Skip to main content

Whooping Cough

  • Reference work entry
The Prokaryotes

Abstract

First described in the sixteenth century, whooping cough or pertussis is a relatively recent disease in human history, although some of the cough syndromes described in antiquity may in fact be pertussis-like diseases. Whooping cough caused by the gram-negative bacterium Bordetella pertussis is a severe respiratory disease, especially life-threatening in early childhood. In addition to respiratory symptoms, characterized by paroxysmal cough and whoop, pertussis also manifests itself by a marked leukocytosis, and complications due to superinfections are common. In adolescents, adults, and vaccinated older children, the disease is often atypical. It was a major cause of childhood mortality in the pre-vaccination era. Mass vaccination has tremendously reduced the incidence of the disease, but despite a large global vaccination coverage, we witness a dramatic increase of its incidence in recent years. The pathogenesis of the disease relies on a series of rather well-defined virulence factors, including several adhesins and toxins, whose production is controlled at the transcriptional level by a two-component master regulatory system. Various animal models have helped to decipher the virulence mechanisms of B. pertussis and have been instrumental in preclinical testing of vaccines. However, most of them do not reflect all the features of human pertussis, perhaps with the exception of a very recent baboon model. Since the discovery of its etiological agent, different diagnostic methods have been designed, including bacterial culture, serology, and, more recently, polymerase chain reaction. B. pertussis is sensitive to several antibiotics. Erythromycin is the drug of choice, and erythromycin-resistant B. pertussis isolates are rare. However, unless administered at the early catarrhal stage of the disease, antibiotic treatment is of little help to decrease the severity or to shorten the duration of the disease. Vaccination is today the most powerful tool to combat the disease. Several types of vaccines are currently available, including the whole-cell first-generation vaccines and the newer acellular second-generation vaccines. However, in view of the recent reemergence of pertussis, current vaccine regimens have shown their limits, and new vaccines are urgently needed. In that regard, live attenuated vaccines given very early in life may perhaps be able to protect the youngest and most vulnerable infants during the first months of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso S, Pethe K, Mielcarek N, Raze D, Locht C (2001) Role of ADP-ribosyltransferase activity of pertussis toxin in toxin-adhesin redundancy with filamentous hemagglutinin during Bordetella pertussis infection. Infect Immun 69:6038–6043

    Article  PubMed  CAS  Google Scholar 

  • Alvarez Hayes J, Erben E, Lamberti Y, Ayala M, Maschi F, Carbone C, Gatti B, Parisi G, Rodriguez ME (2011) Identification of a new protective antigen of Bordetella pertussis. Vaccine 29:8731–8739

    Article  PubMed  CAS  Google Scholar 

  • Asensio CJA, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, van der Ley P, van der Ark A, Hozbor D (2011) Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 29:1649–1656

    Article  PubMed  CAS  Google Scholar 

  • Baker JP, Katz SL (2004) Childhood vaccine development: an overview. Pediatr Res 55:347–356

    Article  PubMed  CAS  Google Scholar 

  • Bass JW (1985) Pertussis: current status of prevention and treatment. Pediatr Infect Dis 4:614–619

    Article  PubMed  CAS  Google Scholar 

  • Bass JW, Crast FW, Kotheimer JB, Mitchell IA (1969a) Susceptibility of Bordetella pertussis to nine antimicrobial agents. Am J Dis Child 117:276–280

    PubMed  CAS  Google Scholar 

  • Bass JW, Klenk EL, Kotheimel JB, Linneman CC, Smith MHD (1969b) Antimicrobial treatment of pertussis. J Pediatr 75:768–781

    Article  PubMed  CAS  Google Scholar 

  • Baron S, Njamkepo E, Grimprel E et al (1998) Epidemiology of pertussis in French hospitals in 1993 and 1994: thirty years after a routine use of vaccination. Pediatr Infect Dis J 17:412–418

    Article  PubMed  CAS  Google Scholar 

  • Baumann E, Binder BR, Falk W, Huber EG, Kurz R, Rosanelli K (1985) Development and clinical use of an oral heat-inactivated whole cell pertussis vaccine. Dev Biol Stand 61:511–516

    PubMed  CAS  Google Scholar 

  • Belloni C, De Silvestri A, Tinelli C, Avanzini MA, Marconi M, Strano F, Rondini G, Chirico G (2003) Immunogenicity of a three-component acellular pertussis vaccine administered at birth. Pediatrics 111:1042–1045

    Article  PubMed  Google Scholar 

  • Bergquist SO, Bernander S, Dahnsjo H, Sundelof B (1987) Erythromycin in the treatment of pertussis: a study of bacteriologic and clinical effects. Pediatr Infect Dis J 6:458–461

    Article  PubMed  CAS  Google Scholar 

  • Berstad AKH, Holst J, Froholm LO, Haugen IL, Wedege E, Oftung F, Haneberg B (2000a) A nasal whole-cell pertussis vaccine induces specific systemic and cross-reactive mucosal antibody responses in human volunteers. J Med Microbiol 49:157–163

    PubMed  CAS  Google Scholar 

  • Berstad AKH, Oftung F, Korsvold GE, Haugen IL, Froholm LO, Holst J, Haneberg B (2000b) Induction of antigen-specific T cell responses in human volunteers after intranasal immunization with a whole-cell pertussis vaccine. Vaccine 18:2323–2330

    Article  PubMed  CAS  Google Scholar 

  • Bisgard KM, Rhodes P, Connelly BL, Bi D, Hahn C, Patrick S, Glodé MP, Ehresmann KR (2005) Pertussis vaccine effectiveness among children 6 to 59 months of age in the United States, 1998–2001. Pediatrics 83:369–374

    Google Scholar 

  • Blom J, Hansen GA, Poulsen FM (1983) Morphology of cells and hemagglutinogens of Bordetella species: resolution of substructural units in fimbriae of Bordetella pertussis. Infect Immun 42:308–317

    PubMed  CAS  Google Scholar 

  • Bordet J, Gengou O (1906) Le microbe de la coqueluche. Annu Inst Pasteur (Paris) 20:731–741

    Google Scholar 

  • Bouchez V, Brun D, Cantinelli T, Dore G, Njamkepo E et al (2009) First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. Vaccine 27:6034–6041

    Article  PubMed  CAS  Google Scholar 

  • Boyd AP, Ross PJ, Conroy H, Mahon N, Lavelle EC, Mills KH (2005) Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J Immunol 175:730–738

    PubMed  CAS  Google Scholar 

  • Broutin H, Guégan JF, Elguero E, Simondon F, Cazelles B (2005a) Large-scale comparative analysis of pertussis population dynamics: periodicity, synchrony, and impact of vaccination. Am J Epidemiol 161:1159–1167

    Article  PubMed  Google Scholar 

  • Broutin H, Mantilla-Beniers NB, Simondon F, Aaby P, Grenfell BT, Guégan JF, Rohani P (2005b) Epidemiological impact of vaccination on the dynamics of two childhood diseases in rural Senegal. Microbes Infect 7:593–599

    Article  PubMed  Google Scholar 

  • Broutin H, Viboud C, Grenfell BT, Miller MA, Rohani P (2010) Impact of vaccination and birth rate on the epidemiology of pertussis: a comparative study in 64 countries. Proc Biol Sci 277:3239–3245

    Article  PubMed  CAS  Google Scholar 

  • Burnet FM, Timmins C (1937) Experimental infection with Haemophilus pertussis in the mouse by intranasal inoculation. Br J Exp Pathol 18:83–90

    Google Scholar 

  • Carbonetti NH, Artamonova GV, Andreasen C, Bushar N (2005) Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of Bordetella pertussis infection of the respiratory tract. Infect Immun 73:2698–2703

    Article  PubMed  CAS  Google Scholar 

  • Cassiday P, Sanden G, Heuvelman K, Mooi F, Bisgard KM, Popovic T (2000) Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States, 1935–1999. J Infect Dis 182:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Decker KB, Boucher PE, Hinton D, Stibitz S (2010) Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol 77:1326–1340

    Article  PubMed  CAS  Google Scholar 

  • Cherry JD (1999) Epidemiological, clinical, and laboratory aspects of pertussis in adults. Clin Infect Dis 28:S112–S117

    Article  PubMed  Google Scholar 

  • Cherry JD, Heininger U (2004) Pertussis and other Bordetella infections. In: Feigin RD, Cherry JD, Demmler GJ, Kaplan SL (eds) Textbook of pediatric infectious diseases. WB Saunders, Philadelphia, pp 1588–1608

    Google Scholar 

  • Cheung GYC, Xing D, Prior S, Gorbel MJ, Parton R, Coote JG (2006) Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model. Infect Immun 74:6797–6805

    Article  PubMed  CAS  Google Scholar 

  • Chevalier N, Moser M, Koch HG, Schimz KL, Willery E, Locht C, Jacob-Dubuisson F, Müller M (2004) Membrane targeting of a bacterial virulence factor harbouring an extended signal peptide. J Mol Microbiol Biotechnol 8:7–18

    Article  PubMed  CAS  Google Scholar 

  • Cohn SE, Knorr KI, Gilligan PH, Smiley ML, Weber DJ (1993) Pertussis is rare in human immunodeficiency virus disease. Am Rev Respir Dis 147:411–413

    PubMed  CAS  Google Scholar 

  • Collins SD (1929) Age incidence of the common communicable diseases of children. Public Health Rep 44:763–826

    Article  Google Scholar 

  • Cookson BT, Cho HL, Herwaldt LA, Goldman WE (1989) Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect Immun 57:2223–2229

    PubMed  CAS  Google Scholar 

  • Cookson BT, Vandamme P, Carlson LC, Larson AM, Sheffield JV, Kesters K, Spach DH (1994) Bacteremia caused by a novel Bordetella species, “B. hinzii”. J Clin Microbiol 32:2569–2571

    PubMed  CAS  Google Scholar 

  • Council MR (1959) Vaccination against whooping cough. The final report. Br Med J 1:994–1000

    Article  Google Scholar 

  • Coutte L, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F (2001) Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J 20:5040–5048

    Article  PubMed  CAS  Google Scholar 

  • Crowcroft NS, Stein C, Duclos P, Birmingham M (2003) How best to estimate the global burden of pertussis? Lancet Infect Dis 3:413–418

    Article  PubMed  CAS  Google Scholar 

  • Craig-Mylius KA, Weiss AA (1999) Mutants in the ptlA-H genes of Bordetella pertussis are deficient for pertussis toxin secretion. FEMS Microbiol Lett 179:479–484

    Article  PubMed  CAS  Google Scholar 

  • Crum FS (1915) A statistical study of whooping-cough. Am J Public Health (NY) 5:994–1017

    Article  CAS  Google Scholar 

  • de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR (2011) Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35:441–474

    Article  PubMed  CAS  Google Scholar 

  • DeMaria A Jr, Lett SM (2010) Vaccinate the village. Clin Infect Dis 50:1346–1348

    Article  PubMed  Google Scholar 

  • De Serres G, Shadmani R, Duval B, Boulianne N, Déry P, Douville Fradet M, Rochette L, Halperin SA (2000) Morbidity of pertussis in adolescents and adults. J Infect Dis 182:174–179

    Article  PubMed  Google Scholar 

  • Dodhia H, Miller E (1998) Review of the evidence for the use of erythromycin in the management of persons exposed to pertussis. Epidemiol Infect 120:143–149

    Article  PubMed  CAS  Google Scholar 

  • Domenighini M, Relman D, Capiau C, Falkow S, Prugnola A, Scarlato V, Rappuoli R (1990) Genetic characterization of Bordetella pertussis filamentous haemagglutinin: a protein processed from an unusually large precursor. Mol Microbiol 4:787–800

    Article  PubMed  CAS  Google Scholar 

  • Eby JC, Gray MC, Mangan AR, Donato GM, Hewlett EL (2012) Role of CD11b/CD18 in the process of intoxication by the adenylate cyclase toxin of Bordetella pertussis. Infect Immun 80:850–859

    Article  PubMed  CAS  Google Scholar 

  • Elahi S, Holmstrom J, Gerdts V (2007) The benefits of using diverse animal models for studying pertussis. Trends Microbiol 15:462–468

    Article  PubMed  CAS  Google Scholar 

  • Elahi S, Brownlie R, Korzeniowski J, Buchanan R, O’Connor B, Peppler MS, Halperin SA, Lee SF, Babiuk LA, Gerdts V (2005) Infection of newborn piglets with Bordetella pertussis: a new model for pertussis. Infect Immun 73:3636–3645

    Article  PubMed  CAS  Google Scholar 

  • Elahi S, Buchanan RM, Attah-Poku S, Townsend HGG, Babiuk LA, Gerdts V (2006a) Maternal immunity provides protection against pertussis in newborn piglets. Infect Immun 74:2619–2627

    Article  PubMed  CAS  Google Scholar 

  • Elahi S, Buchanan RM, Babiuk LA, Gerdts V (2006b) The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets. Infect Immun 74:2338–2352

    Article  PubMed  CAS  Google Scholar 

  • Eldering G, Kendrick P (1938) Bacillus para-pertussis: a species resembling both Bacillus pertussis and Bacillus bronchisepticus but identical with neither. J Bacteriol 35:561–572

    PubMed  CAS  Google Scholar 

  • Evans DG, Maitland HB (1939) Agglutination as a diagnostic test for whooping cough. J Pathol Bacteriol 48:468–470

    Article  Google Scholar 

  • Evans G, Radisch N, McReynolds M, Shephard A (1996) Pertussis. Can Med Assoc J 155:1439–1440

    CAS  Google Scholar 

  • Fedele G, Spensieri F, Palazzo R, Nasso M, Cheung GY, Coote JG, Ausiello CM (2010) Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways. PLoS One 5:e8734

    Article  PubMed  CAS  Google Scholar 

  • Feunou PF, Ismaili J, Debrie AS, Huot L, Hot D, Raze D, Lemoine Y, Locht C (2008) Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine 26:5722–5727

    Article  PubMed  CAS  Google Scholar 

  • Feunou PF, Bertout J, Locht C (2010a) T- and B-cell-mediated protection induced by novel, live attenuated pertussis vaccine in mice. Cross protection against parapertussis. PLoS One 5:e10178

    Article  PubMed  CAS  Google Scholar 

  • Feunou PF, Kammoun H, Debrie AS, Mielcarek N, Locht C (2010b) Long-term immunity against pertussis induced by a single nasal administration of live attenuated B. pertussis BPZE1. Vaccine 28:7047–7053

    Article  PubMed  CAS  Google Scholar 

  • Fine PE, Clarkson JA (1987) Reflections on the efficacy of pertussis vaccines. Rev Infect Dis 9:866–883

    Article  PubMed  CAS  Google Scholar 

  • Flak TA, Goldman WE (1999) Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1:51–60

    Article  PubMed  CAS  Google Scholar 

  • Friedman RL (1988) Pertussis, the disease and new diagnostic methods. Clin Microbiol Rev 1:365–376

    PubMed  CAS  Google Scholar 

  • Friedman RL, Nordensson K, Wilson L, Akporiaye ET, Yocum DE (1992) Uptake and intracellular survival of Bordetella pertussis in human macrophages. Infect Immun 60:4578–4585

    PubMed  CAS  Google Scholar 

  • Fry NK, Duncan J, Malnick H, Cockcroft PM (2007) The first UK isolate of Bordetella ansorpii from an immunocompromised patient. J Med Microbiol 56:993–995

    Article  PubMed  CAS  Google Scholar 

  • Fung KSC, Yeung WL, Wong TW, So KW, Cheng AFB (2004) Pertussis: a reemerging infection? J Infect 48:145–148

    Article  PubMed  CAS  Google Scholar 

  • Galanis E, King AS, Varughese P, Halperin SA, on behalf of the IMPACT investigators (2006) Changing epidemiology and emerging risk groups for pertussis. CMAJ 174:451–452

    Google Scholar 

  • Geuijen CA, Willems RJ, Hoogerhout P, Puijk WC, Meloen RH, Mooi FR (1998) Identification and characterization of heparin binding regions of the Fim2 subunit of Bordetella pertussis. Infect Immun 66:2256–2263

    PubMed  CAS  Google Scholar 

  • Godfroid F, Denoël P, Poolman J (2005) Are vaccination programs and isolate polymorphism linked to pertussis re-emergence? Expert Rev Vaccines 4:757–778

    Article  PubMed  CAS  Google Scholar 

  • Goldman WE, Klapper DG, Baseman JB (1982) Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun 36:782–794

    PubMed  CAS  Google Scholar 

  • Goodman YE, Wort AJ, Jackson FL (1981) Enzyme-linked immunosorbent assay for detection of pertussis immunoglobulin A in nasopharyngeal secretions as an indicator of recent infection. J Clin Microbiol 132:286–292

    Google Scholar 

  • Gracia A, Polewicz M, Halperin SA, Hancock RE, Potter AA, Babiuk LA, Gerdts V (2011) Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations. Vaccine 29:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Grimprel E, von Sonnenburg F, Saenger R, Abitbol V, Wolter J, Schuerman L (2005) Combined reduced-antigen-content diphtheria-tetanus-acellular pertussis and polio vaccine (dTpa-IPV) for booster vaccination of adults. Vaccine 23:3657–3667

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Keidel K, Schmitt K (2010) Resemblance and divergence: the “new” members of the genus Bordetella. Med Microbiol Immunol 199:155–163

    Article  PubMed  Google Scholar 

  • Gregory DS (2006) Pertussis: a disease affecting all ages. Am Fam Physician 74:420–426

    PubMed  Google Scholar 

  • Gueirard P, Druilhe A, Pretolani M, Guiso N (1997) Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 66:1718–1725

    Google Scholar 

  • Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Guiso N, Szatanik M, Rocancourt M (1991) Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb Pathog 11:423–431

    Article  PubMed  CAS  Google Scholar 

  • Guiso N, Berbers G, Fry NK, He Q, Riffelmann M et al (2010) What to do and what not to do in serological diagnosis of pertussis: recommendations from EU reference laboratories. Eur J Clin Microbiol Infect Dis 30:307–312

    Article  PubMed  Google Scholar 

  • Güriş D, Strebel PM, Bardenheier B et al (1999) Changing epidemiology of pertussis in the United States: increasing reported incidence among adolescents and adults, 1990–1996. Clin Infect Dis 28:1230–1237

    Article  PubMed  Google Scholar 

  • Haberling DL, Holman RC, Paddock CD, Murphy TV (2009) Infant and maternal risk factors for pertussis-related infant mortality in the United States, 1999 to 2004. Pediatr Infect Dis J 28:194–198

    Article  PubMed  Google Scholar 

  • Halasa NB, O’Shea A, Shi JR, LaFleur BJ, Edwards KM (2008) Poor immune responses to a birth dose of diphtheria, tetanus and acellular pertussis vaccine. J Pediatr 153:327–332

    Article  PubMed  CAS  Google Scholar 

  • Hale C, Humphreys IR, Hussell T, Bowe F, Clare S, Pickard D, Preston A, Del Giudice G, Dougan G (2004) Mucosal immunization of murine neonates using whole cell and acellular pertussis vaccines. Vaccine 22:3595–3602

    Article  PubMed  CAS  Google Scholar 

  • Hall E, Parton R, Wardlaw AC (1994) Cough production, leukocytosis and serology of rats infected intrabronchially with Bordetella pertussis. J Med Microbiol 40:205–213

    Article  PubMed  CAS  Google Scholar 

  • Hall E, Parton R, Wardlaw AC (1998) Responses to acellular pertussis vaccines and component antigens in a coughing-rat model of pertussis. Vaccine 16:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Hallander HO, Advani A, Donnelly D, Gustafsson L, Carlsson R-M (2005) Shifts of Bordetella pertussis variants in Sweden from 1970 to during three periods marked by different vaccination programs. J Clin Microbiol 43:2856–2865

    Article  PubMed  CAS  Google Scholar 

  • Halperin S (2007) The control of pertussis – 2007 and beyond. N Engl J Med 356:110–113

    Article  PubMed  CAS  Google Scholar 

  • Halperin SA, Marrie TJ (1991) Pertussis encephalopathy in an adult: case report and review. Rev Infect Dis 13:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Halsey NA, Welling MA, Lehman RM (1980) Nosocomial pertussis: a failure of erythromycin treatment and prophylaxis. Am J Dis Child 134:521–522

    PubMed  CAS  Google Scholar 

  • Hannah JH, Menozzi FD, Renauld G, Locht C, Brennan MJ (1994) Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA. Infect Immun 62:5010–5019

    PubMed  CAS  Google Scholar 

  • Harrington AT, Castellanos JA, Ziedalski TM, Clarridge JE 3rd, Cookson BT (2009) Isolation of Bordetella avium and novel Bordetella strain from patients with respiratory disease. Emerg Infect Dis 15:72–74

    Article  PubMed  Google Scholar 

  • Hazenbos WL, van den Berg BM, Geuijen CW, Mooi FR, van Furth R (1995) Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 6 via protein tyrosin kinases. J Immunol 155:3972–3978

    PubMed  CAS  Google Scholar 

  • Healy CM, Rench MA, Baker CJ (2011) Implementation of cocooning against pertussis in a high-risk population. Clin Infect Dis 52:157–162

    Article  PubMed  Google Scholar 

  • Heininger U, Klich K, Stehr K, Cherry JD (1997) Clinical findings in Bordetella pertussis infections: results of a prospective multicenter surveillance study. Pediatrics 100:E10

    Article  PubMed  CAS  Google Scholar 

  • Heiss LN, Moser SA, Unanue ER, Goldman WE (1993) Interleukin-1 is linked to the respiratory epithelial cytopathology of pertussis. Infect Immun 61:3123–3128

    PubMed  CAS  Google Scholar 

  • Heiss LN, Lancaster JR Jr, Corbett JA, Goldman WE (1994) Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc Natl Acad Sci USA 91:267–270

    Article  PubMed  CAS  Google Scholar 

  • Hellwig SM, van Spriel AB, Schellekens JF, Mooi FR, van de Winkel JG (2001) Immunoglobulin A-mediated protection against Bordetella pertussis infection. Infect Immun 69:4846–4850

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Nataro JP (2001) Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Hethcote HW (1998) Oscillations in an endemic model for pertussis. Can Appl Math Q 6:61–88

    Google Scholar 

  • Hewlett EL, Edwards KM (2005) Pertussis-not just for kids. New Engl J Med 352:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Hewlett EL, Donato GM (2007) Bordetella toxins. In: Locht C (ed) Bordetella molecular microbiology. Horizon Bioscience, Norfolk, pp 97–118

    Google Scholar 

  • Hodak H, Clantin B, Willery E, Villeret V, Locht C, Jacob-Dubuisson F (2006) Secretion signal of the filamentous haemagglutinin, a model two-partner secretion substrate. Mol Microbiol 61:368–382

    Article  PubMed  CAS  Google Scholar 

  • Holwerda J, Eldering G (1963) Culture and fluorescentantibody methods in diagnosis of whooping cough. J Bacteriol 86:449–451

    PubMed  CAS  Google Scholar 

  • Hoppe JE, Haug A (1988) Treatment and prevention of pertussis by antimicrobial agents (part II). Infection 16:148–152

    Article  PubMed  CAS  Google Scholar 

  • Hoppe JE, Worz S, Botzenhart K (1986) Comparison of specimen transport systems for Bordetella pertussis. Eur J Clin Microbiol 5:671–673

    Article  PubMed  CAS  Google Scholar 

  • Hornibrook JW, Ashburn LL (1939) A study of experimental pertussis in the young rat. Public Health Rep 54:439–444

    Article  Google Scholar 

  • Huang CC, Chen PM, Kuo JK, Chui WH, Lin ST, Lin SH, Lin YC (1962) Experimental whooping cough. N Engl J Med 266:105–111

    Article  PubMed  CAS  Google Scholar 

  • Inatsuka CS, Xu Q, Vujkovic-Cvijin I, Wong S, Stibitz S, Miller JF, Cotter PA (2010) Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun 78:2901–2909

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Nishikawa A (2002) Bordetella pertussis infection of human respiratory epithelial cells up-regulates intercellular adhesion molecule-1 expression: role of filamentous hemagglutinin and pertussis toxin. Microb Pathog 33:115–125

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Relman DA, Nishikawa A (2001) Invasion of human respiratory epithelial cells by Bordetella pertussis: possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha5beta1 integrin. Microb Pathog 30:279–288

    Article  PubMed  CAS  Google Scholar 

  • Jabbal-Gill I, Fisher AN, Rappuoli R, Davis SS, Illum L (1998) Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine 16:2039–2046

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F, Locht C (2007) The Bordetella adhesins. In: Locht C (ed) Bordetella molecular microbiology. Horizon Bioscience, Norfolk, pp 69–96

    Google Scholar 

  • Jacob-Dubuisson F, El-Hamel C, Saint N, Guédin S, Willery E, Molle G, Locht C (1999) Channel formation by FhaC, the outer membrane protein involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 274:37731–37735

    Article  PubMed  CAS  Google Scholar 

  • Jefferson T, Rudin M, DiPietrantonj C (2003) Systematic review of the effects of pertussis vaccines in children. Vaccine 21:2003–2014

    Article  PubMed  CAS  Google Scholar 

  • Jenkins P, Clarke SW (1981) Cough syncope: a complication of adult whooping cough. Br J Dis Chest 75:311–313

    Article  PubMed  CAS  Google Scholar 

  • Kallonen T, He Q (2009) Bordetella pertussis strain variation and evolution postvaccination. Expert Rev Vaccines 8:863–875

    Article  PubMed  CAS  Google Scholar 

  • Kammoun H, Feunou PF, Foligne B, Debrie AS, Raze D, Mielcarek N, Locht C (2012) Dual mechanism of protection by live attenuated Bordetella pertussis BPZE1 against Bordetella bronchiseptica in mice. Vaccine 30:5864–5870

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh H, Noone C, Cahill E, English K, Locht C, Mahon BP (2010) Attenuated Bordetella pertussis vaccine strain BPZE1 modulates allergen-induced immunity and prevents allergic pulmonary pathology in a murine model. Clin Exp Allergy 40:933–941

    Article  PubMed  CAS  Google Scholar 

  • Kendrick P, Thompson M, Eldering G (1945) Immunity response of mothers and babies to injections of pertussis vaccine during pregnancy. Am J Dis Child 70:25–28

    Google Scholar 

  • Kendrick PL, Eldering G, Dixon ML, Misner J (1947) Mouse protection tests in the study of pertussis vaccines: a comparative series using intracerebral route of challenge. Am J Publ Health 37:803–810

    Article  Google Scholar 

  • Kerr JR, Matthews RC (2000) Bordetella pertussis infection: pathogenesis, diagnosis, management, and the role of protective immunity. Eur J Clin Microbiol Infect Dis 19:77–88

    Article  PubMed  CAS  Google Scholar 

  • Khelef N, Sakamoto H, Guiso N (1992) Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog 12:227–235

    Article  PubMed  CAS  Google Scholar 

  • Kinnear SM, Marques RR, Carbonetti NH (2001) Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun 69:1983–1993

    Article  PubMed  CAS  Google Scholar 

  • Knuf M, Schmitt HJ, Wolter J, Schuerman L, Jacquet JM, Kieninger D, Siegrist CA, Zepp F (2008) Neonatal vaccination with an acellular pertussis vaccine accelerates the acquisition of pertussis antibodies in infants. J Pediatr 152:655–660

    Article  PubMed  CAS  Google Scholar 

  • Knuf M, Schmitt HJ, Jacquet JM, Collard A, Kieninger D, Meyer CU, Siegrist CA, Zepp F (2010) Booster vaccination after neonatal priming with acellular pertussis vaccine. J Pediatr 156:675–678

    Article  PubMed  Google Scholar 

  • Kretschmar M, Teunis PFM, Pebody RG (2010) Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries. PLoS Med 7:e1000291

    Article  Google Scholar 

  • Ladant D, Brezin C, Alonso JM, Crenon I, Guiso N (1986) Bordetella pertussis adenylate cyclase. Purification, characterization, and radioimmunoassay. J Biol Chem 261:16264–16269

    PubMed  CAS  Google Scholar 

  • Ladant D, Ullmann A (1999) Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7:172–176

    Article  PubMed  CAS  Google Scholar 

  • Lam C, Octavia S, Bahrame Z, Sintchenko V, Gilbert GL, Lan R (2012) Selection and emergence of pertussis toxin promoter ptxP3 allele in the evolution of Bordetella pertussis. Infect Genet Evol 12(2):492–495

    Article  PubMed  CAS  Google Scholar 

  • Lambert-Buisine C, Willery E, Locht C, Jacob-Dubuisson F (1998) N-terminal characterization of the Bordetella pertussis filamentous haemagglutinin. Mol Microbiol 28:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Lamberti Y, Alvarez Hayes J, Perez Vidakovics ML, Rodriguez ME (2009) Cholesterol-dependent attachment of human respiratory cells by Bordetella pertussis. FEMS Immunol Med Microbiol 56:143–150

    Article  PubMed  CAS  Google Scholar 

  • Langley JM, Halperin SA, Boucher FD, Smith B, The Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) (2004) Azithromycin is as effective as and better tolerated than erythromycin estolate for the treatment of pertussis. Pediatrics 114:e96–e101

    Article  PubMed  Google Scholar 

  • Lavine JS, Bjornstad ON, Freiesleben de Blasio B, Storsaeter J (2012) Short-lived immunity against pertussis, age-specific routes of transmission and the utility of a teenage booster vaccine. Vaccine 30:544–551

    Article  PubMed  Google Scholar 

  • Le Coustumier A, Njamkepo E, Cattoir V, Guillot S, Guiso N (2011) Bordetella petrii infection with long-lasting persistence in human. Emerg Infect Dis 17:612–618

    Article  PubMed  CAS  Google Scholar 

  • Lee RJ (1879) Influence of whooping-cough as one of the chief causes of infant mortality. Br Med J 1:307–308

    Article  PubMed  CAS  Google Scholar 

  • Lee GM, Lett S, Schauer S, LeBaron C, Murphy TV, Rusinak D, Lieu TA, The Massachusetts Pertussis Study Group (2004) Societal costs and morbidity of Pertussis in adolescents and adults. Clin Infect Dis 39:1572–1580

    Article  PubMed  Google Scholar 

  • Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 88:345–349

    Article  PubMed  CAS  Google Scholar 

  • Lewis K, Saubolle MA, Tenover FC, Rudinsky MF, Barbour SD, Cherry JD (1995) Pertussis caused by an erythromycin-resistant strain of Bordetella pertussis. Pediatr Infect Dis J 14:388–391

    Article  PubMed  CAS  Google Scholar 

  • Lewis R (2011) Updated recommendations for Tdap include pregnant women. MMWR Morb Mortal Wkly Rep 60:1424–1426

    Google Scholar 

  • Li R, Lim A, Phoon MC, Narasaraju T, Ng JKW, Poh WP, Sim MK, Chow VT, Locht C, Alonso S (2010) Attenuated Bordetella pertussis protects against highly pathogenic influenza A viruses by dampening the cytokine storm. J Virol 84:7105–7113

    Article  PubMed  CAS  Google Scholar 

  • Locht C, Antoine R, Jacob-Dubuisson F (2001) Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr Opin Microbiol 4:82–89

    Article  PubMed  CAS  Google Scholar 

  • Long SS (1997) Bordetella pertussis (pertussis) and other species. In: Long SS, Pickering LK, Prober CG (eds) Pediatric infectious diseases. Churchill Livingstone, New York, pp 976–986

    Google Scholar 

  • Locht C (2008) A common vaccination strategy to sole unsolved problems of tuberculosis and pertussis? Microbes Infect 10:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Locht C, Coutte L, Mielcarek N (2011) The ins and outs of pertussis toxin. FEBS J 278:4668–4682

    Article  PubMed  CAS  Google Scholar 

  • Lodes MJ, Suciu D, Wilmoth JL, Ross M, Munro S, Dix K, Bernards K, Stover AG, Quintana M, Iihoshi N, Lyon WJ, Danley DL, McShea A (2007) Identification of upper respiratory tract pathogens using electrochemical detection on an olignucleotide microarray. PLoS One 2, e924

    Article  PubMed  CAS  Google Scholar 

  • Marr N, Oliver DC, Laurent V, Poolman J, Denoël P, Fernandez RC (2008) Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 26:4306–4311

    Article  PubMed  CAS  Google Scholar 

  • Mascart F, Verscheure V, Malfroot A et al (2003) Bordetella pertussis infection in 2-months-old infants promotes type 1 T cell responses. J Immunol 170:1504–1509

    PubMed  CAS  Google Scholar 

  • Meade BD, Bollen A (1994) Recommendations for use of the polymerase chain reaction in the diagnosis of Bordetella pertussis infections. J Med Microbiol 41:51–55

    Article  PubMed  CAS  Google Scholar 

  • Menozzi FD, Gantiez C, Locht C (1991) Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol Lett 62:59–64

    Article  PubMed  CAS  Google Scholar 

  • Mielcarek N, Debrie AS, Raze D, Bertout J, Rouanet C, Ben Younes A, Creusy C, Engle J, Goldman WE, Locht C (2006) Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog 2:e65

    Article  PubMed  CAS  Google Scholar 

  • Mielcarek N, Debrie AS, Mahieux S, Locht C (2010) Dose response of attenuated Bordetella pertussis BPZE1-induced protection in mice. Clin Vaccine Immunol 17:317–324

    Article  PubMed  CAS  Google Scholar 

  • Mikelova LK, Halperin SA, Scheifele D et al (2003) Predictors of death in infants hospitalized with pertussis: a case–control study of 16 pertussis deaths in Canada. J Pediatr 143:576–581

    Article  PubMed  Google Scholar 

  • Millen SH, Lewallen DM, Herr AB, Iyer SS, Weiss AA (2010) Identification and characterization of the carbohydrate ligands recognized by pertussis toxin via a glycan microarray and surface plasmon resonance. Biochemistry 49:5954–5967

    Article  PubMed  CAS  Google Scholar 

  • Mills KH, Ryan M, Ryan E, Mahon BP (1998) A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infect Immun 66:594–602

    PubMed  CAS  Google Scholar 

  • Mishulow L, Sharpe LS, Cohen L (1953) Beef heart charcoal agar for the preparation of pertussis vaccine. Am J Public Health 43:1466–1472

    Article  CAS  Google Scholar 

  • Mooi FR, He Q, Guiso N (2007) Phylogeny, evolution and epidemiology of Bordetellae. In: Locht C (ed) Bordetella molecular microbiology. Horizon Bioscience, Norfolk, pp 17–45

    Google Scholar 

  • Mooi FR, He Q, van Oirschot H, Mertsola J (1999) Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun 67:3133–3134

    PubMed  CAS  Google Scholar 

  • Mooi FR, van Loo IH, King AJ (2001) Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence? Emerg Infect Dis 7:526–528

    Article  PubMed  CAS  Google Scholar 

  • Mooi FR, van Loo IH, van Gent M, He Q, Bart MJ, Heuvelman KJ, de Greeff SC, Diavatopoulos D, Teunis P, Nagelkerke N, Mertsola J (2009) Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 15:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W, Willems RJ (1998) Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66:670–675

    PubMed  CAS  Google Scholar 

  • Munoz JJ, Arai H, Cole RL (1981) Mouse-protective and histamine-sensitizing activities of pertussigen and fimbrial haemagglutinin from Bordetella pertussis. Infect Immun 32:243–250

    PubMed  CAS  Google Scholar 

  • Mutch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R (2004) Use of inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350:896–903

    Article  Google Scholar 

  • Nagel J, Poot-Scholtens EJ (1983) Serum IgA antibody to Bordetella pertussis as an indicator of infection. J Med Microbiol 16:417–426

    Article  PubMed  CAS  Google Scholar 

  • Nicolle C, Conor A (1913) Vaccinothérapie dans le coqueluche. Comp rend de l’Acad des Sci Paris 16:1849–1851

    Google Scholar 

  • Otsuka N, Han HJ, Toyoizumi-Ajisaka H, Nakamura Y, Arakawa Y, Shibayama K, Kamachi K (2012) Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS One 7(2):e31985

    Article  PubMed  CAS  Google Scholar 

  • Paccani SR, Dal Molin F, Benagiano M, Ladant D, D’Elios MM, Montecucco C, Baldari CT (2008) Suppression of T-lymphocyte activation and chemotaxis by the adenylate cyclase toxin of Bordetella pertussis. Infect Immun 76:2822–2832

    Article  PubMed  CAS  Google Scholar 

  • Paccani SR, Finetti F, Davi M, Patrussi L, D’Elios MM, Ladant D, Baldari CT (2011) The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse. J Exp Med 208:1317–1330

    Article  PubMed  CAS  Google Scholar 

  • Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, Wu KH, Goldsmith CS, Greer PW, Montague JL, Eliason MT, Holman RC, Guarner J, Shieh WJ, Zaki SR (2008) Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 47:328–338

    Article  PubMed  Google Scholar 

  • Parker CD, Payne BJ (1985) Bordetella. In: Lennette EH, Balows A, Hausler WJ, Shadomy HJ (eds) Manual of clinical microbiology, 4th edn. American Society for Microbiology, Washington, DC, pp 394–399

    Google Scholar 

  • Parkhill J, Sebaihia M, Preston A et al (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40

    Article  PubMed  Google Scholar 

  • Parton R, Hall E, Wardlaw AC (1994) Responses to Bordetella pertussis mutant strains and to vaccination in the coughing rat model of pertussis. J Med Microbiol 40:307–312

    Article  PubMed  CAS  Google Scholar 

  • Pittman M, Furman BL, Wardlaw AC (1980) Bordetella pertussis respiratory tract infection in the mouse: pathophysiological responses. J Infect Dis 142:56–66

    Article  PubMed  CAS  Google Scholar 

  • Polewicz M, Gracia A, Buchanan R, Strom S, Halperin SA, Potter AA, Babiuk LA, Gerdts V (2011) Influence of maternal antibodies on active pertussis toxoid immunization of neonatal mice and piglets. Vaccine 29:7718–7726

    Article  PubMed  CAS  Google Scholar 

  • Preston NW, Carter EJ (1992) Serotype specificity of vaccine-induced immunity to pertussis. Commun Dis Rep Rev 2:R155–R156

    CAS  Google Scholar 

  • Provenzano RW, Wetterlow LH, Sullivan CL (1965) Immunization and antibody response in the newborn infant, I. pertussis inoculation within twenty-four hours of birth. N Engl J Med 273:959–965

    Article  PubMed  CAS  Google Scholar 

  • Redhead K, Watkins J, Barnard A, Mills KH (1993) Effective immunization against Bordetella pertussis respiratory infection in mice is dependent on induction of cell-mediated immunity. Infect Immun 61:3190–3198

    PubMed  CAS  Google Scholar 

  • Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD (1990) Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61:1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Rennels MB (2003) Extensive swelling reactions occurring after booster doses of diphtheria-tetanusacellular pertussis vaccines. Semin Pediatr Infect Dis 14:196–198

    Article  PubMed  Google Scholar 

  • Rich AR, Long PH, Brown EA, Bliss EA, Holt LE (1932) Experiments upon the cause of whooping cough. Science 76:330–331

    Article  PubMed  CAS  Google Scholar 

  • Roberts M, Maskell D, Novotny P, Dougan G (1990) Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect Immun 58:732–739

    PubMed  CAS  Google Scholar 

  • Roberts M, Fairweather NF, Leininger E, Pickard D, Hewlett EL, Robinson A, Hayward C, Dougan G, Charles IG (1991) Construction and characterization of Bordetella pertussis mutants lacking the vir-regulated P.69 outer membrane protein. Mol Microbiol 5:1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Roduit C, Bozzotti P, Mielcarek N, Lambert PH, del Giudice G, Locht C, Siegrist CA (2002) Immunogenicity and protective efficacy of neonatal vaccination against Bordetella pertussis in a murine model: evidence for early control of pertussis. Infect Immun 70:3521–3528

    Article  PubMed  CAS  Google Scholar 

  • Roehr B (2010) Whooping cough outbreak hits several US states. BMJ 24:341

    Google Scholar 

  • Rohani P, Earn DJ, Grenfell BT (1999) Opposite patterns of synchrony in sympatric disease metapopulations. Science 286:968–971

    Article  PubMed  CAS  Google Scholar 

  • Rohani P, Earn DJ, Grenfell BT (2000) Impact of immunisation on pertussis transmission in England and Wales. Lancet 355:285–286

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal RS, Nogami W, Cookson BT, Goldman WE, Folkening WJ (1987) Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin. Infect Immun 55:2117–2120

    PubMed  CAS  Google Scholar 

  • Rowe J, Yerkovich ST, Richmond P, Suriyaarachchi D, Fisher E, Feddema L, Loh R, Sly PD, Holt PG (2005) Th2-associated local reactions to the acellular diphtheria-tetanus-pertussis vaccine in 4- to 6-year-old children. Infect Immun 73:8130–8135

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Arai H, Suzuki K (1974) Leukocytosis-promoting factor of Bordetella pertussis. III. Its identity with protective antigens. Infect Immun 9:801–810

    PubMed  CAS  Google Scholar 

  • Sauer L (1933) Whooping-cough: a study in immunization. JAMA 100:239–241

    Article  Google Scholar 

  • Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E (1991) Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med 173:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Saukkonen K, Burnette WN, Mar VL, Masure HR, Tuomanen EI (1992) Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci USA 89:118–122

    Article  PubMed  CAS  Google Scholar 

  • Shim DH, Ko HJ, Volker G, Potter AA, Mutwiri G, Babiuk LA, Kweon MN (2010) Efficacy of poly[di(sodium carboxylatophenoxy)phosphazene] (PCPP) as mucosal adjuvant to induce protective immunity against respiratory pathogens. Vaccine 28:2311–2317

    Article  PubMed  CAS  Google Scholar 

  • Skerry CM, Cassidy JP, English K, Feunou Feunou P, Locht C, Mahon BP (2009) A live attenuated Bordetella pertussis candidate vaccine does not cause disseminated infection in gamma interferon receptor knockout mice. Clin Vaccine Immunol 16:1344–1351

    Article  PubMed  CAS  Google Scholar 

  • Skerry CM, Mahon BP (2011) A live, attenuated Bordetella pertussis vaccine provides long-term protection against virulent challenge in a murine model. Clin Vaccine Immunol 18:187–193

    Article  PubMed  CAS  Google Scholar 

  • Skowronski DM, De Serres G, MacDonald D, Wu W, Macnabb CSJ, Champagne S, Patrick DM, Halperin SA (2002) The changing age and seasonal profile of pertussis in Canada. J Infect Dis 185:1448–1453

    Article  PubMed  Google Scholar 

  • Skowronsky DA, Buxton JA, Hestrin M, Keyes RD, Lynch K, Halperin SA (2003) Carotid artery dissection as a possible severe complication of pertussis in an adult: clinical case report and review. Clin Infect Dis 36:e1–e4

    Article  Google Scholar 

  • Skowronski DM, Janjua NZ, Tsafack EPS, Ouakki M, Hoang L, De Serres G (2012) The number needed to vaccinate to prevent infant pertussis hospitalization and death through parent cocoon immunization. Clin Infect Dis 54:318–327

    Article  PubMed  Google Scholar 

  • Smith C, Vyas H (2000) Early infantile pertussis; increasingly prevalent and potentially fatal. Eur J Pediatr 159:898–900

    Article  PubMed  CAS  Google Scholar 

  • Sprauer MA, Cochi SL, Zell ER, Sutter RW, Mullen JR, Englender SJ, Partriarca PA (1992) Prevention of secondary transmission of pertussis in households with early use of erythromycin. Am J Dis Child 146:177–181

    PubMed  CAS  Google Scholar 

  • Storsaeter J, Wolter J, Locht C (2007) Pertussis vaccines. In: Locht C (ed) Bordetella molecular microbiology. Horizon Press, Norfolk, pp 245–288

    Google Scholar 

  • Sydenstricker E (1932) Effect of a whooping-cough epidemic upon the size of the non-immune group in an urban community. Q Bull Milbank Meml Fund 10:302–314

    Article  Google Scholar 

  • Tanaka M, Vitek CR, Pascual FB, Bisgard KM, Tate JE, Murphy TV (2003) Trends in pertussis among infants in the United States, 1980–1999. JAMA 290:2968–2975

    Article  PubMed  CAS  Google Scholar 

  • Teunis PF, van der Heijden OG, de Melker HE, Schellekens JF, Versteegh FG, Kretzschmar ME (2002) Kinetics of the IgG antibody response to pertussis toxin after infection with B. pertussis. Epidemiol Infect 129:479–489

    Article  PubMed  CAS  Google Scholar 

  • Trollfors B, Lagergard T, Gunnarsson E, Taranger J (2003) Determination of pertactin IgG antibodies for the diagnosis of pertussis. Clin Microbiol Infect 9:585–589

    Article  PubMed  CAS  Google Scholar 

  • Troseid M, Jonassen TO, Steinbakk M (2006) Isolation of Bordetella pertussis in blood culture from a patient with multiple myeloma. J Infect 52:e11–e13

    Article  PubMed  Google Scholar 

  • US Public Health Service (1953) Reported incidence of selected notifiable diseases: United States, each division and state, 1920–50. US Public Health Service, Washington, DC, pp 240–242

    Google Scholar 

  • Vandamme P, Heyndrickx M, Vancanneyt M, Hoste B, De Vos P, Falsen E, Kersters K, Hinz KH (1996) Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Rüger and Tan, 1983. Int J Syst Bacteriol 46:849–858

    Article  PubMed  CAS  Google Scholar 

  • van den Berg BM, Beekhuizen H, Willems RJ, Mooi FR, van Furth R (1999) Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 67:1056–1062

    PubMed  Google Scholar 

  • Van Rie A, Wendelboe AM, Englund JA (2005) Role of maternal pertussis antibodies in infants. Pediatr Infect Dis J 24:S62–S65

    Article  PubMed  Google Scholar 

  • Veal-Carr WL, Stibitz S (2005) Demonstration of differential virulence gene promoter activation in vivo in Bordetella pertussis using RIVET. Mol Microbiol 55:788–798

    Article  PubMed  CAS  Google Scholar 

  • Versteegh FGA (2005) Pertussis: new insights in diagnosis, incidence and clinical manifestations, Ph.D. thesis. Free University of Amsterdam

    Google Scholar 

  • von König CH, Halperin S, Riffelmann M, Guiso N (2002) Pertussis of adults and infants. Lancet Infect Dis 2:744–750

    Article  Google Scholar 

  • Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ (2012) A non-human primate model of pertussis. Infect Immun 80(4):1530–1536

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Nagai M (2001) Reciprocal protective immunity against Bordetella pertussis and Bordetella parapertussis in a murine model of respiratory infection. Infect Immun 69:6981–6986

    Article  PubMed  CAS  Google Scholar 

  • Wearing HJ, Rohani P (2009) Estimating the duration of pertussis immunity using epidemiological signatures. PLoS Pathog 5:e1000657

    Article  CAS  Google Scholar 

  • Weber C, Boursaux-Eude C, Coralie G, Caro V, Guiso N (2001) Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol 39:4396–4403

    Article  PubMed  CAS  Google Scholar 

  • Weiss AA, Hewlett EL (1986) Virulence factors of Bordetella pertussis. Annu Rev Microbiol 40:661–686

    Article  PubMed  CAS  Google Scholar 

  • Wendelboe AM, Njamkepo E, Bourillon A, Floret DD, Gaudelus J, Gerber M, Grimprel E, Greenberg D, Halperin S, Liese J, Muñoz-Rivas F, Teyssou R, Guiso N, Van Rie A, Infant Pertussis Study Group (2007) Transmission of Bordetella pertussis to young infants. Pediatr Infect Dis J 26:293–299

    Article  PubMed  Google Scholar 

  • White OJ, Rowe J, Richmond P, Marshall H, McIntyre P, Wood N, Holt PG (2010) Th-2 polarisation of cellular immune memory to neonatal pertussis vaccination. Vaccine 28:2648–2652

    Article  PubMed  CAS  Google Scholar 

  • Willems R, Paul A, van der Heide HG, ter Avest AR, Mooi FR (1990) Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J 9:2803–2809

    PubMed  CAS  Google Scholar 

  • Wilson KE, Cassidy PK, Popovic T, Sanden GN (2002) Bordetella pertussis isolates with a heterogeneous phenotype for erythromycin resistance. J Clin Microbiol 40:2942–2944

    Article  PubMed  CAS  Google Scholar 

  • Wood N, McIntyre P, Marshall H, Roberton D (2010) Acellular pertussis vaccine at birth and one month induces antibody responses by two months of age. Pediatr Infect Dis J 29:209–215

    Article  PubMed  Google Scholar 

  • Woods N, McIntyre P (2008) Pertussis: review of epidemiology, diagnosis, management and prevention. Paediatr Respir Rev 9:201–212

    Article  Google Scholar 

  • World Health Organization (1979) WHO Expert committee on biological standardization. Thirtieth report. Geneva Technical Report Series 638. WHO, pp 61–65

    Google Scholar 

  • WHO position paper (2005) Pertussis vaccines. Wkly Epidemiol Rec 4:31–39

    Google Scholar 

  • Yaari E, Yafe-Zimernam Y, Schwartz SB, Slater PE, Shvartzman P, Andoren N et al (1999) Clinical manifestations of Bordetella pertussis infection in immunized children and young adults. Chest 115:1254–1258

    Article  PubMed  CAS  Google Scholar 

  • Yih WK, Silva EA, Ida J, Harrington N, Lett SM, George H (1999) Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerg Infect Dis 5:441–443

    Article  PubMed  CAS  Google Scholar 

  • Zaretzky FR, Gray MC, Hewlett EL (2002) Mechanism of association of adenylate cyclase toxin with the surface of Bordetella pertussis: a role for toxin-filamentous haemagglutinin interaction. Mol Microbiol 45:1589–1598

    Article  PubMed  CAS  Google Scholar 

  • Zorzeto TQ, Higashi HG, da Silva MT, Carniel Ede F, Dias WO, Ramalho VD, Mazzola TN, Lima SC, Morcillo AM, Stephano MA, Antonio MA, Zanolli Mde L, Raw I, Vilela MM (2009) Immunogenicity of a whole-cell pertussis vaccine with low lipopolysaccharide content in infants. Clin Vaccine Immunol 16:544–550

    Article  PubMed  CAS  Google Scholar 

  • Zouari A, Smaoui H, Kechrid A (2012) The diagnosis of pertussis: which method to choose? Crit Rev Microbiol 38(2):111–121

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Mielcarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mielcarek, N., Locht, C. (2013). Whooping Cough. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_99

Download citation

Publish with us

Policies and ethics