Skip to main content

The Family Methylobacteriaceae

  • Reference work entry
  • First Online:

Abstract

The Methylobacteriaceae comprise a large family of Alphaproteobacteria within the Order Rhizobiales and currently contains three genera, Methylobacterium, Microvirga, and Meganema. The largest genus currently contains 44 validated species of Methylobacterium, most of which are facultative methylotrophs able to grow on methanol and other one-carbon compounds as sources of energy and carbon. Most are pink-pigmented, exhibit common fatty acid profiles, and contain ubiquinone Q-10. The eight species of Microvirga and the single species of Meganema are not methylotrophic. The phylogenetic and phenotypic properties of Meganema indicate that it is wrongly placed in this family. Methylobacterium species are ubiquitous in the natural environment, both as free-living organisms in soil and water, but also on the phylloplane of plants, and in the leaf, stem, and root tissues of plants: Some induce plant leaf and root nodule formation, and can promote plant growth by production of auxins. Some species are opportunistic human pathogens; others have been found in insect tissues. Some are important for their role in the degradation of pollutants, and they may also cause commercial problems such as the fouling of aircraft fuels. Microvirga species occur in diverse habitats as free-living species, and others are colonists in plant root nodules. The filamentous Meganema has only been recovered as an organism involved in the fouling and blocking of water filtration systems. The genomes of several Methylobacterium species have been sequenced, and they show considerable interstrain homology. Significant genome plasticity is indicated by the large number of insertion elements in some genomes, and some methylotrophic functions seem to have been acquired by horizontal gene transfer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Anandham R, Indiragandhi P, Madhaiyan M, Kim K, Yim W, Saravanan VS, Chung J, Sa T (2007) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53:869–876

    Article  CAS  PubMed  Google Scholar 

  • Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ, Sa T (2008) Chemolithotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobia isolated from crop plants. Res Microbiol 159:579–589

    Article  CAS  PubMed  Google Scholar 

  • Anandham R, Indiragandhi P, Madhaiyan M, Chung J, Ryu KY, Jee HJ, Sa T (2009) Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. J Microbiol Biotechnol 19:17–22

    CAS  PubMed  Google Scholar 

  • Anderson M, Lambrinos J, Schroll E (2010) The potential value of mosses for stormwater management in urban environments. Urban Ecosyst 13:319–332

    Article  Google Scholar 

  • Anesti V, Vohra J, Goonetilleka S, McDonald IR, Sträubler B, Stackebrandt E, Kelly DP, Wood AP (2004) Molecular detection and isolation of methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ Microbiol 6:820–830

    Article  CAS  PubMed  Google Scholar 

  • Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP (2005) Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, London

    Google Scholar 

  • Ardley JK (2011) Symbiotic specificity and nodulation in the southern African legume clade Lotononis s. l. and description of novel rhizobial species within the alphaproteobacterial genus Microvirga. PhD thesis, Murdoch University, Perth. http://researchrepository.murdoch.edu.au/9463/

  • Ardley JK, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Tiwari RP, Howieson JG (2009) Root nodule bacteria isolated from South African Lotononis baineseii, L. listii and L. soitudinis are species of Methylobacterium that are unable to utilize methanol. Arch Microbiol 191:311–318

    Article  CAS  PubMed  Google Scholar 

  • Ardley JK, Parker MA, De Meyer S, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2010) Species of Microvirga are novel alpha-proteobacterial root nodule bacteria that specifically nodulate Lotononis angolensis and Lupinus texensis. In: 9th European nitrogen fixation conference, 6–10 September 2010, Geneva. http://researchrepository.murdoch.edu.au/3734/

  • Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov., are alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588

    Google Scholar 

  • Atlas RM (2010) Handbook of microbiological media, 4th edn. ASM Press, Washington, DC

    Book  Google Scholar 

  • Barbeau J, Tanguay R, Faucher E, Avezard C, Trudel L, Cote L, Prevost AP (1996) Multiparametric analysis of waterline contamination in dental units. Appl Environ Microbiol 62:3954–3959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barriere P, Hansmann Y, Wilk A (2008) Postoperative intraorbital haematoma with septicemia due to Methylobacterium mesophilicum: a rare cause. Case report. Rev Stomatol Chir Maxillofac 105:323–325

    Article  Google Scholar 

  • Bassalik L (1913) Über die Verarbeitung der Oxalsäure durch Bacillus extorquens n. sp. Jahrb Wiss Bot 53:255–302 (in German)

    Google Scholar 

  • Bassalik C, Janota-Bassilik L, Brisou J (1960) Étude sur Flavobacterium extorquens (ex. Pseudomonas extorquens). Ann Inst Pasteur 98:165–168 (in French)

    CAS  Google Scholar 

  • Batey RT, Cloutier N, Mao H, Williamson JR (1996) Improved large scale culture of Methylophilus methylotrophus for 13C/15N labeling and random fractional deuteration of ribonucleotides. Nucleic Acids Res 24:4836–4837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhat JV, Barker HA (1948) Studies on a new oxalate-decomposing bacterium, Vibrio oxaliticus. J Bacteriol 55:359–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackmore MA, Quayle JR (1970) Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J 118:53–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blomqvist G, Wesslén L, Påhlson C, Hjelm E, Pettersson B, Nikkila T, Allard U, Svensson O, Uhlén M, Morein B, Friman G (1997) Phylogenetic placement and characterization of a new alpha-2 proteobacterium isolated from a patient with sepsis. J Clin Microbiol 35:1988–1995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bormann EJ, Leissner M, Beer B (1997) Growth and formation of poly(hydroxybutyric acid) by Methylobacterium rhodesianum at methanol concentrations above 25 g/l. Acta Biotechnol 17:279–289

    Article  CAS  Google Scholar 

  • Borsali E, Rossignol I, Batellier L, Legrand P, Goldschmidt P, Le Boutes A, Mokhtari K, Chaumeil C (2011) Isolement de Methylobacterium podarium au cours d’une inflammation intraoculaire. Méd Mal Infect 41:665–666

    Article  CAS  PubMed  Google Scholar 

  • Bourque D, Pomerleau Y, Groleau D (1995) High cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high molecular mass PHB. Appl Microbiol Biotechnol 44:367–376

    Article  CAS  Google Scholar 

  • Bousfield IJ, Green PN (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int J Syst Bacteriol 35:209

    Article  Google Scholar 

  • Breed RS, Murray EG, Smith NR (1957) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT, Garrity GM (2005) Bergey’s manual of systematic bacteriology, vol 2, Part C: the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York

    Book  Google Scholar 

  • Brown WJ, Sautter RL, Crist AE Jr (1992) Susceptibility testing of clinical isolates of Methylobacterium species. Antimicrob Agents Chemother 36:1635–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MA, Greene JN, Sandin RL, Hiemenz JW, Sinnott JT (1996) Methylobacterium bacteremia after infusion of contaminated autologous bone marrow. Clin Infect Dis 23:1191–1192

    Article  CAS  PubMed  Google Scholar 

  • Brown LM, McComb JP, Vangsness MD, Bowen LL, Mueller SS, Balster LM, Bleckmann CA (2010) Community dynamics and phylogenetics of bacteria fouling Jet A and JP-8 aviation fuel. Int Biodeter Biodegrad 64:253–261

    Article  CAS  Google Scholar 

  • Cao Y-R, Wang W, Jin R-X, Tang S-K, Jiang Y, He W-X, Lai H-X, Xu L-H, Jiang C-L (2011) Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie Van Leeuwenhoek 99:629–634

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME (1994) Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy revisited. Environ Microbiol 13:2603–2622

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova LV, Lidstrom ME (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176:1957–1968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chistoserdova LV, Lidstrom ME (1997) Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiology 143:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chongcharoen R, Smith TJ, Flint KP, Dalton H (2005) Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification. Microbiology 151:2615–2622

    Article  CAS  PubMed  Google Scholar 

  • Corpe WA (1985) A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 3:215–221

    Article  Google Scholar 

  • Corpe WA, Basile DV (1982) Methanol-utilizing bacteria associated with green plants. Dev Ind Microbiol 23:483–493

    Google Scholar 

  • Corpe WA, Rheen S (1989) Ecology of methylotrophic bacteria on living leaf surfaces. FEMS Micobiol Ecol 62:243–250

    Article  CAS  Google Scholar 

  • De Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80

    Article  PubMed  Google Scholar 

  • De Vries JT, Derx HG (1953) On the occurrence of Mycoplana rubra and its identity with Protaminoacter ruber. Ann Bogor 1:53–60

    Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, von Mering R, Vorholt JA (2009) Community phytogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:15428–16433

    Article  Google Scholar 

  • Den Dooren de Jong LE (1927) Über Protaminophage-Bakterien. Zentbl Bakteriol Parasitentkunde (Abt II) 71:193–232

    Google Scholar 

  • Den Doren de Jong LE (1957) Protaminobacter. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology. Balliere, Tindall & Cox, London, pp 200–201

    Google Scholar 

  • Desmarteaux D, Quenteville Y, Miguez C (2012) Powerful Methylobacterium-based technology platform for the production of recombinant proteins and other bioproducts (PL-11725). National Research Council Canada, Ottawa. http://www.nrc-cnrc.gc.ca/eng/licensing/bri/methylobacterium-technology.html

  • Doronina NV, Trotsenko YuA (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology (Moscow) 71:116–118 (English translation of Mikrobiologiya 71:130–132, 2002)

    Google Scholar 

  • Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T (2000) Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218

    Article  CAS  PubMed  Google Scholar 

  • Dourado MN, Andreate FD, Dini-Andreote F, Conti R, Araújo JM, Araújo WL (2012a) Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association. Genet Mol Biol 35:142–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dourado MN, Ferreira A, Araújo WL, Azevedo JL, Lacava PT (2012b) The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. Biotechnol Res Int 8. doi:10.1155/2012/759865. Article ID 759865. http://www.hindawi.com/journals/btri/2012/759865/

  • Drancourt M, Raoult D (2005) Sequence-based identification of new bacteria: a proposition for creation of an orphan bacterium repository. J Clin Microbiol 43:4311–4315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engler C, Norton R (2001) Recurrent Methylobacterium mesophilicum sepsis associated with haemodialysis. Pathology 33:536–537

    Article  CAS  PubMed  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol: the simplest natural product from plants. Trends Plant Sci 1:296–301

    Article  Google Scholar 

  • Fanci R, Corti G, Baetoloni A, Tortoli E, Mariottini A, Pecile P (2010) Unusual Methylobacterium fujisawaense infection in a patient with acute leukemia undergoing haematopoietic stem cell transplantation: first case report. Case Rep Med. doi:10.1155/2010/313514 (3 pp)

    PubMed Central  PubMed  Google Scholar 

  • Fedorov DN, Doronina NV, Trotsenko YuA (2010) Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry (Moscow) 75:1435–1443

    CAS  PubMed  Google Scholar 

  • Fernandes VC, Albergaria JT, Oliva-Teles T, Delerue-Matos C, De Marco P (2009) Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20:375–382

    Article  CAS  PubMed  Google Scholar 

  • Fernandez M, Dreyer Z, Hockenberry-Eaton M, Baker CJ (1997) Methylobacterium mesophilica as a cause of persistent bacteremia in a child with lymphoma. Pediatr Infect Dis J 16:1007–1008

    Article  CAS  PubMed  Google Scholar 

  • Fleischman D, Kramer DM (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364:17–36

    Article  CAS  PubMed  Google Scholar 

  • Flournoy DJ, Petrone RL, Voth DW (1992) A pseudo-outbreak of Methylobacterium mesophilica isolated from patients undergoing bronchoscopy. Eur J Clin Microbiol Infect Dis 11:240–243

    Article  CAS  PubMed  Google Scholar 

  • Fournier D, Halasz A, Spain JC, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71:4199–4202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara Y, Kinoshita T, Sato H, Kojima I (1984) Biodegradation and bioconcentration of alkyl ethers: Yukagatu. J Jpn Oil Chem Soc 33:111–114

    Article  CAS  Google Scholar 

  • Furuhata K, Kato Y, Goto K, Hara M, Yoshida S, Fukuyama M (2006) Isolation and identification of Methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility. Microbiol Immunol 50:11–17

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, Garcia MT, Ventosa A (2005a) Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, Garcia MT, Ventosa A (2005b) Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol 55:1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, Garcia MT, Ventosa A (2005c) Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, Garcia MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342

    Article  CAS  PubMed  Google Scholar 

  • Gan HM, Chew TH, Hudson AO, Savka MA (2012) Genome sequence of Methylobacterium sp. strain GXF4, a xylem-associated bacterium isolated from Vitis vinifera L. Grapevine. J Bacteriol 194:5157–5158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family IX. Methylobacteriaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C: the alpha- beta-, delta- and Epsilonproteobacteria. Springer, New York, pp 567–571

    Google Scholar 

  • Gilardi GL, Faur YC (1984) Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria. J Clin Microbiol 20:626–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godfrey CA (1972) The carotenoid pigment and deoxyribonucleic acid base ratio of a Rhizobium which nodulates Lotononis bainesii. Baker. J Gen Microbiol 72:299–402

    Article  Google Scholar 

  • Goodwin PM, Piercy R, Stone S (1988) The increased sensitivity of rifamycin resistant mutants of Methylobacterium AM1 to a variety of antimicrobial agents. Lett Appl Microbiol 7:99–101

    Article  CAS  Google Scholar 

  • Gout E, Aubert S, Bligny R, Rébeillé F, Nonomura AR, Benson AA, Douce R (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123:287–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green PN (1992) Taxonomy of methylotrophic bacteria. In: Dalton H, Murrell JC (eds) Methane and methanol utilizers. Springer, Heidelberg, pp 25–83

    Google Scholar 

  • Green PN (2005) Genus I. Methylobacterium Patt, Cole and Hanson 1976, 228AL emend Green and Bousfiled 1983, 876. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C: the Alpha- Beta-, Delta- and Epsilonproteobacteria. Springer, New York, pp 567–571

    Chapter  Google Scholar 

  • Green PN (2006) Methylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5, 3rd edn. Springer, New York, pp 257–265

    Chapter  Google Scholar 

  • Green PN, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877

    Article  Google Scholar 

  • Greub G, La Scola B, Raoult D (2004) Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Inf Dis 19:470–477

    Article  Google Scholar 

  • Hanson RS (1998) Ecology of methylotrophic bacteria. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57

    Google Scholar 

  • Hayashi T, Kohno S, Yamaguchi K, Hirota M, Hara K, Saitou A, Hamamoto A, Tsutsumi T (1990) Clinical and bacteriological studies in four cases of pulmonary infection caused by Protomonas extorquens. Kansenshogaku Zasshi 64:1048–1056 (Article in Japanese)

    Article  CAS  PubMed  Google Scholar 

  • Hellmuth J, Kutschera U (2008) The effect of growth-promoting methylobacteria on seedling development in Ginkgo biloba L. J Appl Bot 82:26–29

    Google Scholar 

  • Heumann W (1962) Die Methodik der Kreuzung sternbildender Bakterien. Biol Zentralbl 81:341–354

    Google Scholar 

  • Heumann W, Rösch A, Springer R, Wagner E, Winkler K-P (1984) In Rhizobiaceae five different species are produced by rearrangement of one genome, induced by DNA-damaging agents. Mol Gen Genet 197:425–436

    Article  CAS  Google Scholar 

  • Hiraishi A, Furuhata K, Matsumoto A, Koike K, Fukuyama M, Tabuchi K (1995) Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol 61:2099–2107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Höfer P, Choi YJ, Osborne MJ, Miguez MB, Vermette P, Groleau D (2010) Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains. Microb Cell Fact 9:70, 13pp. http://www.microbialcellfactories.com/content/9/1/70

  • Höfer P, Vermette P, Groleau D (2011) Introducing a new bioengineered bug: Methylobacterium extorquens tuned as a microbial bioplastic factory. Bioeng Bugs 2:71–79

    Article  PubMed  Google Scholar 

  • Holland MA (1997) Methylobacterium and plants. Recent Res Dev Plant Physiol 1:207–213

    Google Scholar 

  • Holton J, Miller R, Furst V, Malnick H (1990) Isolation of Protomonas extorquens (the “red phantom”) from a patient with AIDS. J Infect 21:87–93

    Article  CAS  PubMed  Google Scholar 

  • Hoppe T, Peters K, Schmidt F (2011) Methylobacterium bullatum sp. nov., a methylotrophic bacterium isolated from Funaria hygrometrica. Syst Appl Microbiol 34:482–486

    Article  CAS  PubMed  Google Scholar 

  • Hornei B, Lüneberg E, Schmidt-Rotte H, Maaß M, Weber K, Heits F, Frosch M, Solbach W (1999) Systemic infection of an immunocompromised patient with Methylobacterium zatmanii. J Clin Microbiol 37:248–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2002) Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on protonema development. Plant Biol 4:682–687

    Article  Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2006) Moss-associated methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften 93:480–486

    Article  CAS  PubMed  Google Scholar 

  • Hung W-L, Wade WG, Boden R, Kelly DP, Wood AP (2011) Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia and Microbacterium. Arch Microbiol 193:407–413

    Article  CAS  PubMed  Google Scholar 

  • Hung WL, Wade WG, Chen Y, Kelly DP, Wood AP (2012) Design and evaluation of novel primers for the detection of genes encoding diverse enzymes of methylotrophy and autotrophy. Pol J Microbiol 61:11–22

    CAS  PubMed  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  CAS  PubMed  Google Scholar 

  • Imbert G, Seccia Y, La Scola B (2005) Methylobacterium sp. bacteraemia due to a contaminated endoscope. J Hosp Infect 61:268–270

    Article  CAS  PubMed  Google Scholar 

  • Irvine IC, Brigham CA, Suding KN, Martiny JBH (2012) The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat. PLoS One 7(2):e31026. doi:10.1371/journal.pone.0031026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanova EG, Doronina NV, Shepelyakovskya AO, Laman AG, Brovko FA, Trotsenko YuA (2000). Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology (Moscow) 69:646–651 (English translation of Mikrobiologiya 69:764–769, 2000, in Russian)

    Article  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YuA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology (Moscow) 70:392–397

    Article  CAS  Google Scholar 

  • Jackson EF, Echlin HL, Jackson CR (2006) Changes in the phyllosphere community of the resurrection fern Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58:236–246

    Article  CAS  PubMed  Google Scholar 

  • Jacob DJ, Field BD, Li Q, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110:1–17

    Google Scholar 

  • Jaftha JB, Strijdom BW, Steyn PL (2002) Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25:440–449

    Article  CAS  PubMed  Google Scholar 

  • Janota L (1950) Przebieg zuzymania krasu szczawiowego przez Pseudomonas extorquens Bassilik, w zalesnosci od poczatkowej liczby komorek. Med Dosw Mikrobiol 2:131–132 (Progress of oxalic acid use by Pseudomonas extorquens Bassalik in relation to the initial number of cells; in Polish)

    CAS  PubMed  Google Scholar 

  • Janota L (1956) Powiazanie anabolizmu z katabolizmem u Pseudomonas extorquens Bassalik. Acta Soc Bot Pol 25:73–110 (The relationship between anabolism and katabolism in Pseudomonas extorquens Bassalik; in Polish)

    CAS  Google Scholar 

  • Janota-Bassalik L, Pedyk D (1961) Ability of Flavobacterium extorquens to utilize various sources of carbon with particular reference to glucose. Acta Microbiol Polon 10:225–238

    CAS  Google Scholar 

  • Jensen HS, Arvin E (1990) Solubility and degradability of the gasoline additive MTBE, methyl-tert-butyl-ether, and gasoline compounds, in water. In: Arendt F, Hinsenveld M, van den Brink WJ (eds) Contaminated soil ’90. Kluyver, Dordrecht, pp 445–448

    Chapter  Google Scholar 

  • Jiang Y, Chen Y, Zheng X (2009) Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ Sci Technol 43:7734–7741

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Giraud E, Bénal G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Ranier A, Rapior S, Miana de Faria S, Prin Y, Galana A, Giraud E, Dreyfus B (2005) Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa. Mol Plant Microbe Interact 18:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Jourdain B, Legrand M (2001) Seasonal variations of atmospheric dimethylsulfide, dimethylsulfoxide, sulfur dioxide, methanesulfonate, and non-sea salt sulfate aerosols at Dumont d’Urville (coastal Antarctica) (December 1998 to July 1999). J Geophys Res 106:14291–14408

    Google Scholar 

  • Juhas J, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Asahara M, Arai D, Goto K, Yokata A (2005) Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 51:287–299

    Article  CAS  PubMed  Google Scholar 

  • Kaye KM, Macone A, Kazanjian PH (1992) Catheter infection caused by Methylobacterium in immunocompromised hosts: report of three cases and review of the literature. Clin Infect Dis 14:1010–1014

    Article  CAS  PubMed  Google Scholar 

  • Kelley ST, Theisen U, Angenent LT, St Amand A, Pace NR (2004) Molecular analysis of shower curtain biofilm microbes. Appl Environ Microbiol 70:4187–4192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Wood AP (1998) Microbes of the sulfur cycle. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57

    Google Scholar 

  • Kim SW, Lee HS, Kim JH (1999) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Methylobacterium organophilum by potassium-limited fed batch culture. Enzyme Microb Technol 24:555–560

    Article  CAS  Google Scholar 

  • Kirikova NN (1970) Properties of two strains of Pseudomonas utilising one carbon compounds. Mikrobiologiya 39:18–23 (Microbiology 39:12–16, English translation of Mikrobiologiya)

    CAS  Google Scholar 

  • Kleinig H, Broughton WJ (1982) Carotenoid pigments in a red strain of Rhizobium from Lotononis bainesii Baker. Arch Microbiol 133:164

    Article  CAS  Google Scholar 

  • Knief C, Frances L, Cantet F, Vorholt JA (2008) Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 74:2218–2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010a) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Frances L, Vorholt JA (2010b) Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452

    Article  PubMed  Google Scholar 

  • Knief C, Dengler V, Bodelier PLE, Vorholt JA (2012) Characterization of Methylobacterium strains isolated from the phyllosphere and description of Methylobacterium longum sp. nov. Antonie Van Leeuwenhoek 101:169–183

    Article  CAS  PubMed  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konovalova AM, Shylin SO, Rokytko PV (2006) Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs. Ukr Biokhim Zhurnal 78:146–150 (in Ukrainian)

    CAS  Google Scholar 

  • Konovalova AM, Shylin SO, Rokytko PV (2007) Characteristics of carotinoids of methylotrophic bacteria of the Methylobacterium genus. Mikrobiol Z (Kiev) 69:35–41 (in Ukrainian)

    CAS  Google Scholar 

  • Korvick JA, Rihs JD, Gilardi GL, Yu VL (1989) A pink pigmented, oxidative, nonmotile bacterium as a cause of opportunistic infections. Arch Intern Med 149:1449–1451

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva J, Degener JE, van der Mei HC (2012) Simulation of Methylobacterium biofilm formation in endoscope channels in a novel in vitro biofilm model of endoscope reprocessing. In: 22nd European congress of clinical microbiology and infectious diseases, 3 April 2012, p 2163

    Google Scholar 

  • Kovaleva J, Peters FT, van der Mei HC, Degener JE (2013) Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin Microbiol Rev 26:231–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krasil’nikov NA (1949) Guide to the bacteria and actinomycetes. Akademii Nauk S.S.S.R. Moscow (in Russian). Republished (1959) as Diagnostik der Bakterien und Actinomyceten. Gustav Fischer, Jena (in German)

    Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts. Plant Signal Behav 2:74–78

    Article  PubMed Central  PubMed  Google Scholar 

  • Kutschera U, Koopmann V (2005) Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria. Naturwissenschaften 92:347–349

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96:1339–1354

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD (2005) Order VI. Rhizobiales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C: the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 324–474

    Google Scholar 

  • Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2006) Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants. J Microbiol Methods 65:535–541

    Article  CAS  PubMed  Google Scholar 

  • Lai C-C, Cheng A, Liu W-L, Tan C-K, Huang Y-T, Chung K-P, Lee M-R, Hsueh P-R (2011) Infections cauosed by unusual Methylobacterium species. J Clin Microbiol 49:3329–3331

    Article  PubMed Central  PubMed  Google Scholar 

  • Lambert WC, Pathan AK, Irnaeda T, Kaminski ZC, Reichman LB (1983) Culture of Vibrio extorquens from severe, chronic skin ulcers in a Puerto Rican woman. J Am Acad Dermatol 9:262–268

    Article  CAS  PubMed  Google Scholar 

  • Lee C-H, Tang Y-F, Liu J-W (2004) Underdiagnosis of urinary tract infection caused by Methylobacterium species with current standard processing of urine culture and its clinical implications. J Med Microbiol 53:755–759

    Article  PubMed  Google Scholar 

  • Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2-fixing methylotrophic isolates. Biol Fertil Soils 42:402–408

    Article  CAS  Google Scholar 

  • Levantesi C, Beinfohr C, Geurkink B, Rossetti S, Thelen K, Krooneman J, Schnaidr J, van der Waarde J, Tandoi V (2004) Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27:716–727

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gu JD (2007) Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetland sediment. Sci Total Environ 380:181–187

    Article  CAS  PubMed  Google Scholar 

  • Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 2, 3rd edn. Springer, New York, pp 618–634

    Chapter  Google Scholar 

  • Liu JW, Wu JJ, Chen HM, Huang AH, Ko WC, Chuang YC (1997) Methylobacterium mesophilicum synovitis in an alcoholic. Clin Infect Dis 24:1008–1009

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacDonald RC, Fall K (1993) Detection of substantial emissions of methanol from plants to the atmosphere. Atmos Environ 27A:1709–1713

    Article  CAS  Google Scholar 

  • Machlin SM, Tan PE, Bastien CA, Hanson RS (1988) Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation. J Bacteriol 170:141–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduce nickel and cadmium toxicity and promote plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthikumar M, Lee J-S, Lee K-C (2012) Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere. Int J Syst Evol Microbiol 62:162–167

    Article  CAS  PubMed  Google Scholar 

  • Marx CJ, Bringel F, Chistoserdova L, Moulin L et al (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald IR, Murrell JC (1997) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC (2001) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122

    Article  CAS  PubMed  Google Scholar 

  • McNamara C, Perry T, Leard R, Bearce K, Dante J, Mitchell K (2005) Corrosion of aluminium alloy 2024 by microorganisms isolated from aircraft fuel tanks. Biofouling 21:257–265

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigen MS, Singh DP, Saxena AK, Arora D (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM, Hoy MA (2008) Molecular survey of endosymbionts in Florida populations of Diaphorina citri (Hemiptera: Psyllidae) and its parasitoids Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Fl Entomol 91:294–304

    Article  Google Scholar 

  • Miller IM, Scott A, Gardner IC (1983) Leaf nodule development in Psychotria kirkii Hiern (Rubiaceae). Ann Bot 52:791–802

    Google Scholar 

  • Millerd A, Morton RK, Wells JRE (1963) Oxalic acid synthesis in shoots of Oxalis pes-caprae. Biochem J 86:57–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, Kelly DP (eds) (1996) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO Advanced Science Institutes series. Springer, Berlin, vii + 306 pp

    Google Scholar 

  • Nadalig T, Haque UHM, Roselli S, Schaller H, Bringel F, Vuilleumier S (2011) Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 77:438–448

    Article  CAS  PubMed  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves: enzymic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    Article  CAS  Google Scholar 

  • Orphan VJ, Taylo LT, Hafenbradl D, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Passman F, McFarland B (1997) Understanding, recognizing, and controlling microbial contamination in fuels and fuel systems—a primer prepared for Chevron USA. FQS Limited, Princeton (Cited by Brown et al. 2010)

    Google Scholar 

  • Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229

    Article  CAS  Google Scholar 

  • Mattilä AM (née Pirttilä) (2001) Endophytes in the buds of Scots pine (Pinus sylvestris L.). Academic dissertation, Faculty of Science, University of Oulu. Acta Universitatis Ouluensis Scientiae Rerum Naturalium A 369. http://herkules.oulu.fi/isbn9514264444/isbn9514264444.pdf

  • Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch [sic] pine (Pinus sylvestris) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed Central  PubMed  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Kim WJ, Kim KA, Sa TM (2008) Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl Microbiol Bikotechnol 78:1033–1043

    Article  CAS  Google Scholar 

  • Radha TK (2007) Studies on methylotrophs and their beneficial effects on soybean (Glycine max L. Merrill). MSc (Agriculture) thesis, University of Agricultural Sciences, Dharwad, India. http://etd.uasd.edu/ft/th9343.pdf

  • Raja P, Balachandar D, Sundaram SP (2008) Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fertil Soils 45:45–53

    Article  Google Scholar 

  • Rauch M, Graft H, Rozenzhak S, Jones S, Bieckmann C, Kruger R, Naik R, Stone M (2006) Characterization of microbial contamination in United States Air Force aviation fuel tanks. J Ind Microbiol Biotechnol 33:29–35

    Article  CAS  PubMed  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renier A, De Faria SM, Jourand P, Giraud E, Dreyfus B, Rapior S, Prin Y (2011) Nodulation of Crotolaria podocarpa DC by Methylobacterium nodulans displays very unusual features. J Exp Bot 62:3693–3697

    Article  CAS  PubMed  Google Scholar 

  • Rice EW, Reasoner DJ, Johnson CH, DeMaria IA (2000) Monitoring for methylobacteria in water systems. J Clin Microbiol 38:4296–4297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romanovskaya VA, Stolyar SM, Malashenko YR (1996) Distribution of bacteria of the genus Methylobacterium in different ecosystems of Ukraine. Mikrobiol Z (Kiev) 58:3–10

    Google Scholar 

  • Romanovskaya VA, Rokitko PV, Mikheev AN, Gushcha NI, Malashenko YuR, Chernaya NA (2002) The effect of γ-radiation and desiccation on the viability of the soil bacteria isolated from the alienated zone around the Chernobyl nuclear power plant. Microbiology 71:608–613 (translation of Mikrobiologiya 71:705–712)

    Article  CAS  Google Scholar 

  • Romanovskaya VA, Tashyrev OB, Rokitko PV, Shilin SO, Chernaya NA, Tashyreva AO (2009a) Microbial diversity in terrestrial Antarctic biotypes. Український Антарктичний Журнал (Ukr Antarct J) 8:364–369 (in English)

    Google Scholar 

  • Romanovskaya VA, Rokitko PV, Shilin SO, Chernaya NA, Tashyrev AB (2009b) Distribution of bacteria of Methylobacterium genus in the terrestrial biotopes of the Antarctic region. Mikrobiol Z (Kiev) 71:3–9 (in Russian)

    Google Scholar 

  • Romanovskaya VA, Sokolov IG, Malashenko YuR, Rokitko PV (1998) Mutability of epiphytic and soil bacteria of the genus Methylobacterium and their resistance to ultraviolet and ionizing radiation. Microbiology (Moscow) 67:89–97 (translation of Mikrobiologiya 67:106–115)

    CAS  Google Scholar 

  • Rutherford PC, Narkowicz JE, Wood CJ, Peel MM (1988) Peritonitis caused by Pseudomonas mesophilica in a patient under continuous ambulatory peritoneal dialysis. J Clin Microbiol 26:2441–2443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Şahín N (2011) Significance of absorption spectra for the chemotaxonomic characterization of pigmented bacteria. Turk J Biol 35:167–175

    Google Scholar 

  • Şahín N, Kato Y, Yilmaz F (2008) Taxonomy of oxalotrophic Methylobacterium strains. Naturwissenschaften 95:931–938

    Article  PubMed  CAS  Google Scholar 

  • Sanders JW, Martin JW, Hooke M, Hooke J (2000) Methylobacterium mesophilicum infection: case report and literature review of an unusual opportunistic pathogen. Clin Infect Dis 30:936–938

    Article  CAS  PubMed  Google Scholar 

  • Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29

    Article  CAS  PubMed  Google Scholar 

  • Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav 6:510–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schauer S, Kämpfer P, Wellner S, Sproer C, Kutschera U (2011) Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 61:870–876

    Article  CAS  PubMed  Google Scholar 

  • Schink B, Zeikus JG (1980) Microbial methanol metabolism: a major end product of pectin metabolism. Curr Microbiol 4:387–389

    Article  CAS  Google Scholar 

  • Schneider K, Skovran E, Vorholt JA (2012) Oxalyl-CoA reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. J Bacteriol 194:3144–3155

    Google Scholar 

  • Schrader J, Schilling M, Holtmann D, Sell D, Villela Filho M, Marx A, Vorholt JA (2009) Methanol based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:106–115

    Article  CAS  Google Scholar 

  • Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME (2011) XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 193:6032–6038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rossella-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  • Stocks PK, McCleskey CS (1964) Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J Bacteriol 88:1065–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strazzi SR, Baccard M, Puppin D Jr, Plancke L, Morel P, Kiredjian M (1992) Pseudomonas mesophilica cutaneous infection in an immunocompetent patient. Arch Dermatol 128:273–274

    Article  CAS  PubMed  Google Scholar 

  • Sy A, Giraud E, Samba R, de Lajudie P, Gillis M, Dreyfus B (2001a) Certaines légumineuses du genre Crotalaria sont spécifiquement nodulées par une nouvelle espèce de Methylobacterium. Can J Microbiol 47:503

    Article  CAS  PubMed  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M (2001b) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sy A, Antonius CJ, Knief C, Vorholt JA (2006) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252

    Article  CAS  Google Scholar 

  • Takeda M, Suzuki I, Koizumi JI (2004) Balneimonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the α-2 subclass of the Proteobacteria. Syst Appl Microbiol 27:139–145

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Akita M, Murase H, Kimbara K (2011) Culturable bacteria in hydroponic cultures of moss Racomitrium japonicum and their potential as biofertilizers for moss production. J Biosci Bioeng 112:32–39

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Sahin N, Kimbala K (2012a) Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculum. Int J Syst Evol Microbiol 62:1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Sahin N, Kimbara K (2012b) Methylobacterium gnaphalii sp. nov., isolated from leaves of Gnaphalium spicatum. Int J Syst Evol Microbiol 62:2602–2607

    Google Scholar 

  • Tani A, Takai Y, Suzukawa I, Akita M, Murase H, Kimbara K (2012c) Practical application of methanol-mediated mutualistic symbiosis between Methylobacterium species and a roof greening moss, Racomitrium japonicum. PLoS One 7(3):e33800. doi:10.1371/journal.pone.0033800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tani A, Sahin N, Matsuyama Y, Enomoto T, Nishimura N, Yokota A, Kimbara K (2012d) High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One 7(7):e40784. doi:10.1371/journal.pone.0040784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resistant bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen TR, Blackall LL, de Muro MA, Nielsen JL, Nielsen PH (2006) Meganema perideroedes gen., nov., a filamentous alphaproteobacterium from activated sludge. Int J Syst Evol Microbiol 56:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YuA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology 7:623–632 (English translation of Mikrobiologiya 70:725–736, 2001)

    Article  Google Scholar 

  • Truant AL, Gulati R, Giger O, Satishchandran V, Caya JG (1998) Methylobacterium species: an increasingly important opportunistic pathogen. Lab Med 29:704–710

    Google Scholar 

  • Urakami T, Komagata K (1984) Protomonas, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34:188–201

    Article  CAS  Google Scholar 

  • USDA (1984) Oxalic acid content of selected vegetables. Nutrient Data Laboratory. http://www.nal.usda.gov/fnic/foodcomp/Data/Other/oxalic.html. Accessed 25 June 2012

  • Van Aken B, Schoon JM, Schnoor JL (2004) Biodegradation of nitro substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Environ Microbiol 70:508–517

    Article  CAS  Google Scholar 

  • Van Aken B, Tehrani R, Schnoor JL (2011) Endophyte-assisted phytoremediation of explosives in poplar trees by Methylobacterium populi BJ001T. Endophytes For Trees For Sci 80:217–234

    Article  Google Scholar 

  • Van Borm S, Buschinger A, Boomsma JJ, Billen J (2002) Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc R Soc Lond B 269:2023–2027

    Article  CAS  Google Scholar 

  • Van Dien SJ, Marx CJ, O’Brien BN, Lidstrom ME (2003) Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant. Appl Environ Microbiol 69:7563–7566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Vuilleumier S, Chistoserdova L, Lee M-C, Bringel F, Lajus A et al (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4(5):e5584. doi:10.1371/journal.pone.0005584

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang X, Sahr F, Xiu T, Sun B (2007) Methylobacterium salsuginis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 57:1699–1703

    Article  CAS  PubMed  Google Scholar 

  • Wellner S, Lodders N, Kämpfer P (2012) Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol 62:917–924

    Article  CAS  PubMed  Google Scholar 

  • Weon H-Y, Kwon S-W, Son J-A, Jo E-H, Kim S-J, Kim Y-S, Kim B-Y, Ka J-O (2010) Description of Microvirga aerophila sp. nov., and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov., and emended description of the genus Microvirga. Int J Syst Evol Microbiol 60:2596–2600

    Article  CAS  PubMed  Google Scholar 

  • Westlake R (1986) Large-scale continuous production of single cell protein. Chem Ing Tech 58:929–1002

    Article  Google Scholar 

  • Wolfrum T, Gruner G, Stolp H (1986) Nucleic acid hybridization of pink-pigmented faculatative methylotrophs and pseudomonads. Int Syst J Bacteriol 36:24–28

    Article  CAS  Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  • Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, Murrell JC, Borodina E (1998) A novel pink pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169:148–158

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xianfeng YI (2006) Emission and utilization of methanol in higher plants. Ecol Environ 15:1258–1263

    Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ, Brau L, Ardley JK, Nistelberger HM, Real D, O’Hara GW (2007) Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 39:1680–1688

    Article  CAS  Google Scholar 

  • Yezza A, Fournier D, Halasz A, Hawari J (2006) Prduction of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218

    Article  CAS  PubMed  Google Scholar 

  • Zaharatos GJ, Daniel A, Miller MA (2001) Discordant carbapenem susceptibility in Methylobacterium species and its application as a method of phenotypic identification. J Clin Microbiol 39:2037–2038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen. nov., sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48

    Article  CAS  Google Scholar 

  • Zhang J, Song F, Xin YH, Zhang J, Fang C (2009) Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 59:1997–2001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Tae-Young Ahn (Dankook University, Korea), Julie Ardley (Murdoch University, Western Australia), Jean Euzéby (École Nationale Vétérinaire, France), Peter Green (National Collection of Industrial, Marine, and Food Bacteria, Scotland), Thomas Hoppe (Universität Siegen, Germany), Yi Jiang (Yunnan University, People’s Republic of China), Dipti Nayak and Chris Marx (Harvard University, USA), Angela Sessitsch (Austrian Institute of Technology, Tulln), Stefan Schauer (Universität Kassel, Germany), Julia Vorholt (Eidgenössische Technische Hochschule Zürich, Switzerland), and Stéphane Vuilleumier (Université de Strasbourg, France) for very helpful advice and information and for sharing unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donovan P. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kelly, D.P., McDonald, I.R., Wood, A.P. (2014). The Family Methylobacteriaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_256

Download citation

Publish with us

Policies and ethics