Skip to main content

Botulism and Tetanus

  • Reference work entry
The Prokaryotes

Abstract

Botulism and tetanus are two severe neurological diseases in man and animals. While botulism is characterized by a descendant flaccid paralysis, tetanus consists in spastic paralysis. In the severe forms of both diseases, death occurs by respiratory distress. Botulism and tetanus are caused by neurotoxins, botulinum neurotoxin (BoNT), and tetanus toxin (TeNT), respectively, which are produced by anaerobic sporulating bacteria, Clostridium botulinum and Clostridium tetani, respectively. In contrast to C. tetani, which forms a homogeneous bacterial species, BoNT-producing Clostridia are divided into several bacterial species and groups. These Clostridia are widely distributed in the environment, including food notably for C. botulinum, where they can survive during long periods in the sporulating forms. BoNTs and TeNT share a common structural organization consisting in a light (L) chain (about 50 kDa) linked by a disulfide bridge to the heavy (H) chain (about 100 kDa). Only a unique TeNT is known, while BoNTs encompass seven toxinotypes (A to G, BoNT/A, B, and E mainly involved in human botulism, and BoNT/C and D mainly responsible for animal botulism), which are subdivided into several subtypes according to amino acid sequence variations. H chain, which contains a C-terminal receptor-binding domain and an N-terminal translocation domain, delivers the L chain into target neurons. BoNTs target the motoneuron endings or neuromuscular junctions, and TeNT is transported to central inhibitory interneurons through a retrograde axonal pathway along motoneurons. Both BoNT and TeNT block the release of neurotransmitter by an L chain-mediated proteolytic cleavage of SNARE proteins (synaptobrevin, SNAP25, or syntaxin) which are involved in the neuroexocytosis process. Blockage of acetylcholine release at the neuromuscular junctions by BoNTs induces a flaccid paralysis, whereas TeNT-dependent inhibition of glycine or GABA exocytosis in inhibitory interneurons results in spastic paralysis. Botulism is mainly acquired by ingestion of preformed BoNT in food, but it may also occur subsequently to intestinal or wound colonization by C. botulinum. Tetanus essentially results from a wound contamination by C. tetani. BoNT/A is the most potent toxin with a long activity duration in neurons, and it is also a therapeutic agent widely used to treat hypercholinergic diseases including localized muscle spasticity, dystonia, autonomic dysfunctions (hyperhidrosis, hypersalivation), and also pain such as migraine headaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Negasawa T, Monma C, Oka A (2008) Infantile botulism caused by Clostridium butyricum type E toxin. Pediatr Neurol 38:55–57

    Article  PubMed  Google Scholar 

  • Aguilera J, Yavin E (1990) In vivo translocation and down-regulation of protein kinase C following intraventricular administration of tetanus toxin. J Neurochem 54:339–342

    Article  PubMed  CAS  Google Scholar 

  • Ahmed SA, Byrne MP, Jensen M, Hines HB, Brueggemann E, Smith LA (2001) Enzymatic autocatalysis of botulinum A neurotoxin light chain. J Protein Chem 20:221–231

    Article  PubMed  CAS  Google Scholar 

  • Ahsan CR, Hajnoczky G, Maksymowych AB, Simpson LL (2005) Visualization of binding and transcytosis of botulinum toxin by human intestinal epithelial cells. J Pharmacol Exp Ther 315:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Akaike N, Ito Y, Shin MC, Nonaka K, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Kaji R (2010) Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses. Toxicon 56:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Al-Muharraqi MA, Fedorowicz Z, Al Bareeq J, Al Bareeq R, Nasser M (2009) Botulinum toxin for masseter hypertrophy. Cochrane Database Syst Rev 1:CD007510

    Google Scholar 

  • Al-Saleem FH, Ancharski DM, Ravichandran E, Joshi SG, Singh AK, Gong Y, Simpson LL (2008) The role of systemic handling in the pathophysiologic actions of botulinum toxin. J Pharmacol Exp Ther 326:856–863

    Article  PubMed  CAS  Google Scholar 

  • Albanese A, Barnes MP, Bhatia KP, Fernandez-Alvarez E, Filippini G, Gasser T, Krauss JK, Newton A, Rektor I, Savoiardo M, Valls-Sole J (2006) A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES Task Force. Eur J Neurol 13:433–444

    Article  PubMed  CAS  Google Scholar 

  • Altwegg M, Hatheway CL (1988) Multilocus enzyme electrophoresis of Clostridium argentinense (Clostridium botulinum toxin type G) and phenotypically similar asaccharolytic Clostridia. J Clin Microbiol 26:2447–2449

    PubMed  CAS  Google Scholar 

  • Angaut-Petit D, Molgo J, Comella JX, Faille L, Tabti N (1990) Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: morphological and electrophysiological features. Neuroscience 37:799–808

    Article  PubMed  CAS  Google Scholar 

  • Anniballi F, Fenicia L, Franciosa G, Aureli P (2002) Influence of pH and temperature on the growth of and toxin production by neurotoxigenic strains of Clostridium butyricum type E. J Food Prot 65:1267–1270

    PubMed  CAS  Google Scholar 

  • Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    Article  PubMed  CAS  Google Scholar 

  • Apland JP, Adler M, Oyler GA (2003) Inhibition of neurotransmitter release by peptides that mimic the N-terminal domain of SNAP-25. J Protein Chem 22:147–153

    Article  PubMed  CAS  Google Scholar 

  • Arndt ER, Jacobson MJ, Abola EE, Forsyth CM, Tepp WH, Marks JD, Johnson EA, Stevens ES (2006) A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. J Mol Biol 362:733–742

    Article  PubMed  CAS  Google Scholar 

  • Arnon SS (1989) Infant botulism. In: Finegold SM, George WL (eds) Anaerobic infections in humans. Academic, San Diego, pp 601–609

    Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Ashton AC, Dolly JO (1997) Microtubules and microfilaments participate in the inhibition of synaptosomal noradrenaline release by tetanus toxin. J Neurochem 68:649–658

    Article  PubMed  CAS  Google Scholar 

  • Ashton AC, Li Y, Doussau F, Weller U, Dougan G, Poulain B, Dolly O (1995) Tetanus toxin inhibits neuroexocytosis even when its Zn dependent protease activity is removed. J Biol Chem 270:31386–31390

    Article  PubMed  CAS  Google Scholar 

  • Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11:320–326

    Article  PubMed  CAS  Google Scholar 

  • Aureli P, Di Cunto M, Maffei A, De Chiara G, Franciosa G, Accorinti L, Gambardella AM, Greco D (2000) An outbreak in Italy of botulism associated with a dessert made with mascarpone cream cheese. Eur J Epidemiol 16:913–918

    Article  PubMed  CAS  Google Scholar 

  • Aureli P, Fenica L, Franciosa G (1999) Les formes classiques et émergentes de botulisme: situation actuelle en Italie. Eurosurveillance 4:7–9

    PubMed  Google Scholar 

  • Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154:207–211

    Article  PubMed  CAS  Google Scholar 

  • Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S (2004) Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim Biophys Acta 1742:37–49

    Article  PubMed  CAS  Google Scholar 

  • Bajohrs M, Rickman C, Binz T, Davletov B (2004) A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep 5:1090–1095

    Article  PubMed  CAS  Google Scholar 

  • Baldelli P, Fassio A, Valtorta F, Benfenati F (2007) Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci 27:13520–13531

    Article  PubMed  CAS  Google Scholar 

  • Barash JR, Tang TW, Arnon SS (2005) First case of infant botulism caused by Clostridium baratii type F in California. J Clin Microbiol 43:4280–4282

    Article  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  PubMed  CAS  Google Scholar 

  • Benke TA, Swann J (2004) The tetanus toxin model of chronic epilepsy. Adv Exp Med Biol 548:226–238

    Article  PubMed  CAS  Google Scholar 

  • Bhalla A, Chicka MC, Tucker WC, Chapman ER (2006) Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat Struct Mol Biol 13:323–330

    Article  PubMed  CAS  Google Scholar 

  • Bielinski DF, Pyun HY, Linko-Stentz K, Macara IG, Fine RE (1993) Protein Ral and Rab3a are major GTP-binding proteins of axonal rapid transport and synaptic vesicles and do not redistribute following depolarization stimulated synaptosomal exocytosis. Biochim Biophys Acta 1151:246–256

    Article  PubMed  CAS  Google Scholar 

  • Bigalke H (2009) Properties of pharmaceutical products of botulinum neurotoxins. In: Jankovic J, Albanese A, Atassi MZ, Dolly JO, Hallett M, Mayer NH (eds) Botulinum toxin – therapeutic clinical practice and science. Saunders Elsevier, Philadelphia, pp 389–397

    Chapter  Google Scholar 

  • Bigalke H, Shoer LF (2000) Clostridial neurotoxins. In: Aktories K, Just I (eds) Bacterial protein toxins. Springer, Berlin, pp 407–443

    Google Scholar 

  • Bigalke H, Wohlfarth K, Irmer A, Dengler R (2001) Botulinum A toxin: dysport improvement of biological availability. Exp Neurol 168:162–170

    Article  PubMed  CAS  Google Scholar 

  • Bleck TP (1989) Clinical aspects of tetanus. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic, San Diego, pp 379–398

    Chapter  Google Scholar 

  • Bohnert S, Deinhardt K, Salinas S, Schiavo G (2006) Uptake and transport of clostridium neurotoxins. In: Alouf JE, Popoff MR (eds) The sourcebook of comprehensive bacterial protein toxins. Elsevier Academic, Amsterdam, pp 390–408

    Chapter  Google Scholar 

  • Bohnert S, Schiavo G (2005) Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J Biol Chem 280:42336–42344

    Article  PubMed  CAS  Google Scholar 

  • Borodic GE, Ferrante R (1992) Effects of repeated botulinum toxin injections on orbicularis oculi muscle. J Clin Neuroophthalmol 12:121–127

    Article  PubMed  CAS  Google Scholar 

  • Breidenbach MA, Brunger AT (2005) 2.3 A crystal structure of tetanus neurotoxin light chain. Biochemistry 44:7450–7457

    Article  PubMed  CAS  Google Scholar 

  • Breulink HJ, Wagenaar G, Wensing TH, Notermans S, Poulos PW (1978) Food poisoning in cattle caused by ingestion of brewer’s grains contaminated with Clostridium botulinum. B Neth J Vet Sci 103:303–311

    Google Scholar 

  • Broussolle V, Alberto F, Shearman CA, Mason DR, Botella L, Nguyen-The C, Peck MW, Carlin F (2002) Molecular and physiological characterization of spore germination in Clostridium botulinum and Clostridium sporogenes. Anaerobe 8:89–100

    Article  CAS  Google Scholar 

  • Browning L, Prempeh H, Little C, Houston C, Grant K, Cowden J (2011) An outbreak of food-borne botulism in Scotland, United Kingdom, Nov 2011. Euro Surveill 16

    Google Scholar 

  • Brüggemann H, Bäumer S, Fricke WF, Wiezr A, Liesagang H, Decker I, Herzberg C, Martinez-Arias R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Bruggemann H, Gottschalk G (2008) Comparative genomics of clostridia: link between the ecological niche and cell surface properties. Ann N Y Acad Sci 1125:73–81

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann H, Wolher A, Mazuet C, Popoff MR (2011) Clostridium botulinum. In: Fratamico P, Liu Y, Kathariou S (eds) Genomes of Food- and Water Borne Pathogens. ASM, Washington DC, pp 185–212

    Google Scholar 

  • Burleigh DE, Banks MR (2007) Stimulation of intestinal secretion by vasoactive intestinal peptide and cholera toxin. Auton Neurosci 133:64–75

    Article  PubMed  CAS  Google Scholar 

  • Bytchenko B (1981) Microbiology of tetanus. In: Veronesi R (ed) Tetanus: important new concepts. Excerpta Medica, Amsterdam, pp 28–39

    Google Scholar 

  • Cabot JB, Mennone A, Bogan N, Carroll J, Evinger C, Erichsen JT (1991) Retrograde, trans-synaptic and transneuronal transport of fragment C of tetanus toxin by sympathetic preganglionic neurons. Neuroscience 40:805–823

    Article  PubMed  CAS  Google Scholar 

  • Caleo M, Antonucci F, Restani L, Mazzocchio R (2009) A reappraisal of the central effects of botulinum neurotoxin type A: by what mechanism? J Neurochem 109:15–24

    Article  PubMed  CAS  Google Scholar 

  • Caleo M, Schiavo G (2009) Central effects of tetanus and botulinum neurotoxins. Toxicon 54:593–599

    Article  PubMed  CAS  Google Scholar 

  • Call JE, Cooke PH, Miller AJ (1995) In situ characterization of Clostridium botulinum neurotoxin synthesis and export. J Appl Bacteriol 79:257–263

    Article  PubMed  CAS  Google Scholar 

  • Campbell JI, Lam TM, Huynh TL, To SD, Tran TT, Nguyen VM, Le TS, Nguyen VC, Parry C, Farrar JJ, Tran TH, Baker S (2009) Microbiologic characterization and antimicrobial susceptibility of Clostridium tetani isolated from wounds of patients with clinically diagnosed tetanus. Am J Trop Med Hyg 80:827–831

    PubMed  Google Scholar 

  • Cann DC, Taylor LY, Hobbs G (1975) The incidence of Clostridium botulinum in farmed trout in Great Britain. J Appl Bacteriol 39:331–336

    Article  PubMed  CAS  Google Scholar 

  • Capogna M, McKinney RA, O’Connor V, Gahwiler BH, Thompson SM (1997) Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J Neurosci 17:7190–7202

    PubMed  CAS  Google Scholar 

  • Carli L, Montecucco C, Rossetto O (2009) Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve 40:374–380

    Article  PubMed  CAS  Google Scholar 

  • Carlier JP, Espié E, Popoff MR (2007) Le botulisme en France, 2003–2006. Bull Epidemiol Hebdo 31–32:281–284

    Google Scholar 

  • Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM, Austin JW, Peck MW (2009) Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 10:115

    Article  PubMed  CAS  Google Scholar 

  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1141–1200

    Google Scholar 

  • Cawthorne A, Celentano LP, D’Ancona F, Bella A, Massari M, Anniballi F, Fenicia L, Aureli P, Salmaso S (2005) Botulism and preserved green olives. Emerg Infect Dis 11:781–782

    Article  PubMed  Google Scholar 

  • Cenci Di Bello I, Poulain B, Shone CC, Tauc L, Dolly JO (1994) Antagonism of the intracellular action of botulinum neurotoxin type A with monoclonal antibodies that map to light-chain epitopes. Eur J Biochem 219:161–169

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Duggan MJ, Quinn CP, Shone CC, Foster KA (2004) Retargeted clostridial endopeptidases: inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain. Mov Disord 19(Suppl 8):S42–S47

    Article  PubMed  Google Scholar 

  • Chaib-Oukadour I, Gil C, Aguilera J (2004) The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. J Neurochem 90:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Chaib-Oukadour I, Gil C, Rodriguez-Alvarez J, Ortega A, Aguilera J (2009) Tetanus toxin H(C) fragment reduces neuronal MPP + toxicity. Mol Cell Neurosci 41:297–303

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry R, Dhawan B, Kumar D, Bhatia R, Gandhi JC, Patel RK, Purohit BC (1998) Outbreak of suspected Clostridium butyricum botulism in India. Emerg Infect Dis 4:506–507

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Baldwin MR, Barbieri JT (2008) Molecular basis for tetanus toxin coreceptor interactions. Biochemistry 47:7179–7186

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Fu Z, Kim JJ, Barbieri JT, Baldwin MR (2009) Gangliosides as high affinity receptors for tetanus neurotoxin. J Biol Chem 284:26569–26577

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Korkeala H, Aarnikunnas J, Lindstrom M (2007) Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J Bacteriol 189:8643–8650

    Article  PubMed  CAS  Google Scholar 

  • Chen YA, Scales SJ, Jagath JR, Scheller RH (2001) A discontinuous SNAP-25 C-terminal coil supports exocytosis. J Biol Chem 276:28503–28508

    Article  PubMed  CAS  Google Scholar 

  • Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  PubMed  CAS  Google Scholar 

  • Chertow DS, Tan ET, Maslanka SE, Schulte J, Bresnitz EA, Weisman RS, Bernstein J, Marcus SM, Kumar S, Malecki J, Sobel J, Braden CR (2006) Botulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. JAMA 296:2476–2479

    Article  PubMed  CAS  Google Scholar 

  • Chhetri DK, Blumin JH, Vinters HV, Berke GS (2003) Histology of nerves and muscles in adductor spasmodic dysphonia. Ann Otol Rhinol Laryngol 112:334–341

    PubMed  Google Scholar 

  • Choi WS, Kim YM, Combs C, Frohman MA, Beaven MA (2002) Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J Immunol 168:5682–5689

    PubMed  CAS  Google Scholar 

  • Chuang YC, Chancellor MB (2006) The application of botulinum toxin in the prostate. J Urol 176:2375–2382

    Article  PubMed  CAS  Google Scholar 

  • Coban A, Matur Z, Hanagasi HA, Parman Y (2010) Iatrogenic botulism after botulinum toxin type A injections. Clin Neuropharmacol 33:158–160

    Article  PubMed  CAS  Google Scholar 

  • Coen L, Osta R, Maury M, Brulet P (1997) Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci USA 94:9400–9405

    Article  PubMed  CAS  Google Scholar 

  • Coffield JA, Bakry N, Zhang RD, Carlson J, Gomella LG, Simpson LL (1997) In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J Pharmacol Exp Ther 280:1489–1498

    PubMed  CAS  Google Scholar 

  • Coffield JA, Considine RV, Jeyapaul J, Maksymowych AB, Zhang RD, Simpson LL (1994) The role of transglutaminase in the mechanism of action of tetanus toxin. J Biol Chem 269:24454–24458

    PubMed  CAS  Google Scholar 

  • Collins MD, East AK (1997) Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84:5–17

    Article  Google Scholar 

  • Comella JX, Molgo J, Faille L (1993) Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type-D toxin and the functional recovery of paralysed neuromuscular junctions. Neurosci Lett 153:61–64

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (1999) Foodborne botulism associated with home-canned bamboo shoots – Thailand 1998. Morb Mortal Wkly Rep 48:437–439

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2007) Botulism associated with commercially canned chili sauce – Texas and Indiana, July 2007. MMWR Morb Mortal Wkly Rep 56:767–769

    Google Scholar 

  • Cordoba JJ, Collins MD, East AK (1995) Studies on the genes encoding botulinum neurotoxin type A of Clostridium botulinum from a variety of sources. System Appl Microbiol 18:13–22

    Article  CAS  Google Scholar 

  • Cornille F, Deloye F, Fournie-Zaluski MC, Roques BP, Poulain B (1995) Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain of vesicle-associated membrane protein/synaptobrevin is critical for neuro-exocytosis. J Biol Chem 270:16826–16832

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Espirito-Santo C, Borges A, Ferreira JJ, Coelho M, Moore P, Sampaio C (2005a) Botulinum toxin type A therapy for blepharospasm. Cochrane Database Syst Rev 1:CD004900

    Google Scholar 

  • Costa J, Espirito-Santo C, Borges A, Ferreira JJ, Coelho M, Moore P, Sampaio C (2005b) Botulinum toxin type A therapy for hemifacial spasm. Cochrane Database Syst Rev 1:CD004899

    Google Scholar 

  • Costa J, Espirito-Santo C, Borges A, Ferreira JJ, Coelho M, Moore P, Sampaio C (2005c) Botulinum toxin type B for cervical dystonia. Cochrane Database Syst Rev 1:CD004315

    Google Scholar 

  • Couesnon A, Pereira Y, Popoff MR (2008) Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10:375–387

    PubMed  CAS  Google Scholar 

  • Craig JM, Hayes S, Pilcher KS (1968) Incidence of Clostridium botulinum type E in salmon and other marine fish in the Pacific Northwest. Appl Microbiol 16:553–557

    PubMed  CAS  Google Scholar 

  • Creti R, Fenicia L, Aureli P (1990) Occurrence of Clostridium botulinum in the soil of the vicinity of Rome. Curr Microbiol 20:317–321

    Article  Google Scholar 

  • Cui M, Khanijou S, Rubino J, Aoki KR (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107:125–133

    Article  PubMed  CAS  Google Scholar 

  • Curra A, Trompetto C, Abbruzzese G, Berardelli A (2004) Central effects of botulinum toxin type A: evidence and supposition. Mov Disord 19:S60–S64

    Article  PubMed  Google Scholar 

  • DasGupta BR, Tepp W (1993) Protease activity of botulinum neurotoxin type E and its light chain: cleavage of actin. Biochem Biophys Res Commun 190:470–474

    Article  PubMed  CAS  Google Scholar 

  • Dashtipour K, Pender RA (2008) Evidence for the effectiveness of botulinum toxin for writer’s cramp. J Neural Transm 115:653–656

    Article  PubMed  CAS  Google Scholar 

  • Dayanithi G, Stecher B, Höhne-Zell B, Yamasaki S, Binz T, Weller U, Niemann H, Gratzl M (1994) Exploring the functional domain and the target of the tetanus toxin light chain in neurophysical terminals. Neurosci 58:423–431

    Article  CAS  Google Scholar 

  • De Paiva A, Ashton AC, Foran P, Schiavo G, Montecucco C, Dolly JO (1993) Botulinum A like type B and tetanus toxins fulfils criteria for being a zinc-dependent protease. J Neurochem 61:2338–2341

    Article  PubMed  Google Scholar 

  • de Paiva A, Meunier F, Molgo J, Aoki KR, Dolly JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA 96:3200–3205

    Article  PubMed  Google Scholar 

  • Deinhardt K, Berminghausen O, Willison HJ, Hopkins CR, Schiavo G (2006a) Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174:459–471

    Article  PubMed  CAS  Google Scholar 

  • Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, Hanrahan S, Bucci C, Schiavo G (2006b) Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52:293–305

    Article  PubMed  CAS  Google Scholar 

  • Dineen SS, Bradshaw M, Johnson EA (2003) Neurotoxin gene clusters in Clostridium botulinum type A strains: sequence comparison and evolutionary implications. Curr Microbiol 46:342–352

    Article  CAS  Google Scholar 

  • Dineen SS, Bradshaw M, Karasek CE, Johnson EA (2004) Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum. FEMS Microbiol Lett 235:9–16

    Article  PubMed  CAS  Google Scholar 

  • Dodds KL (1993a) Clostridium botulinum in foods. In: Hauschild AHW, Dodds KL (eds) Clostridium botulinum: ecology and control in foods. Marcel Dekker, New York, pp 53–68

    Google Scholar 

  • Dodds KL (1993b) Clostridium botulinum in the environment. In: Hauschild AHW, Dodds KL (eds) Clostridium botulinum: ecology and control in foods. Marcel Dekker, New York, pp 21–51

    Google Scholar 

  • Dolly JO, Wang J, Zurawski TH, Meng J (2011) Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS J 278(23):4454–4466

    Article  PubMed  CAS  Google Scholar 

  • Domingo RM, Haller JS, Gruenthal M (2008) Infant botulism: two recent cases and literature review. J Child Neurol 23:1336–1346

    Article  PubMed  Google Scholar 

  • Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19:5226–5237

    Article  PubMed  CAS  Google Scholar 

  • Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for Botulinum neurotoxin A. Science 312:592–596

    Article  PubMed  CAS  Google Scholar 

  • Dorland ED, Moryson CJ, Smith GR (1977) Avian botulism and the high prevalence of Clostridium botulinum in the Norfolk broads. Vet Rec 100:106–109

    Article  Google Scholar 

  • Doussau F, Augustine GJ (2000) The actin cytoskeleton and neurotransmitter release: an overview. Biochimie 82:353–363

    Article  PubMed  CAS  Google Scholar 

  • Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff MR, Boquet P, Bader MF, Poulain B (2000) A Rho-related GTPase is involved in Ca++-dependent neurotransmitter exocytosis. J Biol Chem 275:7764–7770

    Article  PubMed  CAS  Google Scholar 

  • Dover N, Barash JR, Arnon SS (2009) Novel Clostridium botulinum toxin gene arrangement with subtype A5 and partial subtype B3 botulinum neurotoxin genes. J Clin Microbiol 47:2349–2350

    Article  PubMed  CAS  Google Scholar 

  • Dressler D (2005) Botulism caused by consumption of smoked salmon. Nervenarzt 76:763–766

    Article  PubMed  CAS  Google Scholar 

  • Dressler D, Benecke R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:34–38

    Article  PubMed  CAS  Google Scholar 

  • Dressler D, Benecke R (2007) Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil 29:1761–1768

    Article  PubMed  Google Scholar 

  • Dressler D, Saberi FA, Barbosa ER (2005) Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr 63:180–185

    Article  PubMed  Google Scholar 

  • Driscoll HK, Adkins CD, Chertow TE, Cordle MB, Matthews KA, Chertow BS (1997) Vitamin A stimulation of insulin secretion: effects on transglutaminase mRNA and activity using rat islets and insulin-secreting cells. Pancreas 15:69–77

    Article  PubMed  CAS  Google Scholar 

  • Duggan MJ, Quinn CP, Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Shone CC, Foster KA (2002) Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem 277:34846–34852

    Article  PubMed  CAS  Google Scholar 

  • Dürre P (2005) Sporulation in clostridia. In: Dürre P (ed) Handbook of clostridia. Taylor and Francis, Boca Raton, pp 659–669

    Chapter  Google Scholar 

  • Duthie J, Wilson DI, Herbison GP, Wilson D (2007) Botulinum toxin injections for adults with overactive bladder syndrome. Cochrane Database Syst Rev 3:CD005493

    Google Scholar 

  • Eisel U, Reynolds K, Riddick M, Zimmer A, Niemann H, Zimmer A (1993) Tetanus toxin light chain expression in Sertoli cells of transgenic mice causes alterations of the actin cytoskeleton and disrupts spermatogenesis. EMBO J 12:3365–3372

    PubMed  CAS  Google Scholar 

  • Eisele KH, Fink K, Vey M, Taylor HV (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57:555–565

    Article  PubMed  CAS  Google Scholar 

  • Eitzen G (2003) Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta 1641:175–181

    Article  PubMed  CAS  Google Scholar 

  • Eklund MW, Dowell J (1987) Avian botulism. Charles C Thomas, Springfield

    Google Scholar 

  • Eklund MW, Peterson ME, Poysky FT, Peck FT, Conrad LF (1982) Botulism in juvenile Coho salmon (Oncorhynchus kisutch) in the United States. Aquaculture 27:1–11

    Article  Google Scholar 

  • Eklund MW, Poysky F (1965) Clostridium botulinum type F from marine sediments. Science 149:306

    Article  Google Scholar 

  • Eklund MW, Poysky FT, Habig WH (1989) Bacteriophages and plasmids in Clostridium botulinum and Clostridium tetani and their relationship to production of toxins. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic, San Diego, pp 25–51

    Chapter  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Gastaldo E, Rossetto O, De Grandis D, Montecucco C (2002) Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clin Neurophysiol 113:1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C, Dressler D (2006) Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9:127–131

    Article  PubMed  CAS  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256:135–138

    Article  PubMed  CAS  Google Scholar 

  • Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacks NW (2000) The structures of the Hc fragment of Tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275:8889–8894

    Article  PubMed  CAS  Google Scholar 

  • Espié E, Vaillant V, de Valk H, Popoff MR (2003) France recalls internationally distributed halal meat products from the plant implicated as the source of a type B botulism outbreak. Euro Surveill Wkly 7:030918

    Google Scholar 

  • Facchiano F, Benfenati F, Valtorta F, Luini A (1993) Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. J Biol Chem 268:4588–4591

    PubMed  CAS  Google Scholar 

  • Facchiano F, Deloye F, Doussau F, Innamorati G, Ashton AC, Dolly JO, Beninati S, Facchiano A, Luini A, Poulain B, Benfenati F (2010) Transglutaminase participates in the blockade of neurotransmitter release by tetanus toxin: evidence for a novel biological function. Amino Acids 39:257–269

    Article  PubMed  CAS  Google Scholar 

  • Facchiano F, Luini A (1992) Tetanus toxin potently stimulates tissue transglutaminase. A possible mechanism of neurotoxicity. J Biol Chem 267:13267–13271

    PubMed  CAS  Google Scholar 

  • Fach P, Perelle S, Dilasser F, Grout J, Dargaignaratz C, Botella L, Gourreau JM, Carlin F, Popoff MR, Broussolle V (2002) Detection by PCR-enzyme-linked immunosorbent assay of Clostridium botulinum in fish and environmental samples from a coastal area in Northern France. Appl Environ Microbiol 68:5870–5876

    Article  PubMed  CAS  Google Scholar 

  • Favre-Guilmard C, Auguet M, Chabrier PE (2009) Different antinociceptive effects of botulinum toxin type A in inflammatory and peripheral polyneuropathic rat models. Eur J Pharmacol 617:48–53

    Article  PubMed  CAS  Google Scholar 

  • FDA-alert-289 (2009) Botulinum toxin types A (Botox, Botox Cosmetic, Dysport) and Botulinum Toxin Type B (Myobloc) – safety review update and names changed to OnabotulinumtoxinA (Botox, Botox Cosmetic), AbobotulinumtoxinA (Dysport), and RimabotulinumtoxinB (Myobloc). http://healthcare.utah.edu/pharmacy/alerts/289.htm

  • Fehlings D, Novak I, Berweck S, Hoare B, Stott NS, Russo RN (2010) Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hypertonicity: international consensus statement. Eur J Neurol 17(Suppl 2):38–56

    Article  PubMed  Google Scholar 

  • Fenicia L, Anniballi F (2009) Infant botulism. Ann Ist Super Sanita 45:134–146

    PubMed  Google Scholar 

  • Fenicia L, Franciosa G, Pourshaban M, Aureli P (1999) Intestinal toxemia botulism in two young people, caused by Clostridium butyricum Type E. Clin Infect Dis 29:381–387

    Article  Google Scholar 

  • Fernandez-Salas E, Steward LE, Ho H, Garay PE, Sun SW, Gilmore MA, Ordas JV, Wang J, Francis J, Aoki KR (2004) Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci USA 101:3208–3213

    Article  PubMed  CAS  Google Scholar 

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  PubMed  CAS  Google Scholar 

  • Filippi GM, Errico P, Santarelli R, Bagolini B, Manni E (1993) Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 113:400–404

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245

    Article  PubMed  CAS  Google Scholar 

  • Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35:2630–2636

    Article  PubMed  CAS  Google Scholar 

  • Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly OJ (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E and F compared with the long lasting type A. J Biol Chem 278:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of Tetanus Toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276:3274–3281

    Article  Google Scholar 

  • Franchi G, Veronesi C (2004) Time course for the reappearance of vibrissal motor representation following botulinum toxin injection into the vibrissal pad of the adult rat. Eur J Neurosci 20:1873–1884

    Article  PubMed  CAS  Google Scholar 

  • Franciosa G, Ferreira JL, Hatheway CL (1994) Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J Clin Microbiol 32:1911–1917

    PubMed  CAS  Google Scholar 

  • Franciosa G, Floridi F, Maugliani A, Aureli P (2004) Differentiation of the gene clusters encoding botulinum neurotoxin type A complexes in Clostridium botulinum type A, Ab, and A(B) strains. Appl Environ Microbiol 70:7192–7199

    Article  PubMed  CAS  Google Scholar 

  • Franciosa G, Maugliani A, Floridi F, Aureli P (2006) A novel type A2 neurotoxin gene cluster in Clostridium botulinum strain Mascarpone. FEMS Microbiol Lett 261:88–94

    Article  PubMed  CAS  Google Scholar 

  • Franciosa G, Maugliani A, Scalfaro C, Aureli P (2009) Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS One 4:e4829

    Article  PubMed  CAS  Google Scholar 

  • Franciosa G, Pourshaban M, Gianfranceschi M, Gattuso A, Fenicia L, Ferrini AM, Mannoni V, De Luca G, Aureli P (1999) Clostridium botulinum spores and toxin in mascarpone cheese and other milk products. J Food Prot 62:867–871

    PubMed  CAS  Google Scholar 

  • Frean J, Arntzen L, van den Heever J, Perovic O (2004) Fatal type A botulism in South Africa, 2002. Trans R Soc Trop Med Hyg 98:290–295

    Article  PubMed  Google Scholar 

  • Fu SW, Wang CH (2008) An overview of type E botulism in China. Biomed Environ Sci 21:353–356

    Article  PubMed  Google Scholar 

  • Fu Z, Chen S, Baldwin MR, Boldt GE, Crawford A, Janda KD, Barbieri JT, Kim JJ (2006) Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. Biochemistry 45:8903–8911

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga Y, Takeshi K, Inoue K, Fujita R, Ohyama T, Moriishi K, Oguma K (1995) Type A and B neurotoxin genes in a Clostridium botulinum type AB strain. Biochem Biophys Res Commun 213:737–745

    Article  PubMed  CAS  Google Scholar 

  • Gadhia K, Walmsley AD (2009) Facial aesthetics: is botulinum toxin treatment effective and safe? A systematic review of randomised controlled trials. Br Dent J 207:E9; discussion 216–217

    Article  PubMed  CAS  Google Scholar 

  • Galloux M, Vitrac H, Montagner C, Raffestin S, Popoff MR, Chenal A, Forge V, Gillet D (2008) Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem 283:27668–27676

    Article  PubMed  CAS  Google Scholar 

  • Garner CC, Kindler S, Gundelfinger ED (2000) Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 10:321–327

    Article  PubMed  CAS  Google Scholar 

  • Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531

    Article  PubMed  CAS  Google Scholar 

  • Gerona RR, Larsen EC, Kowalchyk JA, Martin TF (2000) The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 275:6328–6336

    Article  PubMed  CAS  Google Scholar 

  • Ghanem FM, Ridpath AC, Moore WEC, Moore LVH (1991) Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis. J Clin Microbiol 29:1114–1124

    PubMed  CAS  Google Scholar 

  • Gil C, Chaib-Oukadour I, Aguilera J (2003) C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. Biochem J 15:613–620

    Article  Google Scholar 

  • Gil C, Chaib-Oukadour I, Pelliccioni P, Aguilera J (2000) Activation of signal transduction pathways involving trkA, PLCgamma-1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Lett 481:177–182

    Article  PubMed  CAS  Google Scholar 

  • Gil C, Ruiz-Meana M, Alava M, Yavin E, Aguilera J (1998) Tetanus toxin enhances protein kinase C activity translocation and increases polyphosphoinositide hydrolysis in rat cerebral cortex preparations. J Neurochem 70:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94

    PubMed  CAS  Google Scholar 

  • Gimenez DF, Ciccarelli A (1970). Another type of Clostridium botulinum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 215:221–224

    Google Scholar 

  • Gobbi M, Frittoli E, Mennini T (1996) Role of transglutaminase in [3 H]5-HT release from synaptosomes and in the inhibitory effect of tetanus toxin. Neurochem Int 29:129–134

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Forero D, de la Cruz RR, Delgado-Garcia JM, Alvarez FJ, Pastor AM (2003) Functional alterations of cat abducens neurons after peripheral tetanus neurotoxin injection. J Neurophysiol 89:1878–1890

    Article  PubMed  Google Scholar 

  • Gottlieb SL, Kretsinger K, Tarkhashvili N, Chakvetadze N, Chokheli M, Chubinidze M, Michael Hoekstra R, Jhorjholiani E, Mirtskhulava M, Moistsrapishvili M, Sikharulidze M, Zardiashvili T, Imnadze P, Sobel J (2007) Long-term outcomes of 217 botulism cases in the Republic of Georgia. Clin Infect Dis 45:174–180

    Article  PubMed  Google Scholar 

  • Gourreau JM, Guillou JP, Louzis C, Moutou F (1986) Botulisme au Bois de Boulogne. Med Mal Infect 8/9:524–526

    Article  Google Scholar 

  • Gracies JM (2004) Physiological effects of botulinum toxin in spasticity. Mov Disord 19(Suppl 8):S120–S128

    Article  PubMed  Google Scholar 

  • Gracies JM, Lugassy M, Weisz DJ, Vecchio M, Flanagan S, Simpson DM (2009) Botulinum toxin dilution and endplate targeting in spasticity: a double-blind controlled study. Arch Phys Med Rehabil 90:9–16.e2

    Article  PubMed  Google Scholar 

  • Greene PE, Fahn S (1993) Use of botulinum toxin type F injections to treat torticollis in patients with immunity to botulinum toxin type A. Mov Disord 8:479–483

    Article  PubMed  CAS  Google Scholar 

  • Groffen AJ, Friedrich R, Brian EC, Ashery U, Verhage M (2006) DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. J Neurochem 97:818–833

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Sumner CJ, Castor M, Maslanka S, Sobel J (2005) Adult botulism type F in the United States, 1981–2002. Neurology 65:1694–1700

    Article  PubMed  CAS  Google Scholar 

  • Gurtler V, Wilson VA, Mayall BC (1991) Classification of medically important clostridia using restriction endonuclease site differences of PCR-amplified 16s rDNA. J Gen Microbiol 137:2673–2679

    PubMed  CAS  Google Scholar 

  • Gutierrez R, Garcia T, Gonzalez I, Sanz B, Hernandez PE, Martin R (1997) A quantitative PCR-ELISA for the rapid enumeration of bacteria in refrigerated raw milk. J Appl Microbiol 83:518–523

    Article  PubMed  CAS  Google Scholar 

  • Haagsma J, Haesebrouck F, Devriese L, Bertels G (1990) An outbreak of botulism type B in horses. Vet Rec 127:206

    PubMed  CAS  Google Scholar 

  • Habermann E (1974) 125I-labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptosomes and ascent to the spinal cord Naunyn Schmiedebergs. Arch Pharmacol 281:47–56

    Article  CAS  Google Scholar 

  • Habermann E (1989) Clostridial neurotoxins and the central nervous system: functional studies on isolated preparations. In: Simpson LL (ed) Botulinum neurotoxins and tetanus toxin. Academic, San Diego, pp 255–279

    Chapter  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL (1985) Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol 21:654–655

    PubMed  CAS  Google Scholar 

  • Halpern J (1995) Tetanus toxin. In: Moss J, Iglewski B, Vaughan M, Tu AT (eds) Bacterial toxins and virulence factors in disease, vol 8. Marcel Dekker, New York, pp 521–541

    Google Scholar 

  • Hambleton P, Capel B, Bailey N, Tse C, Dolly JO (1981) Production, purification and toxoiding of Clostridium botulinum type A toxin. In: Lewis GE (ed) Biomedical aspects of botulism. Academic, New York, pp 247–260

    Google Scholar 

  • Hambleton P, Pickett AM (1994) Potency equivalence of botulinum toxin preparations. J R Soc Med 87:719

    PubMed  CAS  Google Scholar 

  • Harvey SM, Sturgeon J, Dassey DE (2002) Botulism due to Clostridium baratii type F toxin. J Clin Microbiol 40:2260–2262

    Article  PubMed  CAS  Google Scholar 

  • Hatheway CL (1993a) Bacteriology and pathology of neurotoxigenic Clostridia. In: DasGupta BR (ed) Botulinum and tetanus neurotoxins. Plenum Press, New York, pp 491–502

    Google Scholar 

  • Hatheway CL (1993b) Clostridium botulinum and other Clostridia that produce botulinum neurotoxin. In: Hauschild AHW, Dodds KL (eds) Clostridium botulinum: ecology and control in foods. Marcel Dekker, New York, pp 3–20

    Google Scholar 

  • Hauschild AHW (1989) Clostridium botulinum. In: Doyle MP (ed) Foodborne bacterial pathogens. Marcel Dekker, New York, pp 111–189

    Google Scholar 

  • Hauschild AHW (1993) Epidemiology of human foodborne botulism. In: Hauschild AHW, Dodds KL (eds) Clostridium botulinum: ecology and control in foods. Marcel Dekker, New York, pp 69–104

    Google Scholar 

  • Hayashi T, McMahon H, Yamashi S, Binz T, Hata Y, Südhof TC, Niemann H (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061

    PubMed  CAS  Google Scholar 

  • Henderson I, Davis T, Elmore M, Minton N (1997) The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani. In: Rood I (ed) The Clostridia: molecular biology and pathogenesis. Academic, New York, pp 261–294

    Google Scholar 

  • Henderson I, Whelan SM, Davis TO, Minton NP (1996) Genetic characterization of the botulinum toxin complex of Clostridium botulinum strain NCTC2916. FEMS Microbiol Lett 140:151–158

    Article  PubMed  CAS  Google Scholar 

  • Henkel JS, Jacobson M, Tepp W, Pier C, Johnson EA, Barbieri JT (2009) Catalytic properties of botulinum neurotoxin subtypes A3 and A4. Biochemistry 48:2522–2528

    Article  PubMed  CAS  Google Scholar 

  • Herreros J, Ng T, Schiavo G (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12:2947–2960

    PubMed  CAS  Google Scholar 

  • Hielm S, Björkroth J, Hyytiä E, Korkeala H (1998a) Prevalence of Clostridium botulinum in Finnish trout farms: pulse-field gel electrophoresis typing reveals extensive genetic diversity among Type E isolates. Appl Environ Microbiol 64:4161–4167

    PubMed  CAS  Google Scholar 

  • Hielm S, Björkroth KJ, Hyytia E, Korkeala H (1998b) Genomic analysis of Clostridium botulinum group II by pulsed-field gel electrophoresis. Appl Environ Microbiol 64:703–708

    PubMed  CAS  Google Scholar 

  • Hielm S, Hyytiä E, Andersin AB, Korkeala H (1998c) A high prevalence of Clostridium botulinum type E in Finnish freshwater and Baltic sea sediment samples. J Appl Microbiol 84:133–137

    Article  PubMed  CAS  Google Scholar 

  • Hielm S, Hyyttia E, Ridell J, Korkeala H (1996) Detection of Clostridium botulinum in fish and environmental samples using polymerase chain reaction. Int J Food Microbiol 31:357–365

    Article  PubMed  CAS  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189:818–832

    Article  PubMed  CAS  Google Scholar 

  • Hill KK, Xie G, Foley BT, Smith TJ, Munk AC, Bruce D, Smith LA, Brettin TS, Detter JC (2009) Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 7:66

    Article  PubMed  CAS  Google Scholar 

  • Hinderink K, Lindstrom M, Korkeala H (2009) Group I Clostridium botulinum strains show significant variation in growth at low and high temperatures. J Food Prot 72:375–383

    PubMed  Google Scholar 

  • Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium-nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Scheifer KH (eds) The prokaryotes, vol II. Springer, New York, pp 1800–1866

    Google Scholar 

  • Hoare BJ, Wallen MA, Imms C, Villanueva E, Rawicki HB, Carey L (2010) Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst Rev 1:CD003469

    Google Scholar 

  • Holds JB, Alderson K, Fogg SG, Anderson RL (1990) Motor nerve sprouting in human orbicularis muscle after botulinum A injection. Invest Ophthalmol Vis Sci 31:964–967

    PubMed  CAS  Google Scholar 

  • Horn AK, Porter JD, Evinger C (1993) Botulinum toxin paralysis of the orbicularis oculi muscle. Types and time course of alterations in muscle structure, physiology and lid kinematics. Exp Brain Res 96:39–53

    PubMed  CAS  Google Scholar 

  • Hughes JM, Blumenthal JR, Merson MH, Lombard GL, Dowell VR Jr, Gangarosa EJ (1981) Clinical features of types A and B food-borne botulism. Ann Intern Med 95:442–445

    PubMed  CAS  Google Scholar 

  • Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter. Biochimie 82:427–446

    Article  PubMed  CAS  Google Scholar 

  • Humeau Y, Doussau F, Popoff MR, Benfenati F, Poulain B (2007) Fast changes in the functional status of release sites during short-term plasticity: involvement of a frequency-dependent bypass of Rac at Aplysia synapses. J Physiol 583:983–1004

    Article  PubMed  CAS  Google Scholar 

  • Humeau Y, Doussau F, Vittello F, Greengard P, Benfenati F, Poulain B (2001a) Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J Neurosci 21:4195–4206

    PubMed  CAS  Google Scholar 

  • Humeau Y, Popoff MR, Kojima H, Dousseau F, Poulain B (2002) Rac GTPase plays an essential role in exocytosis by controlling the fusion competence in release sites. J Neurosci 22:7968–7981

    PubMed  CAS  Google Scholar 

  • Humeau Y, Vitale N, Chasserot-Golaz S, Dupont JL, Du G, Frohman MA, Bader MF, Poulain B (2001b) A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci USA 98:15300–15305

    Article  PubMed  CAS  Google Scholar 

  • Hutson RA, Collins MD, East AK, Thompson DE (1994) Nucleotide sequence of the gene coding for non-proteolytic Clostridium botulinum type B neurotoxin: comparison with other Clostridial neurotoxins. Curr Microbiol 28:101–110

    Article  PubMed  CAS  Google Scholar 

  • Hutson RA, Zhou Y, Collins MD, Johnson EA, Hatheway CL, Sugiyama H (1996) Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J Biol Chem 271:10786–10792

    Article  PubMed  CAS  Google Scholar 

  • Hyytia E, Bjorkroth J, Hielm S, Korkeala H (1999a) Characterisation of Clostridium botulinum groups I and II by randomly amplified polymorphic DNA analysis and repetitive element sequence-based PCR. Int J Food Microbiol 48:179–189

    Article  PubMed  CAS  Google Scholar 

  • Hyytia E, Hielm S, Björkroth J, Korkeala H (1999b) Biodiversity of Clostridium botulinum type E strains isolated from fish and fishery products. Appl Environ Microbiol 65:2057–2064

    PubMed  CAS  Google Scholar 

  • Hyytia E, Hielm S, Korreala H (1998) Prevalence of Clostridium botulinum type E in Finnish fish and fishery products. Epidemiol Infect 120:245–250

    Article  PubMed  CAS  Google Scholar 

  • Ihara H, Kohda T, Morimoto F, Tsukamoto K, Karasawa T, Nakamura S, Mukamoto M, Kozaki S (2003) Sequence of the gene for Clostridium botulinum type B neurotoxin associated with infant botulism, expression of the C-terminal half of heavy chain and its binding activity. Biochim Biophys Acta 1625:19–26

    Article  PubMed  CAS  Google Scholar 

  • Inserte J, Najib A, Pelliccioni P, Gil C, Aguilera J (1999) Inhibition by tetanus toxin of sodium-dependent, high-affinity [3 H]5-hydroxytryptamine uptake in rat synaptosomes. Biochem Pharmacol 57:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Zhang X, Erickson K, Ray P (2004) Botulinum toxin type A targets RhoB to inhibit lysophosphatidic acid-stimulated actin reorganization and acetylcholine release in nerve growth factor-treated PC12 cells. J Pharmacol Exp Ther 310:881–889

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MJ, Lin G, Raphael B, Andreadis J, Johnson EA (2008a) Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl Environ Microbiol 74:2778–2786

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MJ, Lin G, Whittam TS, Johnson EA (2008b) Phylogenetic analysis of Clostridium botulinum type A by multi-locus sequence typing. Microbiology 154:2408–2415

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  PubMed  CAS  Google Scholar 

  • Jalava K, Selby K, Pihlajasaari A, Kolho E, Dahlsten E, Forss N, Backlund T, Korkeala H, Honkanen-Buzalski T, Hulkko T, Derman Y, Jarvinen A, Kotilainen H, Kultanen L, Ruutu P, Lyytikainen O, Lindstrom M (2011) Two cases of food-borne botulism in Finland caused by conserved olives. Euro Surveill 16(49):20034

    PubMed  CAS  Google Scholar 

  • Jankovic J (2009) Disease-oriented approach to botulinum toxin use. Toxicon 54:614–623

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Takegahara Y, Sugawara Y, Matsumura T, Fujinaga Y (2009) Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins – differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C. Microbiology 155:35–45

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, Tepp W, Bradshaw M, Gilbert RJ, Cook PE, McIntosh ED (2005) Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom. J Clin Microbiol 43:2602–2607

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Francis BS (1975) Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 88:229–244

    PubMed  CAS  Google Scholar 

  • Jost WH, Blumel J, Grafe S (2007) Botulinum neurotoxin type A free of complexing proteins (XEOMIN) in focal dystonia. Drugs 67:669–683

    Article  PubMed  CAS  Google Scholar 

  • Jovita MR, Collins MD, East AK (1998) Gene organization and sequence determination of the two botulinum neurotoxin gene clusters in Clostridium botulinum. Curr Microbiol 36:226–231

    Article  Google Scholar 

  • Juzans P, Comella JX, Molgo J, Faille L, Angaut-Petit D (1996) Nerve terminal sprouting in botulinum type-A treated mouse Levator auris Longus muscle. Neuromusc Disord 6:177–185

    Article  PubMed  CAS  Google Scholar 

  • Kalluri P, Crowe C, Reller M, Gaul L, Hayslett J, Barth S, Eliasberg S, Ferreira J, Holt K, Bengston S, Hendricks K, Sobel J (2003) An outbreak of foodborne botulism associated with food sold at a salvage store in Texas. Clin Infect Dis 37:1490–1495

    Article  PubMed  Google Scholar 

  • Kasai H (1999) Comparative biology of Ca2 + −dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22:88–93

    Article  PubMed  CAS  Google Scholar 

  • Keller JE, Neale EA (2001) The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A. J Biol Chem 276:13476–13482

    Article  PubMed  CAS  Google Scholar 

  • Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456:137–142

    Article  PubMed  CAS  Google Scholar 

  • Kennedy S, Ball H (2011) Botulism in cattle associated with poultry litter. Vet Rec 168:638–639

    Article  PubMed  Google Scholar 

  • Keto-Timonen R, Nevas M, Korkeala H (2005) Efficient DNA fingerprint of Clostridium botulinum types A, B, E, and F by amplified fragment length polymorphism analysis. Appl Environ Microbiol 71:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • King LA (2008) Two severe cases of botulism associated with industrially produced chicken enchiladas, France. Euro Surveill 13:18978

    Google Scholar 

  • King LA, Niskanen T, Junnikkala M, Moilanen E, Lindstrom M, Korkeala H, Korhonen T, Popoff M, Mazuet C, Callon H, Pihier N, Peloux F, Ichai C, Quintard H, Dellamonica P, Cua E, Lasfargue M, Pierre F, de Valk H (2009) Botulism and hot-smoked whitefish: a family cluster of type E botulism in France. Euro Surveill 14:19394

    Google Scholar 

  • King LA, Popoff MR, Mazuet C, Espie E, Vaillant V, de Valk H (2010) Infant botulism in France, 1991–2009. Arch Pediatr 17:1288–1292

    Article  PubMed  Google Scholar 

  • Kissani N, Moutawakkil S, Chakib A, Slassi I (2009) Le botulisme alimentaire au Maroc, à propos de 15 cas. Valeur diagnostique de l’électrophysiologie. Rev Neurol (Paris) 165:1080–1085

    Article  CAS  Google Scholar 

  • Knock GG (1952) Survey of soils for spores of Clostridium botulinum (Union of South Africa and South West Africa). J Sci Food Agric 3:86–90

    Article  Google Scholar 

  • Koepke R, Sobel J, Arnon SS (2008) Global occurrence of infant botulism, 1976–2006. Pediatrics 122:e73–e82

    Article  PubMed  Google Scholar 

  • Koh TW, Bellen HJ (2003) Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci 26:413–422

    Article  PubMed  CAS  Google Scholar 

  • Kongsaengdao S, Samintarapanya K, Rusmeechan S, Wongsa A, Pothirat C, Permpikul C, Pongpakdee S, Puavilai W, Kateruttanakul P, Phengtham U, Panjapornpon K, Janma J, Piyavechviratana K, Sithinamsuwan P, Deesomchok A, Tongyoo S, Vilaichone W, Boonyapisit K, Mayotarn S, Piya-Isragul B, Rattanaphon A, Intalapaporn P, Dusitanond P, Harnsomburana P, Laowittawas W, Chairangsaris P, Suwantamee J, Wongmek W, Ratanarat R, Poompichate A, Panyadilok H, Sutcharitchan N, Chuesuwan A, Oranrigsupau P, Sutthapas C, Tanprawate S, Lorsuwansiri J, Phattana N (2006) An outbreak of botulism in Thailand: clinical manifestations and management of severe respiratory failure. Clin Infect Dis 43:1247–1256

    Article  PubMed  Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  PubMed  CAS  Google Scholar 

  • Korkeala H, Stengel G, Hyytia E, Vogelsang B, Bohl A, Wihlman H, Pakkala P, Hielm S (1998) Type E botulism associated with vacuum-packaged hot-smoked whitefish. Int J Food Microbiol 43:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kozaki S, Kamata Y, Nishiki T, Kakinuma H, Maruyama H, Takahashi H, Karasawa T, Yamakawa K, Nakamura S (1998) Characterization of Clostridium botulinum type B neurotoxin associated with infant botulism in Japan. Infect Immun 66:4811–4816

    PubMed  CAS  Google Scholar 

  • Kroken AR, Karalewitz AP, Fu Z, Kim JJ, Barbieri JT (2011) Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons. J Biol Chem 286(30):26828–26837

    Article  PubMed  CAS  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, Das Gupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  PubMed  CAS  Google Scholar 

  • Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11:431–437

    Article  PubMed  CAS  Google Scholar 

  • Lalli G, Schiavo G (2002) Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J Cell Biol 156:233–239

    Article  PubMed  CAS  Google Scholar 

  • Lawson PA, Llop-Perez P, Hutson RA, Hippe H, Collins MD (1993) Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiol Lett 113:87–92

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Ho CS, Marinescu V, Bhatti H, Bokoch GM, Ernst SA, Holz RW, Stuenkel EL (2003) Facilitation of Ca(2+)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J Physiol 550:431–445

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Foran P, Fairweather NF, de Paiva A, Weller U, Dougan G, Dolly JO (1994) A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry 33:7014–7020

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Foran P, Lawrence G, Mohammed N, Chan-Kwo-Chion C, Lisk G, Aoki R, Dolly O (2001) Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways. J Biol Chem 276:31394–31401

    Article  PubMed  CAS  Google Scholar 

  • Lim EC, Seet RC (2008) Botulinum toxin: description of injection techniques and examination of controversies surrounding toxin diffusion. Acta Neurol Scand 117:73–84

    PubMed  CAS  Google Scholar 

  • Lin WJ, Johnson EA (1995) Genome analysis of Clostridium botulinum type A by pulsed-field gel electrophoresis. Appl Environ Microbiol 61:4441–4447

    PubMed  CAS  Google Scholar 

  • Linde M, Hagen K, Stovner LJ (2011) Botulinum toxin treatment of secondary headaches and cranial neuralgias: a review of evidence. Acta Neurol Scand Suppl 191:50–5

    Google Scholar 

  • Lindstrom M, Hinderink K, Somervuo P, Kiviniemi K, Nevas M, Chen Y, Auvinen P, Carter AT, Mason DR, Peck MW, Korkeala H (2009) Comparative genomic hybridization analysis of two predominant Nordic group I (proteolytic) Clostridium botulinum type B clusters. Appl Environ Microbiol 75:2643–2651

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom M, Kiviniemi K, Korkeala H (2006a) Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int J Food Microbiol 108:92–104

    Article  PubMed  Google Scholar 

  • Lindstrom M, Myllykoski J, Sivela S, Korkeala H (2010) Clostridium botulinum in cattle and dairy products. Crit Rev Food Sci Nutr 50:281–304

    Article  PubMed  Google Scholar 

  • Lindstrom M, Vuorela M, Hinderink K, Korkeala H, Dahlsten E, Raahenmaa M, Kuusi M (2006b) Botulism associated with vacuum-packed smoked whitefish in Finland. Euro Surveill 11:E060720 3

    Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  PubMed  CAS  Google Scholar 

  • Love SC, Novak I, Kentish M, Desloovere K, Heinen F, Molenaers G, O’Flaherty S, Graham HK (2010) Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol 17(Suppl 2):9–37

    Article  PubMed  Google Scholar 

  • Low PA (2002) Autonomic neuropathies. Curr Opin Neurol 15:605–609

    Article  PubMed  Google Scholar 

  • Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J, Jiang H, Feig LA, Morris AJ, Kahn RA, Foster DA (1998) Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci USA 95:3632–3637

    Article  PubMed  CAS  Google Scholar 

  • Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, Martin TF (2008) Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 19:5093–5103

    Article  PubMed  CAS  Google Scholar 

  • Macdonald TE, Helma CH, Shou Y, Valdez YE, Ticknor LO, Foley BT, Davis SW, Hannett GE, Kelly-Cirino CD, Barash JR, Arnon SS, Lindstrom M, Korkeala H, Smith LA, Smith TJ, Hill KK (2011) Analysis of Clostridium botulinum serotype E strains by using multilocus sequence typing, amplified fragment length polymorphism, variable-number tandem-repeat analysis, and Botulinum neurotoxin gene sequencing. Appl Environ Microbiol 77:8625–8634

    Article  PubMed  CAS  Google Scholar 

  • Macdonald TE, Helma CH, Ticknor LO, Jackson PJ, Okinaka RT, Smith LA, Smith TJ, Hill KK (2008) Differentiation of Clostridium botulinum serotype A strains by multiple-locus variable-number tandem-repeat analysis. Appl Environ Microbiol 74:875–882

    Article  PubMed  CAS  Google Scholar 

  • Maggio N, Sellitti S, Capano CP, Papa M (2001) Tissue-transglutaminase in rat and human brain: light and electron immunocytochemical analysis and in situ hybridization study. Brain Res Bull 56:173–182

    Article  PubMed  CAS  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:2011–2014

    Article  PubMed  CAS  Google Scholar 

  • Maksymowych AB, Simpson LI (2004) Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. J Pharmacol Exp Ther 210:633–641

    Article  CAS  Google Scholar 

  • Maksymowych AB, Simpson LL (1998) Binding and transcytosis of botulinum neurotoxin by polarized human carcinoma cells. J Biol Chem 273:21950–21957

    Article  PubMed  CAS  Google Scholar 

  • Manning KA, Erichsen JT, Evinger C (1990) Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience 34:251–263

    Article  PubMed  CAS  Google Scholar 

  • Marshall KM, Bradshaw M, Pellet S, Johnson EA (2007) Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem Biophys Res Commun 361:49–54

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Kozlov MM, McMahon HT (2007) How synaptotagmin promotes membrane fusion. Science 316:1205–1208

    Article  PubMed  CAS  Google Scholar 

  • Marvaud JC, Eisel U, Binz T, Niemann H, Popoff MR (1998) tetR is a positive regulator of the Tetanus toxin gene in Clostridium tetani and is homologous to botR. Infect Immun 66:5698–5702

    PubMed  CAS  Google Scholar 

  • Marxen P, Bigalke H (1991) Tetanus and botulinum A toxins inhibit stimulated F-actin rearrangement in chromaffin cells. Neuroreport 2:33–36

    Article  PubMed  CAS  Google Scholar 

  • Maskos U, Kissa K, St Cloment C, Brulet P (2002) Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice. Proc Natl Acad Sci USA 99:10120–10125

    Article  PubMed  CAS  Google Scholar 

  • Matsumura T, Jin Y, Kabumoto Y, Takegahara Y, Oguma K, Lencer WI, Fujinaga Y (2008) The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption. Cell Microbiol 10:355–364

    PubMed  CAS  Google Scholar 

  • Mazuet C, Bouvet P, King LA, Popoff MR (2011) Le botulisme humain en France, 2007–2009. BEH 6:49–53

    Google Scholar 

  • McCroskey LM, Hatheway CL, Fenicia L, Pasolini B, Aureli P (1986) Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J Clin Microbiol 23:201–202

    PubMed  CAS  Google Scholar 

  • McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P (1991) Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol 29:2618–2620

    PubMed  CAS  Google Scholar 

  • Mendieta L, Venegas B, Moreno N, Patricio A, Martinez I, Aguilera J, Limon ID (2009) The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+)-lesions. Neurosci Res 65:98–106

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29:4981–4992

    Article  PubMed  CAS  Google Scholar 

  • Meng X, Karasawa T, Zou K, Kuang X, Wang X, Lu C, Wang C, Yamakawa K, Nakamura S (1997) Characterization of a neurotoxigenic Clostridium butyricum strain isolated from the food implicated in an outbreak of food-borne type E botulism. J Clin Microbiol 35:2160–2162

    PubMed  CAS  Google Scholar 

  • Meng X, Yamakawa K, Zou K, Wang X, Kuang X, Lu C, Wang C, Karasawa T, Nakamura S (1999) Isolation and characterization of neurotoxigenic Clostridium butyricum from soil in China. J Med Microbiol 48:133–137

    Article  PubMed  CAS  Google Scholar 

  • Mesbah S (2009) Emerging and re-emerging infectious diseases: risk and response in Algeria. Med Trop (Mars) 69:27–32

    CAS  Google Scholar 

  • Meunier FA, Herreros J, Schiavo G, Poulain B, Molgó J (2002a) Molecular mechanism of action of botulinal neurotoxins and the synaptic remodeling they induce in vivo at the skeletal neuromuscular junction. In: Massaro J (ed) Handbook of neurotoxicology, vol 1. Humana Press, Totowa, pp 305–347

    Google Scholar 

  • Meunier FA, Schiavo G, Molgo J (2002b) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular trasnmission. J Physiol 96:105–113

    CAS  Google Scholar 

  • Meunier FA, Lisk G, Sesardic D, Dolly JO (2003) Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 22:454–466

    Article  PubMed  CAS  Google Scholar 

  • Mezaki T, Kaji R, Brin MF, Hirota-Katayama M, Kubori T, Shimizu T, Kimura J (1999) Combined use of type A and F botulinum toxins for blepharospasm: a double-blind controlled trial. Mov Disord 14:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Miana-Mena FJ, Roux S, Benichou JC, Osta R, Brulet P (2002) Neuronal activity-dependent membrane traffic at the neuromuscular junction. Proc Natl Acad Sci USA 99:3234–3239

    Article  PubMed  CAS  Google Scholar 

  • Moberg LJ, Sugiyama H (1979) Microbial ecological basis of infant botulism as studied with germfree mice. Infect Immun 25:653–657

    PubMed  CAS  Google Scholar 

  • Molgo J, Comella JX, Angaut-Petit D, Pecot-Dechavassine M, Tabti N, Faille L, Mallart A, Thesleff S (1990) Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J Physiol Paris 84:152–166

    PubMed  CAS  Google Scholar 

  • Moller V, Scheibel I (1960) Preliminary report on the isolation of an apparently new type of Clostridium botulinum. Acta Pathol Microbiol Scand 48:80

    Article  PubMed  CAS  Google Scholar 

  • Momboisse F, Lonchamp E, Calco V, Ceridono M, Vitale N, Bader MF, Gasman S (2009) betaPIX-activated Rac1 stimulates the activation of phospholipase D, which is associated with exocytosis in neuroendocrine cells. J Cell Sci 122:798–806

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274–279

    Article  PubMed  CAS  Google Scholar 

  • Morbiato L, Carli L, Johnson EA, Montecucco C, Molgo J, Rossetto O (2007) Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci 25:2697–2704

    Article  PubMed  Google Scholar 

  • Moreno-Lopez B, de la Cruz RR, Pastor AM, Delgado-Garcia JM (1994) Botulinum neurotoxin alters the discharge characteristics of abducens motoneurons in the alert cat. J Neurophysiol 72:2041–2044

    PubMed  CAS  Google Scholar 

  • Munro P, Kojima H, Dupont JL, Bossu JL, Poulain B, Boquet P (2001) High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem Biophys Res Commun 289:623–629

    Article  PubMed  CAS  Google Scholar 

  • Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380:76–80

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, De Camilli P (2003) Cell biology of the presynaptic terminal. Annu Rev Neurosci 26:701–728

    Article  PubMed  CAS  Google Scholar 

  • Najib A, Pelliccioni P, Gil C, Aguilera J (2000) Serotonin transporter phosphorylation modulated by tetanus toxin. FEBS Lett 486:136–142

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Okado I, Abe T, Nishida S (1979) Taxonomy of Clostridium tetani and related species. J Gen Microbiol 113:29–35

    PubMed  CAS  Google Scholar 

  • Naumann M, So Y, Argoff CE, Childers MK, Dykstra DD, Gronseth GS, Jabbari B, Kaufmann HC, Schurch B, Silberstein SD, Simpson DM (2008) Assessment: Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 70:1707–1714

    Article  PubMed  CAS  Google Scholar 

  • Nevas M, Lindström M, Hielm S, Björkroth KJ, Peck MW, Korkeala H (2005) Diversity of proteolytic Clostridium botulinum strains, determined by a pulse-field gel electrophoresis approach. Appl Environ Microbiol 71:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Nevins AK, Thurmond DC (2005) A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 280:1944–1952

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4:179–185

    Article  PubMed  CAS  Google Scholar 

  • Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269:10498–10503

    PubMed  CAS  Google Scholar 

  • Notermans S, Dufrene J, Oosterom J (1981) Persistence of Clostridium botulinum type B on cattle farm after an outbreak of botulism. Appl Environ Microbiol 41:179–183

    PubMed  CAS  Google Scholar 

  • O’Connor V, Heuss C, De Bello WM, Dresbach T, Charlton MP, Hunt JH, Pellegrini LL, Hodel A, Burger MM, Betz H, Augustine GJ, Schafer T (1997) Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion. Proc Natl Acad Sci USA 94:12186–12191

    Article  PubMed  Google Scholar 

  • O’Mahony M, Mitchell E, Gilbert RJ, Hutchinson DN, Begg NT, Rodhouse JC, Morris JE (1990) An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol Infect 104:389–395

    Article  PubMed  Google Scholar 

  • O’Sullivan GA, Mohammed N, Foran PG, Lawrence GW, Dolly JO (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. J Biol Chem 274:36897–36904

    Article  PubMed  Google Scholar 

  • Oeconomou A, Madersbacher H, Kiss G, Berger TJ, Melekos M, Rehder P (2008) Is botulinum neurotoxin type A (BoNT-A) a novel therapy for lower urinary tract symptoms due to benign prostatic enlargement? A review of the literature. Eur Urol 54:765–775

    Article  PubMed  CAS  Google Scholar 

  • Oguma K, Inoue K, Fujinaga Y, Yokota K, Watanabe T, Ohyama T, Takeshi K, Inoue K (1999) Structure and function of Clostridium botulinum progenitor toxin. J Toxicol 18:17–34

    CAS  Google Scholar 

  • Oguma K, Yamaguchi T, Sudou K, Yokosawa N, Fujikawa Y (1986) Biochemical classification of Clostridium botulinum type C and D strains and their nontoxigenic derivatives. Appl Environ Microbiol 51:256–260

    PubMed  CAS  Google Scholar 

  • Olver J, Esquenazi A, Fung VS, Singer BJ, Ward AB (2010) Botulinum toxin assessment, intervention and aftercare for lower limb disorders of movement and muscle tone in adults: international consensus statement. Eur J Neurol 17(Suppl 2):57–73

    Article  PubMed  Google Scholar 

  • Ouagari Z, Chakib A, Sodqi M, Marih L, Marhoum Filali K, Benslama A, Idrissi L, Moutawakkil S, Himmich H (2002) Botulism in Casablanca. (11 cases). Bull Soc Pathol Exot 95:272–275

    PubMed  CAS  Google Scholar 

  • Panjwani N, O’Keeffe R, Pickett A (2008) Biochemical, functional and potency characteristics of type A botulinum toxin in clinical use. The Botulinum J 1:153–166

    Article  Google Scholar 

  • Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978

    Article  PubMed  CAS  Google Scholar 

  • Pastor AM, Moreno-Lopez B, De La Cruz RR, Delgado-Garcia JM (1997) Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience 81:457–478

    Article  PubMed  CAS  Google Scholar 

  • Pastuszko A, Wilson DF, Erecinska M (1986) A role for transglutaminase in neurotransmitter release by rat brain synaptosomes. J Neurochem 46:499–508

    Article  PubMed  CAS  Google Scholar 

  • Payne JH, Hogg RA, Otter A, Roest HI, Livesey CT (2011) Emergence of suspected type D botulism in ruminants in England and Wales (2001 to 2009), associated with exposure to broiler litter. Vet Rec 168:640

    Article  PubMed  CAS  Google Scholar 

  • Peck MW (2006) Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Microbiol 101:556–570

    Article  PubMed  CAS  Google Scholar 

  • Peck MW (2009) Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55:183–265, 320

    Article  PubMed  CAS  Google Scholar 

  • Peck MW, Stringer SC, Carter AT (2011) Clostridium botulinum in the post-genomic era. Food Microbiol 28:183–191

    Article  PubMed  Google Scholar 

  • Pellegrini LL, O’Connor V, Lottspeich F, Betz H (1995) Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. EMBO J 14:4705–4713

    PubMed  CAS  Google Scholar 

  • Pelliccioni P, Gil C, Najib A, Sarri E, Picatoste F, Aguilera J (2001) Tetanus toxin modulates serotonin transport in rat-brain neuronal cultures. J Mol Neurosci 17:303–310

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7:e1002008

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (2003) Localization and regulation of Ca2+ entry and exit pathways in exocrine gland cells. Cell Calcium 33:337–344

    Article  PubMed  CAS  Google Scholar 

  • Pingeon J, Vanbockstael C, Popoff M, King L, Deschamps B, Pradel G, Dupont H, Spanjaard A, Houdard A, Mazuet C, Belaizi B, Bourgeois S, Lemgueres S, Debbat K, Courant P, Quirin R, Malfait P (2011) Two outbreaks of botulism associated with consumption of green olive paste, France. Euro Surveill 16(49):20035

    PubMed  CAS  Google Scholar 

  • Polzin A, Shipitsin M, Goi T, Feig LA, Turner TJ (2002) Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. Mol Cell Biol 22:1714–1722

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR (1989) Revue sur l’épidémiologie du botulisme bovin en France et analyse de sa relation avec les élevages de volailles. Rev Sci Technol Off Int Epiz 8:129–145

    Google Scholar 

  • Popoff MR (1990) Are anaerobes involved in neonatal necrotizing enterocolitis? In: Borriello SP (ed) Clinical and molecular aspects of anaerobes. Wrighston Biomedical Publishing, Petersfield, pp 49–57

    Google Scholar 

  • Popoff MR (1995) Ecology of neurotoxigenic strains of Clostridia. In: Montecucco C (ed) Clostridial neurotoxins, vol 195. Springer, Heidelberg, pp 1–29

    Chapter  Google Scholar 

  • Popoff MR, Legardinier JC, Perrot B, Hamard E, Lhomme P, Leclercq H, Beaumont A, Meheut-Ferron P, Lescure G (1986) Analyse épidémiologique du botulisme bovin dans le département de la Manche. Rev Med Vet 137:857–865

    Google Scholar 

  • Popoff MR, Marvaud JC (1999) Structural and genomic features of clostridial neurotoxins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins, vol 2. Academic, London, pp 174–201

    Google Scholar 

  • Popoff MR, Szylit O, Ravisse P, Dabard J, Ohayon H (1985) Experimental cecitis in gnotoxenic chickens monoassociated with Clostridium butyricum strains isolated from patients with neonatal necrotizing enterocolitis. Infect Immun 47:697–703

    PubMed  CAS  Google Scholar 

  • Porter JD, Strebeck S, Capra NF (1991) Botulinum-induced changes in monkey eyelid muscle. Comparison with changes seen in extraocular muscle. Arch Ophthalmol 109:396–404

    Article  PubMed  CAS  Google Scholar 

  • Poulain B, Popoff MR, Molgo J (2008) How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. Botulinum J 1:14–87

    Article  Google Scholar 

  • Poulain B, Stiles BG, Popoff MR, Molgó J (2006) Attack of the nervous system by clostridial toxins: Physical findings, cellular and molecular actions. In: Alouf JE, Popoff MR (eds) The sourcebook of bacterial protein toxins. Elsevier/Academic, Amsterdam, pp 348–389

    Chapter  Google Scholar 

  • Pourshafie MR, Saifie M, Shafiee A, Vahdani P, Aslani M, Salemian J (1998) An outbreak of food-borne botulism associated with contaminated locally mad cheese in Iran. Scand J Infect Dis 30:92–94

    Article  PubMed  CAS  Google Scholar 

  • Presek P, Jessen S, Dreyer F, Jarvie PE, Findik D, Dunkley PR (1992) Tetanus toxin inhibits depolarization-stimulated protein phosphorylation in rat cortical synaptosomes: effect on synapsin I phosphorylation and translocation. J Neurochem 59:1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Priori A, Berardelli A, Mercuri B, Manfredi M (1995) Physiological effects produced by botulinum toxin treatment of upper limb dystonia. Changes in reciprocal inhibition between forearm muscles. Brain 118(Pt 3):801–807

    Article  PubMed  Google Scholar 

  • Qazi O, Brailsford A, Wright A, Faraar J, Campbell J, Fairweather N (2007) Identification and characterization of the surface-layer protein of Clostridium tetani. FEMS Microbiol Lett 274:126–131

    Article  PubMed  CAS  Google Scholar 

  • Qerama E, Fuglsang-Frederiksen A, Jensen TS (2010) The role of botulinum toxin in management of pain: an evidence-based review. Curr Opin Anaesthesiol 23:602–610

    Article  PubMed  Google Scholar 

  • Raffestin S, Dupuy B, Marvaud JC, Popoff MR (2005) BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol Microbiol 55:235–249

    Article  PubMed  CAS  Google Scholar 

  • Raphael BH, Choudoir MJ, Luquez C, Fernandez R, Maslanka SE (2010) Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol 76:4805–4812

    Article  PubMed  CAS  Google Scholar 

  • Raphael BH, Luquez C, McCroskey LM, Joseph LA, Jacobson MJ, Johnson EA, Maslanka SE, Andreadis JD (2008) Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters. Appl Environ Microbiol 74:4390–4397

    Article  PubMed  CAS  Google Scholar 

  • Ratts R, Trujillo C, Bharti A, vanderSpek J, Harrison R, Murphy JR (2005) A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc Natl Acad Sci USA 102:15635–15640

    Article  PubMed  CAS  Google Scholar 

  • Ravichandran E, Gong Y, Al Saleem FH, Ancharski DM, Joshi SG, Simpson LL (2006) An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther 318:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca++ − triggered exocytosis. Science 298:781–785

    Article  PubMed  CAS  Google Scholar 

  • Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674

    Article  PubMed  CAS  Google Scholar 

  • Roberts TA, Smart JL (1976) The occurrence and growth of Clostridium spp. in vacuum-packed bacon with particular reference to CL. perfringens (welchii) and Cl. botulinum. J Food technol 11:229–244

    Article  Google Scholar 

  • Roblot F, Popoff M, Carlier JP, Godet C, Abbadie P, Matthis S, Eisendorn A, Le Moal G, Becq-Giraudon B, Roblot P (2006) Botulism in patients who inhale cocaine: the first cases in France. Clin Infect Dis 43:e51–e52

    Article  PubMed  CAS  Google Scholar 

  • Rosales RL, Arimura K, Takenaga S, Osame M (1996) Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 19:488–496

    Article  PubMed  CAS  Google Scholar 

  • Rosales RL, Bigalke H, Dressler D (2006) Pharmacology of botulinum toxin: differences between type A preparations. Eur J Neurol 13(Suppl 1):2–10

    Article  PubMed  Google Scholar 

  • Rossetto O, Morbiato L, Caccin P, Rigoni M, Montecucco C (2006) Presynaptic enzymatic neurotoxins. J Neurochem 97:1534–1545

    Article  PubMed  CAS  Google Scholar 

  • Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C (2001) Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39:27–41

    Article  PubMed  CAS  Google Scholar 

  • Rowe FJ, Noonan CP (2009) Botulinum toxin for the treatment of strabismus. Cochrane Database Syst Rev 2:CD006499

    Google Scholar 

  • Rowlands RE, Ristori CA, Lopes GI, de Paula AM, Sakuma H, Grigaliunas R, Lopreato Filho R, Gelli DS, Eduardo MB, Jakabi M (2010) Botulism in Brazil, 2000–2008: epidemiology, clinical findings and laboratorial diagnosis. Rev Inst Med Trop Sao Paulo 52:183–186

    PubMed  Google Scholar 

  • Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the Hcc-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326:835–847

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, Mahrhold S, Sandhoff K, Proia RL, Acharya KR, Bigalke H, Binz T (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci USA 104:359–364

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Hafner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004a) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279:30865–30870

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004b) The Hcc-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631–643

    Article  PubMed  CAS  Google Scholar 

  • Sakaba T, Stein A, Jahn R, Neher E (2005) Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 309:491–494

    Article  PubMed  CAS  Google Scholar 

  • Salem N, Faundez V, Horng JT, Kelly RB (1998) A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Nat Neurosci 1:551–556

    Article  PubMed  CAS  Google Scholar 

  • Sanford DC, Barnewall RE, Vassar ML, Niemuth N, Metcalfe K, House RV, Henderson I, Shearer JD (2010) Inhalational botulism in rhesus macaques exposed to botulinum neurotoxin complex serotypes A1 and B1. Clin Vaccine Immunol 17:1293–1304

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  • Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Kuster P, Konig M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci USA 101:2858–2863

    Article  PubMed  CAS  Google Scholar 

  • Scott AB (1980) Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophtalmol 87:1044–1049

    CAS  Google Scholar 

  • Scott AB, Suzuki D (1988) Systemic toxicity of botulinum toxin by intramuscular injection in the monkey. Mov Disord 3:333–335

    Article  PubMed  CAS  Google Scholar 

  • Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MT, Mitchell WJ, Carter AT, Bentley SD, Mason DR, Crossman L, Paul CJ, Ivens A, Wells-Bennik MH, Davis IJ, Cerdeno-Tarraga AM, Churcher C, Quail MA, Chillingworth T, Feltwell T, Fraser A, Goodhead I, Hance Z, Jagels K, Larke N, Maddison M, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, White B, Whithead S, Parkhill J (2007) Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17:1082–1092

    Article  PubMed  CAS  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786

    Article  PubMed  CAS  Google Scholar 

  • Segev N (2001) Ypt/rab gtpases regulators of protein trafficking. Sci STKE 2001:RE11

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Ramzan MA, Singh BR (2003) Separation of the components of type A botulinum neurotoxin complex by electrophoresis. Toxicon 41:321–331

    Article  PubMed  CAS  Google Scholar 

  • Sheean G, Lannin NA, Turner-Stokes L, Rawicki B, Snow BJ (2010) Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: international consensus statement. Eur J Neurol 17(Suppl 2):74–93

    Article  PubMed  Google Scholar 

  • Sheth AN, Wiersma P, Atrubin D, Dubey V, Zink D, Skinner G, Doerr F, Juliao P, Gonzalez G, Burnett C, Drenzek C, Shuler C, Austin J, Ellis A, Maslanka S, Sobel J (2008) International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin Infect Dis 47:1245–1251

    Article  PubMed  Google Scholar 

  • Simpson DM, Blitzer A, Brashear A, Comella C, Dubinsky R, Hallett M, Jankovic J, Karp B, Ludlow CL, Miyasaki JM, Naumann M, So Y (2008) Assessment: Botulinum neurotoxin for the treatment of movement disorders (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 70:1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Skarin H, Hafstrom T, Westerberg J, Segerman B (2011) Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics 12:185

    Article  PubMed  CAS  Google Scholar 

  • Slater PE, Addiss DG, Cohen A, Leventhal A, Chassis G, Zehavi H, Bashari A, Costin C (1989) Foodborne botulism: an international outbreak. Int J Epidemiol 18:693–696

    Article  PubMed  CAS  Google Scholar 

  • Sloop RR, Cole BA, Escutin RO (1997) Human response to botulinum toxin injection: type B compared with type A. Neurology 49:189–194

    Article  PubMed  CAS  Google Scholar 

  • Smart JL (1983) Type C botulism in intensively farmed turkeys. Vet Rec 113:198–200

    Article  PubMed  CAS  Google Scholar 

  • Smart JL, Jones TO, Clegg FG, McMurtry MJ (1987) Poultry waste associated type C botulism in cattle. Epidemiol Infect 98:73–79

    Article  PubMed  CAS  Google Scholar 

  • Smart JL, Roberts TA (1977) An outbreak of type C botulism in broiler chickens. Vet Rec 100:378–380

    Article  PubMed  CAS  Google Scholar 

  • Smith GR, Oliphant JC (1983) Diagnosis of botulism in water birds. Vet Rec 112:457–458

    Article  PubMed  CAS  Google Scholar 

  • Smith LA (2006) Bacterial protein toxins as biological weapons. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins. Elsevier/ Academic, Amsterdam, pp 1019–1030

    Chapter  Google Scholar 

  • Smith LD (1978) The occurrence of Clostridium botulinum and Clostridium tetani in the soil of the United States. Health Lab Sci 15:74–80

    PubMed  CAS  Google Scholar 

  • Smith LD, Williams BL (1984) The pathogenic anaerobic bacteria. Charles C. Thomas, Springfield

    Google Scholar 

  • Smith LDS (1975) Clostridium tetani. In: Smith LDS (ed) The pathogenic anaerobic bacteria. Charles C. Thomas, Springfield, pp 177–201

    Google Scholar 

  • Smith LDS (1992) The genus Clostridium-medical. In: Balows A, Trüper HG, Dworkin M, Harder W, Scheifer KH (eds) The prokaryotes, vol II. Springer, New York, pp 1867–1880

    Google Scholar 

  • Smith LDS, Sugiyama H (1977) Botulism. The organism, its toxins, the disease. Charles C. Thomas, Springfield

    Google Scholar 

  • Smith LDS, Sugiyama H (1988) Botulism. The organism, its toxins, the disease. Charles C. Thomas, Springfield

    Google Scholar 

  • Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, Xie G, Brettin TS (2007) Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2:e1271

    Article  PubMed  CAS  Google Scholar 

  • Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, Laporte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73:5450–5457

    Article  PubMed  CAS  Google Scholar 

  • Sobel J (2005) Botulism. Clin Infect Dis 41:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Sobel J, Malavet M, John S (2007) Outbreak of clinically mild botulism type E illness from home-salted fish in patients presenting with predominantly gastrointestinal symptoms. Clin Infect Dis 45:e14–e16

    Article  PubMed  CAS  Google Scholar 

  • Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S (2004) Foodborne botulism in the United States, 1990–2000. Emerg Infect Dis 10:1606–1611

    Article  PubMed  Google Scholar 

  • Sonnabend O, Sonnabend W, Heinzle R, Sigrist T, Dirnhofer R, Krech U (1981) Isolation of Clostridium botulinum types G and identification of botulinal toxin in humans: report of five sudden unexpected deaths. J Infect Dis 143:22–27

    Article  PubMed  CAS  Google Scholar 

  • Sonnabend WF, Sonnabend OH, Gründler P, Ketz E (1987a) Intestinal toxicoinfection by Clostridium botulinum type F in an adult. Lancet 1:357–361

    Article  PubMed  CAS  Google Scholar 

  • Sonnabend WF, Sonnabend UP, Krech T (1987b) Isolation of Clostridium botulinum type G from Swiss soil specimens by using sequential steps in an identification scheme. Appl Environ Microbiol 53:1880–1884

    PubMed  CAS  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4:e1000129

    Article  PubMed  CAS  Google Scholar 

  • Strom MS, Eklund MW, Poysky FT (1984) Plasmids in Clostridium botulinum and related species. Appl Environ Microbiol 48:956–963

    PubMed  CAS  Google Scholar 

  • Strotmeier J, Lee K, Volker AK, Mahrhold S, Zong Y, Zeiser J, Zhou J, Pich A, Bigalke H, Binz T, Rummel A, Jin R (2010) Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J 431:207–216

    Article  PubMed  CAS  Google Scholar 

  • Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ (1988) Int J Syst Bacteriol 38:375–381

    Article  Google Scholar 

  • Swaminathan S (2011) Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 278(23):4467–4485

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nature Struct Biol 7:693–699

    Article  PubMed  CAS  Google Scholar 

  • Swartling C, Naver H, Pihl-Lundin I, Hagforsen E, Vahlquist A (2004) Sweat gland morphology and periglandular innervation in essential palmar hyperhidrosis before and after treatment with intradermal botulinum toxin. J Am Acad Dermatol 51:739–745

    Article  PubMed  Google Scholar 

  • Tabita KS, Sakaguchi S, Kozaki S, Sakaguchi G (1991) Distinction between Clostridium botulinum type A strains associated with foodborne botulism and those with infant botulism in Japan in intraintestinal toxin production in infant mice and some other properties. FEMS Microbiol Lett 79:251–256

    Article  CAS  Google Scholar 

  • Tacket CO, Rogawski MA (1989) Botulism. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic, San Diego, pp 351–378

    Chapter  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  • Tang-Liu DD, Aoki KR, Dolly JO, de Paiva A, Houchen TL, Chasseaud LF, Webber C (2003) Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: time course of tissue distribution. Toxicon 42:461–469

    Article  PubMed  CAS  Google Scholar 

  • Teymoortash A, Sommer F, Mandic R, Schulz S, Bette M, Aumuller G, Werner JA (2007) Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. Br J Pharmacol 152:161–167

    Article  PubMed  CAS  Google Scholar 

  • There H (1999) Le botulisme en Europe. Euro Surveill 4:2–7

    Google Scholar 

  • Troillet N, Praz G (1995) Epidemic of type B botulism: Sion, Dec 1993–Jan 1994. Schweiz Med Wochenschr 125:1805–12

    Google Scholar 

  • Trompetto C, Curra A, Buccolieri A, Suppa A, Abbruzzese G, Berardelli A (2006) Botulinum toxin changes intrafusal feedback in dystonia: a study with the tonic vibration reflex. Mov Disord 21:777–782

    Article  PubMed  Google Scholar 

  • Truong DD, Stenner A, Reichel G (2009) Current clinical applications of botulinum toxin. Curr Pharm Des 15:3671–3680

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Kozai Y, Ihara H, Kohda T, Mukamoto M, Tsuji T, Kozaki S (2008) Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. Microb Pathog 44:484–493

    Article  PubMed  CAS  Google Scholar 

  • Tucker WC, Weber T, Chapman ER (2004) Reconstitution of Ca2 + −regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–438

    Article  PubMed  CAS  Google Scholar 

  • Ugalde I, Christiansen SP, McLoon LK (2005) Botulinum toxin treatment of extraocular muscles in rabbits results in increased myofiber remodeling. Invest Ophthalmol Vis Sci 46:4114–4120

    Article  PubMed  Google Scholar 

  • Umland TC, Wingert LM, Swaminathan S, Furey WF, Schmidt JJ, Sax M (1997) The structure of the receptor binding fragment Hc of tetanus neurotoxin. Nat Struct Biol 4:788–792

    Article  PubMed  CAS  Google Scholar 

  • Ungchusak K, Chunsuttiwat S, Braden C, Aldis W, Ueno K, Olsen S, Wiboolpolprasert S (2007) The need for global planned mobilization of essential medicine: lessons from a massive Thai botulism outbreak. Bull World Health Organ 85:238–240

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan VV, Yoshino K, Jahnz M, Dorries C, Bade S, Nauenburg S, Niemann H, Binz T (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72:327–337

    Article  PubMed  CAS  Google Scholar 

  • Varma JK, Katsitadze G, Moiscrafishvili M, Zardiashvili T, Chikheli M, Tarkashvili N, Jhorjholiani E, Chubinidze M, Kukhalashvili T, Khmaladze I, Chakvetadze N, Imnadze P, Sobel J (2004) Foodborne botulism in the Republic of Georgia. Emerg Infect Dis 10:1601–1605

    Article  PubMed  Google Scholar 

  • Villar RG, Shapiro RL, Busto SB, Riva-Posse C, Vezrdejo G, Farace MI, Rossetti F, San Juan JA, Becher J, Maslanka SE, Swerlow DL (1999) Outbreak of type A botulism and development of a botulism surveillance and antitoxin release system in Argentina. JAMA 281:1334–1340

    Article  PubMed  CAS  Google Scholar 

  • Viscens R, Rasolofonirina N, Coulanges P (1985) Premiers cas humains de botulisme alimentaire à Madagascar. Arch Inst Pasteur Madagascar 52:11–22

    Google Scholar 

  • Vitale N, Caumont AS, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader MF (2001) Phospholipase D1: a key factor for the exocytic machinery in neuroendocrine cells. EMBO J 20:2424–2434

    Article  PubMed  CAS  Google Scholar 

  • Vitale N, Chasserot-Golaz S, Bailly Y, Morinaga N, Frohman MA, Bader MF (2002) Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane. J Cell Biol 159:79–89

    Article  PubMed  CAS  Google Scholar 

  • Walther DJ, Peter JU, Winter S, Holtje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Zhang Z, Dong M, Sun S, Chapman ER, Jackson MB (2011a) Syntaxin requirement for Ca2 + −triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 50:2711–2713

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zurawski TH, Meng J, Lawrence G, Olango WM, Finn DP, Wheeler L, Dolly JO (2011b) A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem 286:6375–6385

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Maegawa T, Karazawa T, Kozaki S, Tsukamoto K, Gyobu Y, Yamakawa K, Oguma K, Sakaguchi Y, Nakamura S (2000) Genetic analysis of Type E botulism toxin-producing Clostridium butyricum strains. Appl Environ Microbiol 66:4992–4997

    Article  PubMed  CAS  Google Scholar 

  • Watts CR, Truong DD, Nye C (2008) Evidence for the effectiveness of botulinum toxin for spasmodic dysphonia from high-quality research designs. J Neural Transm 115:625–630

    Article  PubMed  CAS  Google Scholar 

  • Weber JT, Goodpasture HC, Alexander H, Werner SB, Hatheway CL, Tauxe RV (1993a) Wound botulism in a patient with a tooth abscess: case report and review. Clin Infect Dis 16:635–639

    Article  PubMed  CAS  Google Scholar 

  • Weber JT, Hibbs RG, Darwish A, Mishu B, Corvin AL, Rhaka M, Hatheway CL, Sharkawy SE, El-Rahim SA, Al-Hamd MFS, Sarn JE, Blake PA, Tauxe RV (1993b) A massive outbreak of type E botulism associated with traditional salted fish in Cairo. J Infect Dis 167:451–454

    Article  PubMed  CAS  Google Scholar 

  • Weickert MJ, Chambliss GH, Sugiyama H (1986) Production of toxin by Clostridium botulinum type A strains cured of plasmids. Appl Environ Microbiol 51:52–56

    PubMed  CAS  Google Scholar 

  • Wellhöner HH (1989) Clostridial toxins and the central nervous system: studies on in situ tissues. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic, San Diego, pp 231–253

    Chapter  Google Scholar 

  • Wellhöner HH (1992) Tetanus and botulinum neurotoxins. In: Hucho F, Herken H (eds) Selective neurotoxicity. Springer, Berlin, 102, 357–417

    Google Scholar 

  • Wiegand H, Erdmann G, Wellhoner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection Naunyn Schmiedebergs. Arch Pharmacol 292:161–165

    Article  CAS  Google Scholar 

  • Wilde E, Hippe H, Tosunoglu N, Schallehn G, Herwig K, Gottschalk G (1989) Clostridium tetanomorphum sp. nov., nom. rev. Int J Syst Bacteriol 39:127–134

    Article  Google Scholar 

  • Willems A, East AK, Lawson PA, Collins MD (1993) Sequence of the gene coding for the neurotoxin of Clostridium botulinum type A associated with infant botulism: comparison with other clostridial neurotoxins. Res Microbiol 144:547–556

    Article  PubMed  CAS  Google Scholar 

  • Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271:7694–7699

    Article  PubMed  CAS  Google Scholar 

  • Williamson LC, Neale EA (1998) Syntaxin and 25-kDa synaptosomal-associated protein: differential effects of botulinum neurotoxins C1 and A on neuronal survival. J Neurosci Res 52:569–583

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth K, Muller C, Sassin I, Comes G, Grafe S (2007) Neurophysiological double-blind trial of a botulinum neurotoxin type a free of complexing proteins. Clin Neuropharmacol 30:86–94

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth K, Schubert M, Rothe B, Elek J, Dengler R (2001) Remote F-wave changes after local botulinum toxin application. Clin Neurophysiol 112:636–640

    Article  PubMed  CAS  Google Scholar 

  • Wolters B (2000) Firts case of infant botulism in the Netherlands. Euro Surveill weekly 4(49):1478

    Google Scholar 

  • Woodruff BA, Griffin PM, McCroskey LM, Smart JF, Wainwright RB, Bryant RG, Hutwagner LC, Hatheway CL (1992) Clinical and laboratory comparison of botulism from toxin types A, B, and E in the United States, 1975–1988. J Infect Dis 166:1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Wörner K, Szurmant H, Chiang C, Hoch JA (2006) Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol Microbiol 59:1000–1012

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Baumeister A, Binz T, Blasi J, Link E, Cornille F, Roques B, Fykse EM, Südhof TC, Jahn R, Niemann H (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 269:12764–12772

    PubMed  CAS  Google Scholar 

  • Yeh FL, Dong M, Yao J, Tepp WH, Lin G, Johnson EA, Chapman ER (2011) SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 6:e1001207

    Article  CAS  Google Scholar 

  • Young CA, Ellis C, Johnson J, Sathasivam S, Pih N (2011) Treatment for sialorrhea (excessive saliva) in people with motor neuron disease/amyotrophic lateral sclerosis. Cochrane Database Syst Rev 5:CD006981

    Google Scholar 

  • Yowler BC, Schengrund CL (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43:9725–31

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lin WJ, Li S, Aoki KR (2003) Complete DNA sequences of the botulinum neurotoxin complex of Clostridium botulinum type A-Hall (Allergan) strain. Gene 315:21–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel R. Popoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Popoff, M.R., Mazuet, C., Poulain, B. (2013). Botulism and Tetanus. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_97

Download citation

Publish with us

Policies and ethics