Skip to main content

The Family Xanthobacteraceae

  • Reference work entry
  • First Online:

Abstract

The family Xanthobacteraceae, established in 2005 on the basis of 16S rRNA phylogeny, is affiliated with the Alphaproteobacteria. Currently (May 2012) it encompasses 7 genera (Xanthobacter [type genus], Ancylobacter, Azorhizobium, Labrys, Pseudolabrys, Pseudoxanthobacter, and Starkeya) and 28 species. All members grow as aerobic chemoheterotrophs, but facultative chemolithoautotrophy with hydrogen and/or reduced sulfur compounds is found in many species. Nitrogen fixation is widespread; the genus Azorhizobium entirely consists of N2-fixing symbionts that live in association with leguminous plants. Some species can grow on unusual substrates such as alkenes, halogenated aliphatic and aromatic compounds, terpenes, thiophenes, or polyaromatic compounds. Representatives of the family can be found worldwide in freshwater lakes and streams, soils, wetlands, and in polluted sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert RA, Waas NE, Langer S, Pavlons SC, Feldner JL, Rosselló-Mora R, Busse H-J (2010) Labrys wisconsinensis sp. nov., a budding bacterium isolated from Lake Michigan water, and emended description of the genus Labrys. Int J Syst Evol Microbiol 60:1570–1576

    Article  CAS  PubMed  Google Scholar 

  • Arun AB, Schumann P, Chu H-I, Tan C-C, Chen W-M, Lai W-A, Kämpfer P, Shen F-T, Rekha PD, Hung M-H, Chou J-H, Young C-C (2008) Pseudoxanthobacter soli gen. nov., sp. nov., a nitrogen-fixing alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 58:1571–1575

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten J, Reh M, Schlegel HG (1974) Taxonomic studies on some Gram-positive coryneform hydrogen bacteria. Arch Microbiol 100:207–217

    Article  CAS  Google Scholar 

  • Broberg CA, Clark DD (2010) Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene. Arch Microbiol 192:945–957

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MF, Ferreira Jorge F, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial stran capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MF, De Marco P, Duque AF, Pacheco CC, Janssen DB, Castro PML (2008) Labrys portucalensis sp. nov., a fluorobenzene-degrading bacterium isolated from an industrially contaminated sediment in northern Portugal. Int J Syst Evol Microbiol 58:692–698

    Article  CAS  PubMed  Google Scholar 

  • Cha JM, Cha W, Lee JH (1999) Removal of organosulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34:659–665

    Article  CAS  Google Scholar 

  • Chou Y-J, Elliott GN, James EK, Lin K-Y, Chou J-H, Sheu S-Y, Sheu D-S, Sprent JI, Chen W-M (2007) Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. Int J Syst Evol Microbiol 57:577–581

    Article  CAS  PubMed  Google Scholar 

  • Chung YC, Huang CP, Li CF (1997) Removal characteristics of H2S by Thiobacillus novellus CH 3 biofilter in autotrophic and mixotrophic environments. J Environ Sci Health A32:1435–1450

    CAS  Google Scholar 

  • de Souza Moreira FM, Cruz L, Miana de Faria S, Marsh T, Martínez-Romero E, de Oliveira Pedrosa F, Pitard RM, Young JPW (2006) Azorhizobium doebereinerae sp. nov., microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206

    Article  Google Scholar 

  • Doronina NV, Trotsenko YA (2003) Reclassification of ’Blastobacter viscosus’ 7d and ’Blastobacter aminooxidans’ 14a as Xanthobacter viscosus sp. nov. and Xanthobacter aminoxidans sp. nov. Int J Syst Evol Microbiol 53:179–182

    Article  PubMed  Google Scholar 

  • Doronina NV, Govorukhina NI, Trotsenko YA (1984) Blastobacter aminooxidans, a new species of bacteria growing autotrophically on methylated amines. Microbiology (Russ) 52:547–553

    Google Scholar 

  • Doronina NV, Trotsenko YA, Krauzova VI, Suzina NE (1996) New methylotrophic isolates of the genus Xanthobacter. Microbiology (Russ) 65:217–224

    Google Scholar 

  • Dreyfus B, Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313–317

    Article  CAS  Google Scholar 

  • Dreyfus B, Alazard D, Dommergues YR (1984) Stem-nodulating rhizobia. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, pp 161–169

    Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98

    Article  CAS  Google Scholar 

  • Emanuelsson MAE, Osuna MB, Ferreira Jorge RM, Castro PML (2009) Isolation of a Xanthobacter sp. degrading dichloromethane and characterization of the gene involved in the degradation. Biodegradation 20:235–244

    Article  CAS  PubMed  Google Scholar 

  • Ensign SA, Hyman MR, Arp DJ (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl Environ Microbiol 58:3038–3046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Federov MV, Kalininskaya TA (1961) A new species of nitrogen-fixing Mycobacterium and its physiological properties. Mikrobiologiya 30:9–14 (in Russian)

    Google Scholar 

  • Firsova J, Doronina N, Lang E, Spröer C, Vuilleumier S, Trotsenko Y (2009) Ancylobacter dichloromethanicus sp. nov. – a new aerobic facultatively methylotrophic bacterium using dichloromethane. Syst Appl Microbiol 32:227–232

    Article  CAS  PubMed  Google Scholar 

  • Fritz I, Strömpl C, Abraham W-R (2004) Phylogenetic relationships of the genera Stella, Labrys and Angulomicrobium within the ‘Alphaproteobacteria’ and description of Angulomicrobium amanitiforme sp. nov. Int J Syst Evol Microbiol 54:651–657

    Article  CAS  PubMed  Google Scholar 

  • Goormachtig S, Mergaert P, Van Montagu M, Holsters M (1998) The symbiontic interaction between Azorhizobium caulinodans and Sesbania rostrata. Molecular cross-talk in a beneficial plant-bacterium interaction. In: Biswass BB, Das HK (eds) Plant-microbe interactions, vol 29, Subcellular biochemistry. Plenum Press, New York, pp 117–164

    Chapter  Google Scholar 

  • Hamana K, Minamisawa K, Matsuzaki S (1990) Polyamines in Rhizobium, Bradyrhizobium, Azorhizobium and Agrobacterium. FEMS Microbiol Lett 71:71–76

    Article  CAS  Google Scholar 

  • Hirano SL, Kitauchi F, Haruki M, Imanaka T, Morikawa M, Kanaya S (2004) Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127 W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen concentrations. Biosci Biotechnol Biochem 68:557–564

    Article  CAS  PubMed  Google Scholar 

  • Im W-T, Aslam Z, Lee M, Ten LN, Yang D-C, Lee S-T (2006) Starkeya koreensis sp. nov., isolated from rice straw. Int J Syst Evol Microbiol 56:2409–2414

    Article  CAS  PubMed  Google Scholar 

  • Inguva S, Schreve GS (1999) Biodegradation kinetics of trichloroethylene and 1,2-dichloroethane by Burkholderia (Pseudomonas) cepacia PR131 and Xanthomonas autotrophicus GJ10. Int Biodeter Biodeg 43:57–61

    Article  CAS  Google Scholar 

  • Islam MS, Kawasaki H, Nakagawa Y, Hattori T, Seki T (2007) Labrys okinawensis sp. nov. and Labrys miyagiensis sp. nov., budding bacteria isolated from rhizosphere habitats in Japan, and emended descriptions of the genus Labrys and Labrys monachus. Int J Syst Evol Microbiol 57:552–557

    Article  CAS  PubMed  Google Scholar 

  • Janssen DB, Scheper A, Witholt B (1984) Biodegradation of 2-chloroethanol and 1,2-dichloroethane by pure bacterial cultures. In: Houwink EH, van der Meer RR (eds) Innovations in biotechnology, vol 20, Progress in industrial microbiology. Elsevier Biomedical Press, Amsterdam, pp 169–178

    Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L, Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl Environ Microbiol 49:673–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenni B, Aragno M (1987) Xanthobacter agilis sp. nov., a motile, dinitrogen-fixing, hydrogen-oxidizing bacterium. Syst Appl Microbiol 9:254–257

    Article  CAS  Google Scholar 

  • Kämpfer P, Young C-C, Arun AB, Shen F-T, Jäckel U, Rosselló-Mora R, Lai W-A, Rekha PD (2006) Pseudolabrys taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 56:2469–2472

    Article  PubMed  Google Scholar 

  • Kelly DP, Wood AP (2005) Genus XIX. Starkeya (ex Starkey 1934) Kelly, McDonald and Wood 2000, 1800VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 554–555

    Google Scholar 

  • Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Konopka AE, Moore RL, Staley JT (1976) Taxonomy of Microcyclus and other nonmotile, ring-forming bacteria. Int J Syst Bacteriol 26:505–510

    Article  Google Scholar 

  • Krishnakumar AM, Sliwa D, Endrizzi JA, Boyd ES, Ensign SA, Peters JW (2008) Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol Mol Biol Rev 72:445–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krum JG, Ensign SA (2001) Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. J Bacteriol 183:2172–2177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuykendall LD (2005) Genus VI. Azorhizobium Dreyfus, Garcia and Gillis 1988, 89VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2, The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 505–506

    Google Scholar 

  • Lang E, Swiderski J, Stackebrandt E, Schumann P, Spröer C, Sahin N (2008) Ancylobacter oerskovii sp. nov. and two additional strains of Ancylobacter polymorphus. Int J Syst Evol Microbiol 58:1997–2002

    Article  CAS  PubMed  Google Scholar 

  • Lara JC, Konopka A (1987) Isolation of motile variants from gas-vacuolate strains of Ancylobacter aquaticus. J Gen Microbiol 133:1489–1494

    Google Scholar 

  • Larkin JM, Borrall R (1979) Proposal of ATCC 25936 as the neotype strain of Microcyclus aquaticus Ørskov 1928. Int J Syst Bacteriol 29:414–415

    Article  Google Scholar 

  • Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Lee K-B, De Backer P, Aono T, Liu C-T, Suzuki S, Suzuki T, Kaneko T, Yamada M, Tabata S, Kupfer DM, Najar FZ, Wiley GB, Roe B, Binnewies TT, Ussery DW, D’Haeze W, Den Herder J, Gevers D, Vereecke D, Holsters M, Oyaizu H (2008) The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9:271

    Article  PubMed Central  PubMed  Google Scholar 

  • Li R, Zheng J-W, Ni B, Chen K, Yang X-J, Li S-P, Jiang J-D (2011) Biodegradation of pentachloronitrobenzene by Labrys portucalensis pcnb-21 isolated from polluted soil. Pedosphere 21:31–36

    Article  Google Scholar 

  • Lidstrom-O’Connor ME, Fulton GL, Wopat AE (1983) Methylobacterium ethanolicum: a syntrophic association of two methylotrophic bacteria. J Gen Microbiol 129:3139–3148

    Google Scholar 

  • Loginova NV, Trotsenko YA (1980) Blastobacter viscosus – a new species of autotrophic bacteria utilizing methanol. Microbiology (Russ) 48:644–651

    Google Scholar 

  • Loginova NV, Namsaraev BB, Trotsenko YA (1978) Autotrophic metabolism of methanol in Microcyclus aquaticus. Microbiology (Russ) 47:134–135

    Google Scholar 

  • Lu P, Jin L, Liang B, Zhang J, Li S, Feng Z, Huang X (2011) Study of biochemical pathway and enzyme involved in metsulfuron-methyl degradation by Ancylobacter sp. XJ-412-1 isolated from soil. Curr Microbiol 62:1718–1725

    Article  CAS  PubMed  Google Scholar 

  • Malik KA, Claus D (1979) Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria. Int J Syst Bacteriol 29:283–287

    Article  Google Scholar 

  • Malik KA, Schlegel HG (1981) Chemoautotrophic growth of bacteria able to grow under N2 fixing conditions. FEMS Microbiol Lett 11:63–67

    Article  CAS  Google Scholar 

  • McClay K, Schaefer CE, Vainberg S, Steffan RJ (2007) Biodegradation of bis(2-chloroethyl) ether by Xanthobacter sp. strain ENV481. Appl Environ Microbiol 73:6870–6875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meijer WG, Croes LM, Jenni B, Lehmicke LG, Lidstrom ME, Dijkhuizen L (1990) Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions. Arch Microbiol 153:360–367

    Article  CAS  PubMed  Google Scholar 

  • Miller JA, Kalyuzhnaya MG, Noyes E, Lara JC, Lidstrom ME, Chistoserdova L (2005) Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. Int J Syst Evol Microbiol 55:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Namsaraev BB, Nozhevnikova AN (1978) Autotrophic growth of Microcyclus aquaticus in an atmosphere of hydrogen. Microbiology (Russ) 47:315–318

    Google Scholar 

  • Nikitin DI (1971) A new soil microorganism – Renobacter vacuolatum, gen. et sp. n. Dokl Akad Nauk SSSR 198:447–448 (in Russian)

    CAS  PubMed  Google Scholar 

  • Ørskov J (1928) Beschreibung eines neuen Mikroben, Microcyclus aquaticus, mit eigentümlicher Morphologie. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig 107:180–184

    Google Scholar 

  • Ørskov J (1957) Genus VI. Microcyclus Ørskov, 1928. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. Williams & Wilkins, Baltimore, p 253

    Google Scholar 

  • Oyaizu-Masuchi Y, Komagata K (1988) Isolation of free-living nitrogen-fixing bacteria from the rhizosphere of rice. J Gen Appl Microbiol 34:127–164

    Article  CAS  Google Scholar 

  • Padden AN, Rainey FA, Kelly DP, Wood AP (1997) Xanthobacter tagetidis sp. nov., an organism associated with Tagetes species and able to grows on substituted thiophenes. Int J Syst Bacteriol 47:394–401

    Article  CAS  PubMed  Google Scholar 

  • Pandey AS, Mulder DW, Ensign SA, Peters JW (2011) Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. FEBS Lett 585:459–464

    Article  CAS  PubMed  Google Scholar 

  • Rainey FA, Wiegel J (1996) 16S ribosomal DNA sequence analysis confirms the close relationship between the genera Xanthobacter, Azorhizobium, and Aquabacter and reveals a lack of phylogenetic coherence between Xanthobacter species. Int J Syst Bacteriol 46:607–610

    Article  CAS  Google Scholar 

  • Raj HD (1977) Microcyclus and related ring-forming bacteria. CRC Crit Rev Microbiol 5:243–269

    Article  CAS  PubMed  Google Scholar 

  • Raj HD (1983) Proposal of Ancylobacter gen. nov. as a substitute for the bacterial genus Microcyclus Ørskov 1928. Int J Syst Bacteriol 33:397–398

    Article  Google Scholar 

  • Raj HD (1989) Oligotrophic methylotrophs – Ancylobacter (basonym “Microcyclus” Ørskov) Raj gen. nov. Crit Rev Microbiol 17:89–106

    Article  CAS  PubMed  Google Scholar 

  • Reding HK, Hartel PG, Wiegel J (1991) Effect of Xanthobacter, isolated and characterized from rice roots, on growth of wetland rice. Plant Soil 138:301–311

    Article  Google Scholar 

  • Reding HK, Croes GLM, Dijkhuizen L, Wiegel J (1992) Emendation of Xanthobacter flavus as a motile species. Int J Syst Bacteriol 42:309–311

    Article  CAS  PubMed  Google Scholar 

  • Reij MW, Kieboom J, de Bont JAM, Hartmans S (1995) Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Appl Environ Microbiol 61:2936–2942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson BK, Dreyfus B, Alexander M (1995) Ecology of stem-nodulating Rhizobium and Azorhizobium in four vegetation zones of Senegal. Microb Ecol 29:71–81

    Article  CAS  PubMed  Google Scholar 

  • Sharma RS, Mishra V, Mohmmed A, Babu CR (2008) Phage specificity and lipopolysaccharides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp. Arch Microbiol 189:411–418

    Article  CAS  PubMed  Google Scholar 

  • Sluis MK, Ensign SA (1997) Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc Natl Acad Sci USA 94:8456–8461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Small FJ, Ensign SA (1997) Alkene monooxygenase from Xanthobacter strain Py2. Purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes. J Biol Chem 272:24913–24920

    Article  CAS  PubMed  Google Scholar 

  • Sommer C, Gorisch H (1997) Enzymology of the degradation of (di)chlorobenzenes by Xanthobacter flavus 14p1. Arch Microbiol 167:384–391

    Article  CAS  PubMed  Google Scholar 

  • Spiess E, Görisch H (1996) Purification and characterization of chlorobenzene cis-dihydrodiol from Xanthobacter flavus 14p1. Arch Microbiol 165:201–205

    CAS  PubMed  Google Scholar 

  • Spiess E, Sommer C, Görisch H (1995) Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl Environ Microbiol 61:3884–3888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staley JT, Jenkins C, Konopka AE (2005) Genus III. Ancylobacter Raj 1983, 397VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 497–501

    Google Scholar 

  • Starkey RL (1934) Cultivation of organisms concerned in the oxidation of thiosulfate. J Bacteriol 28:365–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stubner S, Wind T, Conrad R (1998) Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Syst Appl Microbiol 21:569–578

    Article  CAS  PubMed  Google Scholar 

  • Tay ST-L, Hemond HF, Polz MF, Cavanaugh CM, Krumholz LR (1999) Importance of Xanthobacter autotrophicus in toluene biodegradation within a contaminated stream. Syst Evol Microbiol 22:113–118

    Article  CAS  Google Scholar 

  • Torz M, Wietzes P, Beschkov V, Janssen DB (2007) Metabolism of mono- and dihalogenated C1 and C2 compounds by Xanthobacter autotrophicus growing on 1,2-dichloroethane. Biodegradation 18:145–157

    Article  CAS  PubMed  Google Scholar 

  • Trower MK, Buckland RM, Higgins R, Griffin M (1985) Isolation and characterization of a cyclohexane-metabolizing Xanthobacter sp. Appl Environ Microbiol 49:1282–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urakami T, Komagata K (1986) Methanol-utilizing Ancylobacter strains and comparison of their cellular fatty acid compositions and quinone systems with those of Spirosoma, Flectobacillus, and Runella species. Int J Syst Bacteriol 36:415–421

    Article  CAS  Google Scholar 

  • Urakami T, Araki H, Komagata K (1995) Characteristics of newly isolated Xanthobacter strains and fatty acid compositions and quinone systems in yellow-pigmented hydrogen-oxidizing bacteria. Int J Syst Evol Microbiol 45:863–867

    CAS  Google Scholar 

  • van den Wijngaard AJ, van der Kamp KWHJ, van der Ploeg J, Pries F, Kazemier B, Janssen DB (1992) Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl Environ Microbiol 58:976–983

    PubMed Central  PubMed  Google Scholar 

  • van den Wijngaard AJ, Prins J, Smal AJAC, Janssen DB (1993) Degradation of 2-chloroethylvinylether by Ancylobacter aquaticus AD25 and AD27. Appl Environ Microbiol 59:2777–2783

    PubMed Central  PubMed  Google Scholar 

  • van der Werf MJ, Keijzer PM, van der Schaft PH (2000) Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene. J Biotechnol 84:133–143

    Article  Google Scholar 

  • Van Ert M, Staley JT (1971) Gas-vacuolated strains of Microcyclus aquaticus. J Bacteriol 108:236–240

    PubMed Central  PubMed  Google Scholar 

  • van Ginkel CG, de Bont JAM (1986) Isolation and characterization of alkene-utilizing Xanthobacter spp. Arch Microbiol 145:403–407

    Article  Google Scholar 

  • Vasilyeva LV (2005) Genus XII. Labrys Vasilyeva and Semenov 1985, 375VP (Effective publication: Vasilyeva and Semenov 1984, 92). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 523–525

    Google Scholar 

  • Vasilyeva LV, Semenov AM (1984) Labrys monahos, a new budding prosthecate bacterium with radial symmetry. Microbiology (Russ) 53:85–92 (Russian original), 53:68–75 (English translation)

    Google Scholar 

  • Wiegel JKW (2005) Genus XX. Xanthobacter Wiegel, Wilke, Baumgarten, Opitz and Schlegel 1978, 573AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 555–566

    Google Scholar 

  • Wiegel J (2006) The genus Xanthobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol 5, 2nd edn. Springer, New York, pp 290–314

    Google Scholar 

  • Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG (1978) Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int J Syst Bacteriol 28:573–581

    Article  Google Scholar 

  • Wilke D, Schlegel HG (1979) A defective generalized transducing bacteriophage in Xanthobacter autotrophicus GZ29. J Gen Microbiol 115:403–410

    Article  Google Scholar 

  • Wong WY, Huyop F (2011) Characterization of a Labrys sp. strain Wy1 able to utilize 2,2-dichloropropionate (2,2-DCP) as sole source of carbon. Afr J Microbiol Res 5:3282–3288

    CAS  Google Scholar 

  • Xin YH, Zhou YG, Zhou HL, Chen WX (2004) Ancylobacter rudongensis sp. nov., isolated from roots of Spartina anglica. Int J Syst Evol Microbiol 54:385–388

    Article  CAS  PubMed  Google Scholar 

  • Xin YH, Zhou YG, Chen WX (2006) Ancylobacter polymorphus sp. nov. and Ancylobacter vacuolatus sp. nov. Int J Syst Evol Microbiol 56:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Yap WH, Thanabalu T, Porter AG (1994) Expression of mosquitocidal toxin genes in a gas-vacuolated strain of Anyclobacter aquaticus. Appl Environ Microbiol 60:4199–4202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosseló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Zaichikova MV, Berestovskaya YY, Akimov VN, Kizilova AK, Vasilieva LV (2010a) Xanthobacter xylophilus sp. nov., a member of the xylotrophic mycobacterial community of low-mineral oligotrophic waters. Microbiology (Russ.) 79:83–88

    Google Scholar 

  • Zaichikova MV, Berestovskaya YY, Akimov VN, Kizilova AK, Vasilieva LV (2010b) Ancylobacter abiegnus sp. nov., an oligotrophic member of the xylotrophic mycobacterial community. Microbiology (Russ.) 79:483–490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Oren, A. (2014). The Family Xanthobacteraceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_258

Download citation

Publish with us

Policies and ethics