMed  Google Scholar 

  • Ward BB (1982) Oceanic distribution of ammonium-oxidizing bacteria determined by immunofluorescent assay. J Mar Res 40:1155–1172

    Google Scholar 

  • Ward BB, O’Mullan GD (2002) Worldwide distribution of Nitrosococcus oceani, a marine ammonia-oxidizing gammaproteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. Appl Environ Microbiol 68:4153–4157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward BB, O’Mullan GD (2005) Community level analysis: genetic and biogeochemical approaches to investigate community composition and function in aerobic ammonia oxidation. Methods Enzymol 397:395–413

    Article  CAS  PubMed  Google Scholar 

  • Ward BB, Eveillard D, Kirshtein JD, Nelson JD, Voytek MA, Jackson GA (2007) Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ Microbiol 9:2522–2538

    Article  CAS  PubMed  Google Scholar 

  • Watson SW (1971) Taxonomic considerations of the family Nitrobacteraceae Buchanan. Requests for opinions. Int J Syst Bacteriol 21:254–270

    Article  Google Scholar 

  • Watson SW, Mandel M (1971) Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J Bacteriol 107:563–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watson SW, Graham LB, Remsen CC, Valois FW (1971) A lobular ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Arch fur Mikrobiol 76:183–203

    Article  CAS  Google Scholar 

  • Watson SW, Valois FW, Waterbury JB (1981) The family Nitrobacteraceae. In: Starr MP, Stolp H, Trüper H (eds) The prokaryotes, vol 1. Springer, Berlin, pp 1005–1022

    Chapter  Google Scholar 

  • Webster G, Embley TM, Freitag TE, Smith Z, Prosser JI (2005) Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Environ Microbiol 7:676–684

    Article  CAS  PubMed  Google Scholar 

  • Wells GF, Park HD, Yeung CH, Eggleston B, Francis CA, Criddle CS (2009) Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol 11:2310–2328

    Article  CAS  PubMed  Google Scholar 

  • Whitby CB, Saunders JR, Pickup RW, McCarthy AJ (2001) A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Antonie Van Leeuwenhoek 79:179–188

    Article  CAS  PubMed  Google Scholar 

  • Whittaker M, Bergmann D, Arciero D, Hooper AB (2000) Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim Biophys Acta 1459:346–355

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984a) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H, Stackebrandt E (1984b) The phylogeny of the purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    Article  CAS  Google Scholar 

  • Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W, Stackebrandt E (1985) The phylogeny of the purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33

    Article  CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJ, Herfort L, van Bleijswijk J, Timmers P et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Chandran K (2010) Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiol 10:70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang T, Chen YG, Zhao YX, Zhu XY (2009) Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J Appl Microbiol 107:970–977

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA 107:17240–17245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, T, Ye L, Tong AHY, Shao MF, Lok S (2011) Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Appl Microbiol Biotechnol 91:1215–1225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James I. Prosser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Prosser, J.I., Head, I.M., Stein, L.Y. (2014). The Family Nitrosomonadaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_372

Download citation

Publish with us

Policies and ethics