Skip to main content

The Family Bradyrhizobiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Bradyrhizobiaceae is a family of Rhizobiales order into the Alphaproteobacteria class that presents 12 genera including the type genus Bradyrhizobium. Phylogenetic analyses based on 16S rRNA sequences evoke a versatile family presenting a broad taxonomic affiliation with organisms from different environments like soil, plant, or animal hosts. Bacteria are pleomorphic with predominance of rod-shaped form. There is a diversity of phenotypic, metabolic, and ecological properties associated with each genus, and their participation in biogeochemical cycles is of extreme importance. Biological nitrogen fixation particularly performed by Bradyrhizobium is one of the most important ecological properties with potential application in agriculture, besides other diazotrophic members. In addition, the genus Afipia is clinically relevant once A. felis is a human pathogen causing the cat scratch disease. A lot of members of Bradyrhizobiaceae already had their genome completely sequenced which in turn corroborates their taxonomic classification. Considering that, taxonomy into Bradyrhizobiaceae will become better illustrated with advances in genomic projects applied to other members of this family.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-30197-1_501

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Chesney PJ (1995) Pulmonary manifestations of cat-scratch disease; a case report and review of the literature. Pediatr Infect Dis J 14:547–548

    Article  CAS  PubMed  Google Scholar 

  • Bécquer CJ (2004) Descripción y clasificación de rizobios: Enfoque histórico, métodos y tendencias actuales. Revista Biología 18:9–29

    Google Scholar 

  • Berben G (1996) Nitrobacter winogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster. Antonie Van Leeuwenhoek 69:305–315

    Article  CAS  PubMed  Google Scholar 

  • Bergman AM, Groothedde JW, Schellekens JFP et al (1995) Etiology of cat scratch disease: a comparison of polymerase chain reaction detection of Bartonella and Afipia felis DNA with serology and skin tests. J Infect Dis 171:916–923

    Article  Google Scholar 

  • Birkness KA, George VG, White EH, Stephens DS, Quinn FD (1992) Intracellular growth of Afipia felis, a putative etiologic agent of cat scratch disease. Infect Immun 60:2281–2287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bock E, Sundermeyer-Klinger H, Stackebrandt E (1983) New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch Microbiol 136:281–284

    Article  CAS  Google Scholar 

  • Boddey RM, Alves BJ, Soares LHDB, Jantalia CP, Urquiaga S (2009) Biological nitrogen fixation and the mitigation of greenhouse gas emissions. Agron Monogr 52:387–413

    CAS  Google Scholar 

  • Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC, Moreira FMS (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of Leguminosae. R Bras Ci Solo 35:657–671

    Article  CAS  Google Scholar 

  • Bottomley PJ, Myrold DD (2007) Biological N inputs. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Burlington, MA, p 514

    Google Scholar 

  • Brenner DJ, Hollis DG, Moss CW, English CK, Hall GS, Vincent J, Radosevic J, Birkness KA, Bibb WF, Quinn FD, Swaminathan B, Weaver RE, Reeves MW, O’Connor SP, Hayes PS, Tenover FC, Steigerwalt AG, Perkins BA, Daneshvar MI, Hill BC, Washington JA, Woods TC, Hunter SB, Hadfield TL, Ajello GW, Kaufmann AF, Wear DJ, Wenger JD (1991) Proposal of Afipia gen. nov., with Afipia felis sp. nov. (Formerly the cat scratch disease bacillus), Afipia clevelandensis sp. nov. (Formerly the Cleveland Clinic Foundation strain), Afipia broomeae sp. nov., and three unnamed genospecies. J Clin Microbiol 29:2450–2460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cai M, Wang L, Cai H, Li Y, Wang YN, Tang YQ, Wu XL (2011) Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 61:1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Carithers HA (1985) Cat-scratch disease. An overview based on a study of 1,200 patients. Am J Dis Child 139:1124–1133

    Article  CAS  PubMed  Google Scholar 

  • Castellane TCL, Lemos EGM (2007) Composição de exopolissacarídeos produzidos por estirpes de rizóbios cultivados em diferentes fontes de carbono. Pesqui Agropecu Bras 42:1503–1506

    Article  Google Scholar 

  • Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford NM, Kahn ML, Leustek T, Long SR (2000) Nitrogen and sulfur. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, p 786

    Google Scholar 

  • Čuhel J, Šimek M, Laughlin RJ, Bru D, Chèneby D, Watson CJ, Philippot L (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Das SK (2005) Genus V. Bosea. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, volume two the proteobacteria, part C the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 459–461

    Chapter  Google Scholar 

  • Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987

    Article  CAS  PubMed  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  Google Scholar 

  • De Kort JG, Robben SG, Schrander JJ, Van Rhijn LW (2006) Multifocal osteomyelitis in a child: a rare manifestation of cat scratch disease: a case report and systematic review of the literature. J Pediatr Orthop B 15:285–288

    Article  PubMed  Google Scholar 

  • De Meyer SE, Willems W (2012) Multilocus sequence analysis of Bosea species and description of Bosea lupine sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 62:2505–2510

    Article  PubMed  CAS  Google Scholar 

  • De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43:2384–2396

    Article  CAS  Google Scholar 

  • De Meyer SE, Coorevits A, Willems A (2012) Tardiphaga robiniae gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Syst Appl Microbiol 35:205–214

    Article  PubMed  Google Scholar 

  • De Souza JAM, Tieppo E, de Souza Magnani G, Alves LMC, Cardoso RL, Cruz LM, Lemos EGM (2012) Draft genome sequence of the nitrogen-fixing symbiotic bacterium Bradyrhizobium elkanii 587. J Bacteriol 194:3547–3548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Doronina NV, Govorukhina NI, Trotsenko YA (1983) Enzymes of ammonia assimilation in bacteria with various pathways of C 1 metabolism. Mikrobiologiya (English translation) 51:31–35

    Google Scholar 

  • Doronina NV, Trotsenko YA (2003) Reclassification of ‘Blastobacter viscosus’ 7d and ‘Blastobacter aminooxidans’ 14a as Xanthobacter viscosus sp. nov. and Xanthobacter aminoxidans sp. nov. Int J Syst Evol Microbiol 53:179–182

    Article  PubMed  Google Scholar 

  • Doronina NV, Govorukhina NI, Trotsenko YA (1996) Blastobacter aminooxidans, a new species of bacteria growing autotrophically on methylated amines. Microbiology 52:547–553

    Google Scholar 

  • Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Evol Microbiol 44:461–473

    CAS  Google Scholar 

  • Earl A, Ward D, Feldgarden M, Gevers D, Huys G, Walker B, Young SK, Zeng Q, Gargeya S, Fitzgerald M, Haas B, Abouelleil A, Alvarado L, Arachchi HM, Berlin A, Chapman SB, Goldberg J, Griggs A, Gujja S, Hansen M, Howarth C, Imamovic A, Larimer J, McCowen C, Montmayeur A, Murphy C, Neiman D, Pearson M, Priest M, Roberts A, Saif S, Shea T, Sisk P, Sykes S, Wortman J, Nusbaum C, Birren B (2012) The genome sequence of Afipia felis ATCC 53690. The Broad Institute Genome Sequencing Platform. http://www.ncbi.nlm.nih.gov/nuccore/AGWZ00000000.1

  • Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC, Kjelleberg S (1996) Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294

    CAS  PubMed Central  PubMed  Google Scholar 

  • English CK, Wear DJ, Margileth AM, Lissner CR, Walsh GP (1988) Cat-scratch disease. Jama-J Am Med Assoc 259:1347–1352

    Article  CAS  Google Scholar 

  • Euzéby J (2006) Validation list no. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:1–6

    Article  Google Scholar 

  • Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Vandenbol M (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family VII. Bradyrhizobiaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, volume two the proteobacteria, part C the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 438–476

    Google Scholar 

  • Gubry‐Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    Article  PubMed  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hirsch P, Müller M (1985) Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov., and Blastobacter denitrificans sp. nov., new budding bacteria from freshwater habitats. Syst Appl Microbiol 6:282–286

    Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127:1484–1492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994). Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Imhoff JF (2001) Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1863–1866

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2005) Genus VIII. Rhodoblastus. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, volume two the proteobacteria, part C the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 471–473

    Chapter  Google Scholar 

  • Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343

    Article  Google Scholar 

  • Ivanova TL, Turova TP, Antonov AS (1988) DNA-DNA hybridization studies on some purple nonsulfur bacteria. Syst Appl Microbiol 10:259–263

    Article  Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Article  Google Scholar 

  • Juhas M, Der Meer V, Roelof J, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, o Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K, Watanabe A, Sato S (2011) Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2:763–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapritchkoff FM, Viotti AP, Alli RCP, Zuccolo M, Pradella JGC, Maiorano AE, Miranda EA, Bonomia A (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462

    Article  CAS  PubMed  Google Scholar 

  • Kempher ML, Madigan MT (2012) Phylogeny and photoheterotrophy in the acidophilic phototrophic purple bacterium Rhodoblastus acidophilus. Arch Microbiol 194:567–574

    Article  CAS  PubMed  Google Scholar 

  • Kulichevskaya IS, Guzev VS, Gorlenko VM, Liesack W, Dedysh SN (2006) Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Int J Syst Evol Microbiol 56:1397–1402

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD (1987) Isolation and identification of genetically marked strains of nitrogen-fixation microsymbionts of soybeans. In: Elkan GH (ed) Symbiotic nitrogen fixation technology. Marcel Dekker, New York, pp 205–220

    Google Scholar 

  • Kuykendall LD (2005) Genus I. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology volume two the proteobacteria part C the alpha-, beta-, delta- and epsilonproteobacteria. Springer, New York, pp 438–443

    Chapter  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neil JJ, Devine TE (1988) Fatty acids, antibiotic resistence, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Kyrpides N, Huntemann M, Han J, Chen A, Mavromatis K, Markowitz V, Palaniappan K, Ivanova N, Schaumberg A, Pati A, Liolios K, Nordberg HP, Cantor MN, Hua SX, Woyke T (2013) Direct submission. DOE Joint Genome Institute. http://www.ncbi.nlm.nih.gov/nuccore/AUBC00000000.1

  • La Scola B, Mallet M, Grimont PAD, Raoult D (2003) Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 53:15–20

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, So RB (1994) Numerical taxonomy of photosynthetic rhizobia nodulating Aeschynomene species. Int J Syst Evol Microbiol 44:62–73

    Google Scholar 

  • Lindström K, Murwira M, WillemS A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463

    Article  PubMed  Google Scholar 

  • Liu J, Wang Y, Zhang X, Wang Z, Chen Y, Wen M, Xu L, Peng Q, Cui X (2010) Salinarimonas rosea gen. nov., sp. nov., a new member of the a-2 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 60:55–60

    Article  CAS  PubMed  Google Scholar 

  • Loginova NV, Trotsenko YA (1979) Blastobacter viscosus, a new species of methanol-utilizing autotrophic bacteria. Mikrobiologiia 48:785

    CAS  PubMed  Google Scholar 

  • Maier RJ (1981) Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H2. J Bacteriol 145:533–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markowitz VM, Chen I-Ma, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, huntermann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucl Acids Res 40:D115–D122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marra CM (1995) Neurologic complications of Bartonella henselae infection. Curr Opin Neurol 8:164–169

    Article  CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Meincke M, Bock E, Kastrau D, Kroneck PMH (2004) Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Arch Microbiol 158:127–131

    Article  Google Scholar 

  • Meyer O, Stackebrandt E, Auling G (1993) Reclassification of ubiquinone Q-10 containing carbooxidotrophic bacteria: transfer of “Pseudomonas carboxydovorans” OM5 to Oligotropha, gen. nov., as Oligotropha carboxidovorans, comb. nov., transfer of “Alcaligenes carboxydus” DSM 1086 to Carbophilus, gen. nov., as Carbophilus carboxidus, comb. nov., transfer of “Pseudomonas compransoris” DSM 1231 to Zavarzinia, gen. nov., as Zavarzinia compransoris, comb. nov., amended description of the new genera. Syst Appl Microbiol 16:390–395

    Article  CAS  Google Scholar 

  • Monteiro NK, Aranda-Selverio G, Exposti DTD, Silva M, Lemos EGM, Campanharo JC, Silveira JLMS (2012) Caracterização química dos géis produzidos pelas bactérias diazotróficas Rhizobium tropici e Mesorhizobium sp. Quim Nova 35:705–708

    Article  CAS  Google Scholar 

  • Mota R, Guimarães R, Büttel Z, Rossi F, Colica G, Silva CJ, Santos C, Gales L, Zille A, De Philippis R, Pereira SB, Tamagnini P (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym 92:1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Béna G, Boivin-Masson C, Stępkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  CAS  PubMed  Google Scholar 

  • Ohta H (2000) Growth characteristics of Agromonas oligotrophica on ferulic acid. Microb Environ 15:133–142

    Article  Google Scholar 

  • Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Leeuwenhoek J Microbiol 49:429–446

    CAS  Google Scholar 

  • Okamura K, Kanbe T, Hiraishi A (2009) Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water. Int J Syst Evol Microbiol 59:531–535

    Article  CAS  PubMed  Google Scholar 

  • Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K, Fujisawa T, Saito A, Futamata H, Hattori R, Shimomura Y, Haruta S, Morimoto S, Wang Y, Sakai Y, Hattori M, Aizawa S, Nagashima KV, Masuda S, Hattori T, Yamashita A, Bao Z, Hayatsu M, Kajiya-Kanegae H, Yoshinaga I, Sakamoto K, Toyota K, Nakao M, Kohara M, Anda M, Niwa R, Jung-Hwan P, Sameshima-Saito R, Tokuda S, Yamamoto S, Yamamoto S, Yokoyama T, Akutsu T, Nakamura Y, Nakahira-Yanaka Y, Takada Hoshino Y, Hirakawa H, Mitsui H, Terasawa K, Itakura M, Sato S, Ikeda-Ohtsubo W, Sakakura N, Kaminuma E, Minamisawa K (2012) Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microb Environ 27:306–315

    Article  Google Scholar 

  • Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A, Teaumroong N, Mitsui H, Hattori M, Hattori R, Hattori T, Minamisawa K (2013) Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 79:2542–2551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouattara AS, Assih EA, Thierry S, Cayol J, Labat M, Monroy O, Macarie H (2003) Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. J Syst Evol Microbiol 53:1247–1251

    Article  CAS  Google Scholar 

  • Paganelli FL, de Macedo Lemos EG, Alves LMC (2011) Polyhydroxybutyrate in Rhizobium and Bradyrhizobium: quantification and phbC gene expression. World J Microbiol Biotechnol 27:773–778

    Article  CAS  Google Scholar 

  • Pagani I, Liolios K, Jansson J, Chen I-MinA, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 40:D571–D579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker MA (2012) Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol Ecol 21:1769–1778

    Article  PubMed  Google Scholar 

  • Parte AC (2014) LPSN – list of prokaryotic names with standing in nomenclature. Nucl Acids Res 42:D613–D616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul D, Bridges S, Burgess SC, Dandass Y, Lawrence ML (2008) Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T. J Bacteriol 190:5531–5532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul D, Bridges SM, Burgess SC, Dandass YS, Lawrence ML (2010) Complete genome and comparative analysis of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5. BMC Genomics 11:511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Philippot L, Germon JC (2005) Contribution of bacteria to initial input and cycling of nitrogen in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin/Heidelberg, pp 159–176

    Chapter  Google Scholar 

  • Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93:670–678

    Article  CAS  PubMed  Google Scholar 

  • Radchenkova N, Vassilev S, Panchev I, Anzelmo G, Tomova I, Nicolaus B, Kuncheva M, Petrov K, Kambourova M (2013) Production and properties of two novel exopolysaccharides synthesized by a thermophilic Bacterium aeribacillus pallidus 418. Appl Environ Microbiol 171:31–43

    CAS  Google Scholar 

  • Ramírez-Bahena MH, Chahboune R, Pei A, Velázquez E (2013) Reclassification of Agromonas oligotrophica into the genus Bradyrhizobium as Bradyrhizobium oligotrophicum comb. nov. Int J Syst Evol Microbiol 63:1013–1016

    Article  PubMed  Google Scholar 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, deBruijn FJ (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant and Soil 194:81–98

    Article  CAS  Google Scholar 

  • Regnery R, Tappero J (1995) Unraveling mysteries associated with cat-scratch disease, bacillary angiomatosis, and related syndromes. Emerg Infect Dis 1:16–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Burlington, MA, p 514

    Google Scholar 

  • Ryu E (1937) A simple method of staining bacterial flagella. Kitisato Arch Exp Med 14:218–219

    Google Scholar 

  • Schueller C, Schneider B, Kempf VA, Haas A (2007) Biogenesis of Afipia-containing phagosomes in non-professional phagocytes. Microb Infect 9:355–363

    Article  CAS  Google Scholar 

  • Silvi S, Barghini P, Aquilanti A, Juarez-Jimenez B, Fenice M (2013) Physiologic and metabolic characterization of a new marine isolate (BM39) of Pantoea sp. producing high levels of exopolysaccharide. Microb Cell Fact 12:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sly LI, Hugenholtz P (2005) Genus IV. Blastobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, volume two the proteobacteria, part C the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 452–459

    Chapter  Google Scholar 

  • Spieck E, Muller S, Muller S, Engel A, Mandelkow E, Patel H (1996) Two-dimensional structure of membrane-bound nitrite oxidoreductase from Nitrobacter hamburgensis. J Struct Biol 117:117–123

    Article  CAS  Google Scholar 

  • Spieck E, Ehrich S, Aamand J, Bock E (1998) Isolation and immunocytochemical location of the nitrite-oxidizing system in nitrospira moscoviensis. Arch Microbiol 169:225–230

    Article  CAS  PubMed  Google Scholar 

  • Stalwy JT (1981) The genus Pasteuria. In: Starr MP, Stolp H, Trüper HG, Ballows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Springer, New York, pp 490–492

    Chapter  Google Scholar 

  • Starkenburg SR, Chain SG, Sayavedra-Soto LA, Loren H, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ (2006) Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 72(3):2050–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sundermeyer-Klinger H, Meyer W, Warninghoff B, Bock E (1984) Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch Microbiol 140:153–158

    Article  CAS  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol Anaerob Microorgan 717:179–244

    Google Scholar 

  • Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K, Minamisawa K (2013) The type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean. Appl Environ Microbiol 79:1048–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner SL, Young JPW (2000) The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319

    Article  CAS  PubMed  Google Scholar 

  • Vauclare P, Bligny R, Gout E, Widmer F (2013) An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study. FEMS Microbiol Lett 343:49–56

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) Manual for the practical study of root nodule bacteria, vol 15, International Biological Programme Handbook. Blackwell Scientific Publications, Oxford, p 164

    Google Scholar 

  • Volland S, Rachinger M, Strittmatter A, Daniel R, Gottschalk G, Meyer O (2011) Complete genome sequences of the chemolithoautotrophic Oligotropha carboxidovorans strains OM4 and OM5. J Bacteriol 193:5043–5043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson SW (1971) Reisolation of Nitrospira briensis S. Winogradsky and H. Winogradsky 1933. Arch Mikrobiol 75:179–188

    Article  CAS  PubMed  Google Scholar 

  • Watson SW, Waterbury JB (1971) Characteristics of two marine nitrite oxidizing bacteria, Nitrospira mobilis nov. gen. nov. sp. Arch Microbiol 77:203–230

    Google Scholar 

  • Weyant RS, Hollis DG, Weaver RE, Amin MF, Steigerwalt AG, O’Connor SP, Whitney AM, Daneshvar MI, Moss CW, Brenner DJ (1995) Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J Clin Microbiol 33:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weyant RS, Moss CW, Weaver RE, Hollis DG, Jordan JG, Cook EC, Daneshvar MI (1995) Identification of unusual pathogenic gram-negative aerobic and facultatively anaerobic bacteria, 2nd edn. Willians & Wilkins, Baltimore

    Google Scholar 

  • Winslow CEA, Broadhurst J, Buchanan RE, Krumvied CJ, Rogers LA, Smith GH (1917) The families and genera of bacteria. Preliminary report of the committee of society of American bacteriologists on characterization and classification of bacteria types. J Bacteriol 2:506–566

    Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Young JP, Downer HL, Eardly BD (1991) Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52

    Article  CAS  Google Scholar 

  • Zakhia F, de Lajudie P (2001) Taxonomy of rhizobia. Agronomie 21:569–576

    Article  Google Scholar 

  • Zakhia F, de Lajudie P (2006) Modern bacterial taxonomy: techniques review-application to bacteria that nodulate leguminous plants (BNL) Can. J Microbiol 52:169–181

    CAS  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393

    Article  PubMed  Google Scholar 

  • Zare M, Heidari MH, Pouresmaeili F, Niyyati M, Moradi M (2012) Introducing a novel facultative nitrifying bacterium, “Nitrobacteria hamadaniensis”. Afr J Microbiol Res 6:5126–5133

    CAS  Google Scholar 

  • Zavarzin GA (1961) Budding bacteria. Mikrobiologiya 30:952–975

    CAS  Google Scholar 

  • Zheng H, Wu H (2010) Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species. BMC Bioinformatics 11(Suppl 11):S7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu WX, Carreiro MM (1999) Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect. Soil Biol Biochem 31:1091–1100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson Antônio Marcondes de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Marcondes de Souza, J.A., Carareto Alves, L.M., de Mello Varani, A., de Macedo Lemos, E.G. (2014). The Family Bradyrhizobiaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_253

Download citation

Publish with us

Policies and ethics