Skip to main content

Syphilis

  • Reference work entry
The Prokaryotes

Abstract

Syphilis is an infection that has intrigued scientists, baffled clinicians, and terrified patients for centuries. Although an inexpensive and highly effective treatment has been available for 60 years, syphilis continues to be a public health problem in both developed and developing parts of the world. The protean clinical manifestations, long periods of asymptomatic infection, and lifelong persistence of syphilis suggest a highly complex relationship between Treponema pallidum and the host’s immune response. The extreme fragility of the causative bacterium and the inability to cultivate it in vitro have impeded progress in identifying and understanding the important virulence factors. The absence of an inbred animal model of syphilis and the consequent lack of immunological reagents complicate progress further. Despite these difficulties, the post-genomic era has yielded a new understanding of the molecular interactions of T. pallidum and the host. In this chapter, we present our current understanding of the mechanisms of syphilis pathogenesis in the context of a discussion of the clinical stages of syphilis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akins DR, Purcell BK, Mitra MM, Norgard MV, Radolf JD (1993) Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect Immun 61:1202–1210

    PubMed  CAS  Google Scholar 

  • Alderete JF, Baseman JB (1980) Surface characterization of virulent Treponema pallidum. Infect Immun 30:814–823

    PubMed  CAS  Google Scholar 

  • Alexander LJ, Schoch AG, Mantooth WB (1949) Abortive treatment of syphilis; results obtained in the incubation, primary, and secondary stages of syphilis. Am J Syph Gonorrhea Vener Dis 33:429–436

    PubMed  CAS  Google Scholar 

  • Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, Medzhitov R, Fikrig E, Flavell RA (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884

    PubMed  CAS  Google Scholar 

  • Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

    Article  PubMed  CAS  Google Scholar 

  • Arroll TW, Centurion-Lara A, Lukehart SA, Van Voorhis WC (1999) T-cell responses to Treponema pallidum subsp. pallidum antigens during the course of experimental syphilis infection. Infect Immun 67:4757–4763

    PubMed  CAS  Google Scholar 

  • Azar HA, Pham TD, Kurban AK (1970) An electron microscopic study of a syphilitic chancre. Engulfment of Treponema pallidum by plasma cells. Arch Pathol 90:143–150

    PubMed  CAS  Google Scholar 

  • Baker-Zander SA, Hook EW 3rd, Bonin P, Handsfield HH, Lukehart SA (1985) Antigens of Treponema pallidum recognized by IgG and IgM antibodies during syphilis in humans. J Infect Dis 151:264–272

    Article  PubMed  CAS  Google Scholar 

  • Baker-Zander SA, Fohn MJ, Lukehart SA (1988) Development of cellular immunity to individual soluble antigens of Treponema pallidum during experimental syphilis. J Immunol 141:4363–4369

    PubMed  CAS  Google Scholar 

  • Baker-Zander SA, Lukehart SA (1992) Macrophage-mediated killing of opsonized Treponema pallidum. J Infect Dis 165:69–74

    Article  PubMed  CAS  Google Scholar 

  • Baker-Zander S, Sell S (1980) A histopathologic and immunologic study of the course of syphilis in the experimentally infected rabbit. Demonstration of long-lasting cellular immunity. Am J Pathol 101:387–414

    PubMed  CAS  Google Scholar 

  • Baker-Zander SA, Shaffer JM, Lukehart SA (1993) VDRL antibodies enhance phagocytosis of Treponema pallidum by macrophages. J Infect Dis 167:1100–1105

    Article  PubMed  CAS  Google Scholar 

  • Barbour AG, Burman N, Carter CJ, Kitten T, Bergstrom S (1991) Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol Microbiol 5:489–493

    Article  PubMed  CAS  Google Scholar 

  • Barnett CW, Blum HL (1948) The effect of treatment in late latent syphilis. Stanford Med Bull 6:428

    PubMed  CAS  Google Scholar 

  • Baughn RE, Jorizzo JL, Adams CB, Musher DM (1988) Ig class and IgG subclass responses to Treponema pallidum in patients with syphilis. J Clin Immunol 8:128–139

    Article  PubMed  CAS  Google Scholar 

  • Bishop NH, Miller JN (1976a) Humoral immunity in experimental syphilis. I. The demonstration of resistance conferred by passive immunization. J Immunol 117:191–196

    PubMed  CAS  Google Scholar 

  • Bishop NH, Miller JN (1976b) Humoral immunity in experimental syphilis. II. The relationship of neutralizing factors in immune serum to acquired resistance. J Immunol 117:197–207

    PubMed  CAS  Google Scholar 

  • Blanco DR, Champion CI, Dooley A, Cox DL, Whitelegge JP, Faull K, Lovett MA (2005) A monoclonal antibody that conveys in vitro killing and partial protection in experimental syphilis binds a phosphorylcholine surface epitope of Treponema pallidum. Infect Immun 73:3083–3095

    Article  PubMed  CAS  Google Scholar 

  • Blum HL, Barnett CW (1948) Prognosis in late syphilis. Arch Intern Med (Chic) 82:393–409

    Article  CAS  Google Scholar 

  • Bos JD, Hamerlinck F, Cormane RH (1980) T lymphoid cells in primary syphilis. Quantitative studies. Br J Vener Dis 56:74–76

    PubMed  CAS  Google Scholar 

  • Bouis DA, Popova TG, Takashima A, Norgard MV (2001) Dendritic cells phagocytose and are activated by Treponema pallidum. Infect Immun 69:518–528

    Article  PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736

    Article  PubMed  CAS  Google Scholar 

  • Brinkman MB, McKevitt M, McLoughlin M, Perez C, Howell J, Weinstock GM, Norris SJ, Palzkill T (2006) Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol 44:888–891

    Article  PubMed  CAS  Google Scholar 

  • Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, Smajs D, Weinstock GM, Norris SJ, Palzkill T (2008) A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 76:1848–1857

    Article  PubMed  CAS  Google Scholar 

  • Buchacz K, Patel P, Taylor M, Kerndt PR, Byers RH, Holmberg SD, Klausner JD (2004) Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections. AIDS 18:2075–2079

    Article  PubMed  Google Scholar 

  • Cameron CE (2003) Identification of a Treponema pallidum laminin-binding protein. Infect Immun 71:2525–2533

    Article  PubMed  CAS  Google Scholar 

  • Cameron CE, Brouwer NL, Tisch LM, Kuroiwa JM (2005) Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect Immun 73:7485–7494

    Article  PubMed  CAS  Google Scholar 

  • Cameron CE, Brown EL, Kuroiwa JM, Schnapp LM, Brouwer NL (2004) Treponema pallidum fibronectin-binding proteins. J Bacteriol 186:7019–7022

    Article  PubMed  CAS  Google Scholar 

  • Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC (2000) Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis 181:1401–1413

    Article  PubMed  CAS  Google Scholar 

  • Carlson JA, Dabiri G, Cribier B, Sell S (2011) The immunopathobiology of syphilis: the manifestations and course of syphilis are determined by the level of delayed-type hypersensitivity. Am J Dermatopathol 33:433–460

    Article  PubMed  Google Scholar 

  • Castro R, Prieto E, Aguas MJ, Manata MJ, Botas J, Santo I, Azevedo J, Pereira FL (2007) Detection of Treponema pallidum sp. pallidum DNA in latent syphilis. Int J STD AIDS 18:842–845

    Article  PubMed  CAS  Google Scholar 

  • Castro R, Prieto E, Aguas MJ, Manata MJ, Botas J, Pereira FM (2009) Molecular subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal. J Clin Microbiol 47:2510–2512

    Article  PubMed  CAS  Google Scholar 

  • CDC (2006) Methamphetamine use and HIV risk behaviors among heterosexual men –Preliminary results from five northern California counties, Dec 2001–Nov 2003. MMWR Weekly Rep 55:273

    Google Scholar 

  • CDC (2010) Sexually transmitted disease surveillance 2009. Atlanta, pp 1–156

    Google Scholar 

  • CDC (2010) Sexually transmitted diseases treatment guidelines, 2010. Morb & Mortal Wkly Rep 59:26–38

    Google Scholar 

  • Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA (1999) Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med 189:647–656

    Article  PubMed  CAS  Google Scholar 

  • Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA (2000) The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun 68:824–831

    Article  PubMed  CAS  Google Scholar 

  • Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52:1579–1596

    Article  PubMed  CAS  Google Scholar 

  • Cha JY, Ishiwata A, Mobashery S (2004) A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem 279:14917–14921

    Article  PubMed  CAS  Google Scholar 

  • Champion CI, Miller JN, Borenstein LA, Lovett MA, Blanco DR (1990a) Immunization with Treponema pallidum endoflagella alters the course of experimental rabbit syphilis. Infect Immun 58:3158–3161

    PubMed  CAS  Google Scholar 

  • Champion CI, Miller JN, Lovett MA, Blanco DR (1990b) Cloning, sequencing, and expression of two class B endoflagellar genes of Treponema pallidum subsp. pallidum encoding the 34.5- and 31.0- kilodalton proteins. Infect Immun 58:1697–1704

    PubMed  CAS  Google Scholar 

  • Chapel TA (1980) The signs and symptoms of secondary syphilis. Sex Transm Dis 7:161–164

    Article  PubMed  CAS  Google Scholar 

  • Chapel TA (1988) Congenital syphilis. Compr Ther 14:25–28

    PubMed  CAS  Google Scholar 

  • Christiansen S (1963) Protective layer covering pathogenic treponematosis. Lancet 1:423–425

    Article  PubMed  CAS  Google Scholar 

  • Chung KY, Kim KS, Lee MG, Chang NS, Lee JB (2002). Treponema pallidum induces upregulation of interstitial collagenase in human dermal fibroblasts. Acta Derm Venereol. 82:174–8

    Article  PubMed  CAS  Google Scholar 

  • Clark EG, Danbolt N (1955) The Oslo study of the natural history of untreated syphilis; an epidemiologic investigation based on a restudy of the Boeck-Bruusgaard material; a review and appraisal. J Chronic Dis 2:311–344

    Article  PubMed  CAS  Google Scholar 

  • Cole MJ, Chisholm SA, Palmer HM, Wallace LA, Ison CA (2009) Molecular epidemiology of syphilis in Scotland. Sex Transm Infect 85:447–451

    Article  PubMed  CAS  Google Scholar 

  • Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD (2010) Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78:5178–5194

    Article  PubMed  CAS  Google Scholar 

  • Cox DL, Riley B, Chang P, Sayahtaheri S, Tassell S, Hevelone J (1990) Effects of molecular oxygen, oxidation-reduction potential, and antioxidants upon in vitro replication of Treponema pallidum subsp. pallidum. Appl Environ Microbiol 56:3063–3072

    PubMed  CAS  Google Scholar 

  • Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC (2010) Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 4:e690

    Article  PubMed  CAS  Google Scholar 

  • Cullen PA, Cameron CE (2006) Progress towards an effective syphilis vaccine: the past, present and future. Expert Rev Vaccines 5:67–80

    Article  PubMed  CAS  Google Scholar 

  • Cunningham TM, Miller JN, Lovett MA (1987) Identification of Treponema pallidum penicillin-binding proteins. J Bacteriol 169:5298–5300

    PubMed  CAS  Google Scholar 

  • de Almeida SM, Bhatt A, Riggs PK, Durelle J, Lazzaretto D, Marquie-Beck J, McCutchan A, Letendre S, Ellis R (2010) Cerebrospinal fluid human immunodeficiency virus viral load in patients with neurosyphilis. J Neurovirol 16:6–12

    Article  PubMed  Google Scholar 

  • Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MA, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD (2011) TP0326, a Treponema pallidum beta-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80:1496–1515

    Article  PubMed  CAS  Google Scholar 

  • Fegan D, Glennon MJ, Thami Y, Pakoa G (2010) Resurgence of yaws in Tanna, Vanuatu: time for a new approach? Trop Doct 40:68–69

    Article  PubMed  Google Scholar 

  • Fenno JC, Muller KH, McBride BC (1996) Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola. J Bacteriol 178:2489–2497

    PubMed  CAS  Google Scholar 

  • Fieldsteel AH, Cox DL, Moeckli RA (1982) Further studies on replication of virulent Treponema pallidum in tissue cultures of Sf1Ep cells. Infect Immun 35:449–455

    PubMed  CAS  Google Scholar 

  • Fitzgerald JG (1911) Ehrlich-Hata remedy for syphilis. Can Med Assoc J 1:38–46

    PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Johnson RC (1979) Surface mucopolysaccharides of Treponema pallidum. Infect Immun 24:244–251

    PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Johnson RC, Miller JN, Sykes JA (1977a) Characterization of the attachment of Treponema pallidum (Nichols strain) to cultured mammalian cells and the potential relationship of attachment to pathogenicity. Infect Immun 18:467–478

    PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Johnson RC, Sykes JA, Miller JN (1977b) Interaction of Treponema pallidum (Nichols strain) with cultured mammalian cells: effects of oxygen, reducing agents, serum supplements, and different cell types. Infect Immun 15:444–452

    PubMed  CAS  Google Scholar 

  • Fiumara NJ (1975) Syphilis in newborn children. Clin Obstet Gynecol 18:183–189

    Article  PubMed  CAS  Google Scholar 

  • Fleming DT, Wasserheit JN (1999) From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 75:3–17

    Article  PubMed  CAS  Google Scholar 

  • Florindo C, Reigado V, Gomes JP, Azevedo J, Santo I, Borrego MJ (2008) Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal. J Clin Microbiol 46:3802–3803

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388

    Article  PubMed  CAS  Google Scholar 

  • Ghanem KG, Erbelding EJ, Wiener ZS, Rompalo AM (2007) Serological response to syphilis treatment in HIV-positive and HIV-negative patients attending sexually transmitted diseases clinics. Sex Transm Infect 83:97–101

    Article  PubMed  CAS  Google Scholar 

  • Ghanem KG, Moore RD, Rompalo AM, Erbelding EJ, Zenilman JM, Gebo KA (2008) Antiretroviral therapy is associated with reduced serologic failure rates for syphilis among HIV-infected patients. Clin Infect Dis 47:258–265

    Article  PubMed  Google Scholar 

  • Ghanem KG, Moore RD, Rompalo AM, Erbelding EJ, Zenilman JM, Gebo KA (2009) Lumbar puncture in HIV-infected patients with syphilis and no neurologic symptoms. Clin Infect Dis 48:816–821

    Article  PubMed  Google Scholar 

  • Giacani L, Sambri V, Marangoni A, Cavrini F, Storni E, Donati M, Corona S, Lanzarini P, Cevenini R (2005) Immunological evaluation and cellular location analysis of the TprI antigen of Treponema pallidum subsp. pallidum. Infect Immun 73:3817–3822

    Article  PubMed  CAS  Google Scholar 

  • Giacani L, Lukehart S, Centurion-Lara A (2007a) Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol 51:289–301

    Article  PubMed  CAS  Google Scholar 

  • Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis WC, Centurion-Lara A, Lukehart SA (2007b) Quantitative analysis of tpr gene expression in Treponema pallidum isolates: differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect Immun 75:104–112

    Article  PubMed  CAS  Google Scholar 

  • Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, Centurion-Lara A, Lukehart SA (2010) Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol 184:3822–3829

    Article  PubMed  CAS  Google Scholar 

  • Gjestland T (1955) The Oslo study of untreated syphilis. Acta Dermatol Venereol 35:11–368

    Google Scholar 

  • Greenblatt RM, Lukehart SA, Plummer FA, Quinn TC, Critchlow CW, Ashley RL, D’Costa LJ, Ndinya-Achola JO, Corey L, Ronald AR et al (1988) Genital ulceration as a risk factor for human immunodeficiency virus infection. AIDS 2:47–50

    Article  PubMed  CAS  Google Scholar 

  • Gruber F, Kastelan M, Cabrijan L, Simonic E, Brajac I (2000) Treatment of early syphilis with azithromycin. J Chemother 12:240–243

    PubMed  CAS  Google Scholar 

  • Hanff PA, Fehniger TE, Miller JN, Lovett MA (1982) Humoral immune response in human syphilis to polypeptides of Treponema pallidum. J Immunol 129:1287–1291

    PubMed  CAS  Google Scholar 

  • Hanff PA, Bishop NH, Miller JN, Lovett MA (1983a) Humoral immune response in experimental syphilis to polypeptides of Treponema pallidum. J Immunol 131:1973–1977

    PubMed  CAS  Google Scholar 

  • Hanff PA, Miller JN, Lovett MA (1983b) Molecular characterization of common treponemal antigens. Infect Immun 40:825–828

    PubMed  CAS  Google Scholar 

  • Hardham JM, Frye JG, Stamm LV (1995) Identification and sequences of the Treponema pallidum fliM’, fliY, fliP, fliQ, fliR and flhB’ genes. Gene 166:57–64

    Article  PubMed  CAS  Google Scholar 

  • Hardham JM, Frye JG, Young NR, Stamm LV (1997) Identification and sequences of the Treponema pallidum flhA, flhF, and orf304 genes. DNA Seq 7:107–116

    PubMed  CAS  Google Scholar 

  • Hayden D (2003) Pox. Basic Books, New York

    Google Scholar 

  • Hayes NS, Muse KE, Collier AM, Baseman JB (1977) Parasitism by virulent Treponema pallidum of host cell surfaces. Infect Immun 17:174–186

    PubMed  CAS  Google Scholar 

  • Hazlett KRO, Sellati TJ, Nguyen TT, Cox DL, Clawson ML, Caimano MJ, Radolf JD (2001) The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J Exp Med 193:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Hazlett KR, Cox DL, Sikkink RA, Auch’ere F, Rusnak F, Radolf JD (2002) Contribution of neelaredoxin to oxygen tolerance by Treponema pallidum. Methods Enzymol 353:140–156

    Article  PubMed  CAS  Google Scholar 

  • Herring AJ, Ballard RC, Pope V, Adegbola RA, Changalucha J, Fitzgerald DW, Hook EW 3rd, Kubanova A, Mananwatte S, Pape JW, Sturm AW, West B, Yin YP, Peeling RW (2006) A multi-centre evaluation of nine rapid, point-of-care syphilis tests using archived sera. Sex Transm Infect 82((Suppl 5)):v7–v12

    Article  PubMed  Google Scholar 

  • Hertz CJ, Kiertscher SM, Godowski PJ, Bouis DA, Norgard MV, Roth MD, Modlin RL (2001) Microbial lipopeptides stimulate dendritic cell maturation via toll-like receptor 2. J Immunol 166:2444–2450

    PubMed  CAS  Google Scholar 

  • Hindersson P, Petersen CS, Axelsen NH (1985) Purified flagella from Treponema phagedenis biotype Reiter does not induce protective immunity against experimental syphilis in rabbits. Sex Transm Dis 12:124–127

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM, Weis JJ (1999) Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 163:2382–2386

    PubMed  CAS  Google Scholar 

  • Holt SC (1978) Anatomy and chemistry of spirochetes. Microbiol Rev 42:114–160

    PubMed  CAS  Google Scholar 

  • Hook EW 3rd, Stephens J, Ennis DM (1999) Azithromycin compared with penicillin G benzathine for treatment of incubating syphilis. Ann Intern Med 131:434–437

    PubMed  CAS  Google Scholar 

  • Hook EW 3rd, Martin DH, Stephens J, Smith BS, Smith K (2002) A randomized, comparative pilot study of azithromycin versus benzathine penicillin G for treatment of early syphilis. Sex Transm Dis 29:486–490

    Article  PubMed  CAS  Google Scholar 

  • Hook EWI, Behets F, Van Damme K, Ravelomanana N, Leone P, Sena AC, Martin DH, Langley C, McNeil L, Wolff M (2010) A phase III equivalence trial of azithromycin versus benzathine penicillin for treatment of early syphilis. J Infect Dis 201:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Horberg MA, Ranatunga DK, Quesenberry CP, Klein DB, Silverberg MJ (2010) Syphilis epidemiology and clinical outcomes in HIV-infected and HIV-uninfected patients in Kaiser Permanente Northern California. Sex Transm Dis 37:53–58

    Article  PubMed  Google Scholar 

  • Hourihan M, Wheeler H, Houghton R, Goh BT (2004) Lessons from the syphilis outbreak in homosexual men in east London. Sex Transm Infect 80:509–511

    Article  PubMed  CAS  Google Scholar 

  • Houston S, Hof R, Francescutti T, Hawkes A, Boulanger MJ, Cameron CE (2011) Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751. Infect Immun 79:1386–1398

    Article  PubMed  CAS  Google Scholar 

  • Hovind-Hougen K (1976) Determination by means of electron microscopy of morphological criteria of value for classification of some spirochetes, in particular Treponemes. Acta Path Microbiol Scan 255:1–41

    Google Scholar 

  • Idsoe O, Guthe T, Willcox RR (1972) Penicillin in the treatment of syphilis. The experience of three decades. Bull World Health Organ 47((Suppl)):1–68

    PubMed  Google Scholar 

  • Isaacs RD, Hanke JH, Guzman-Verduzco LM, Newport G, Agabian N, Norgard MV, Lukehart SA, Radolf JD (1989) Molecular cloning and DNA sequence analysis of the 37-kilodalton endoflagellar sheath protein gene of Treponema pallidum. Infect Immun 57:3403–3411

    PubMed  CAS  Google Scholar 

  • Izard J, Renken C, Hsieh CE, Desrosiers DC, Dunham-Ems S, La Vake C, Gebhardt LL, Limberger RJ, Cox DL, Marko M, Radolf JD (2009) Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 191:7566–7580

    Article  PubMed  CAS  Google Scholar 

  • Jackman JDJ, Radolf JD (1989) Cardiovascular syphilis. Am J Med 87:425–433

    Article  PubMed  Google Scholar 

  • Jepsen OB, Hougen KH, Birch-Andersen A (1968) Electron microscopy of Treponema pallidum Nichols. Acta Pathol Microbiol Scand 74:241–258

    Article  PubMed  CAS  Google Scholar 

  • Johns DR, Tierney M, Felsenstein D (1987) Alteration in the natural history of neurosyphilis by concurrent infection with the human immunodeficiency virus. N Engl J Med 316:1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Juanpere-Rodero N, Martin-Ezquerra G, Fernandez-Casado A, Magan-Perea L, Garcia-Alguacil MA,Barranco-Sanz C, Serrano-Figueras S, Pujol-Vallverdu RM, Lloreta-Trull J (2011) Cell and tissue interactions of Treponema pallidum in primary and secondary syphilitic skin lesions: an ultrastructural study of serial sections. Ultrastruct Pathol. doi:10.3109/01913123.2011.584498

    Google Scholar 

  • Kampmeier R (1964) The late manifestations of syphilis: skeletal, visceral and cardiovascular. Med Clin N Am 48:667–697

    Google Scholar 

  • Katz KA, Pillay A, Ahrens K, Kohn RP, Hermanstyne K, Bernstein KT, Ballard RC, Klausner JD (2010) Molecular epidemiology of syphilis–San Francisco, 2004–2007. Sex Transm Dis 37:660–663

    PubMed  Google Scholar 

  • Kiddugavu MG, Kiwanuka N, Wawer MJ, Serwadda D, Sewankambo NK, Wabwire-Mangen F, Makumbi F, Li X, Reynolds SJ, Quinn TC, Gray RH (2005) Effectiveness of syphilis treatment using azithromycin and/or benzathine penicillin in Rakai, Uganda. Sex Transm Dis 32:1–6

    Article  PubMed  CAS  Google Scholar 

  • Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IA, Nordhoff M, Ehlers B, Harper KN, Fyumagwa R, Hoare R, Failing K, Wehrend A, Kaup FJ, Leendertz FH, Matz-Rensing K (2012) Treponema infection associated with genital ulceration in wild baboons. Vet Pathol 49:292–303

    Article  PubMed  CAS  Google Scholar 

  • Kofoed K, Gerstoft J, Mathiesen LR, Benfield T (2006) Syphilis and human immunodeficiency virus (HIV)-1 coinfection: influence on CD4 T-cell count, HIV-1 viral load, and treatment response. Sex Transm Dis 33:143–148

    Article  PubMed  Google Scholar 

  • LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA (2003) Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol 185:6262–6268

    Article  PubMed  CAS  Google Scholar 

  • LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA (2006) Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun 74:6244–6251

    Article  PubMed  CAS  Google Scholar 

  • Leader BT, Hevner K, Molini BJ, Barrett LK, Van Voorhis WC, Lukehart SA (2003) Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum. Infect Immun 71:6054–6057

    Article  PubMed  CAS  Google Scholar 

  • Leader BT, Godornes C, Van Voorhis WC, Lukehart SA (2007) CD4+ Lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis. Infect Immun 75:3021–3026

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Choi HJ, Lee MG, Lee JB (2000) Virulent Treponema pallidum 47 kDa antigen regulates the expression of cell adhesion molecules and binding of T-lymphocytes to cultured human dermal microvascular endothelial cells. Yonsei Med J 41:623–633

    PubMed  CAS  Google Scholar 

  • Libois A, De Wit S, Poll B, Garcia F, Florence E, Del Rio A, Sanchez P, Negredo E, Vandenbruaene M, Gatell JM, Clumeck N (2007) HIV and syphilis: when to perform a lumbar puncture. Sex Transm Dis 34:141–144

    Article  PubMed  Google Scholar 

  • Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33425

    Article  PubMed  CAS  Google Scholar 

  • Limberger RJ, Slivienski LL, El-Afandi MC, Dantuono LA (1996) Organization, transcription, and expression of the 5’ region of the fla operon of Treponema phagedenis and Treponema pallidum. J Bacteriol 178:4628–4634

    PubMed  CAS  Google Scholar 

  • Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ (2010) Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403:546–561

    Article  PubMed  CAS  Google Scholar 

  • Lukehart SA (1985) Prospects for development of a treponemal vaccine. Rev Infect Dis 7((Suppl 2)):S305–S313

    Article  PubMed  Google Scholar 

  • Lukehart SA, Marra CM (2007) Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol, Chapter 12 Unit 12A 11

    Google Scholar 

  • Lukehart SA, Miller JN (1978) Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol 121:2014–2024

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Baker-Zander SA, Lloyd RM, Sell S (1980a) Characterization of lymphocyte responsiveness in early experimental syphilis.II. Nature of cellular infiltration and Treponema pallidum distribution in testicular lesions. J Immunol 124:461–467

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Baker-Zander SA, Sell S (1980b) Characterization of lymphocyte responsiveness in early experimental syphilis. I. In vitro response to mitogens and Treponema pallidum antigens. J Immunol 124:454–460

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Baker-Zander SA, Gubish ER Jr (1982) Identification of Treponema pallidum antigens: comparison with a nonpathogenic treponeme. J Immunol 129:833–838

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Tam MR, Hom J, Baker-Zander SA, Holmes KK, Nowinski RC (1985) Characterization of monoclonal antibodies to Treponema pallidum. J Immunol 134:585–592

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Baker-Zander SA, Sell S (1986) Characterization of the humoral immune response of the rabbit to antigens of Treponema pallidum after experimental infection and therapy. Sex Transm Dis 13:9–15

    Article  PubMed  CAS  Google Scholar 

  • Lukehart SA, Hook EW, Baker-Zander SA, Collier AC, Critchlow CW, Handsfield HH (1988) Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment. Ann Intern Med 109:855–862

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Fohn MJ, Baker-Zander SA (1990) Efficacy of azithromycin for therapy of active syphilis in the rabbit model. J Antimicrob Chemother 25((Suppl A)):91–99

    Article  PubMed  CAS  Google Scholar 

  • Lukehart SA, Shaffer JM, Baker-Zander SA (1992) A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J Infect Dis 166:1449–1453

    Article  PubMed  CAS  Google Scholar 

  • Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, Engelman J, Mitchell SJ, Rompalo AM, Marra CM, Klausner JD (2004) Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med 351:154–158

    Article  PubMed  CAS  Google Scholar 

  • Mabey D, Peeling RW, Ballard R, Benzaken AS, Galban E, Changalucha J, Everett D, Balira R, Fitzgerald D, Joseph P, Nerette S, Li J, Zheng H (2006) Prospective, multi-centre clinic-based evaluation of four rapid diagnostic tests for syphilis. Sex Transm Infect 82((Suppl 5)):v13–v16

    Article  PubMed  Google Scholar 

  • Magnuson HJ, Thomas EW, Olansky S, Kaplan BI, DeMello L, Cutler JC (1956) Inoculation syphilis in human volunteers. Medicine 35:33–82

    Article  PubMed  CAS  Google Scholar 

  • Mandel R (1996) A half century of peer review. Division of Research Grants, National Institutes of Health, Bethesda, pp 1–341

    Google Scholar 

  • Marra CM, Maxwell CL, Smith SL, Lukehart SA, Rompalo AM, Eaton M, Stoner BP, Augenbraun M, Barker DE, Corbett JJ, Zajackowski M, Raines C, Nerad J, Kee R, Barnett SH (2004a) Cerebrospinal fluid abnormalities in patients with syphilis: association with clinical and laboratory features. J Infect Dis 189:369–376

    Article  PubMed  Google Scholar 

  • Marra CM, Maxwell CL, Tantalo L, Eaton M, Rompalo AM, Raines C, Stoner BP, Corbett JJ, Augenbraun M, Zajackowski M, Kee R, Lukehart SA (2004b) Normalization of cerebrospinal fluid abnormalities after neurosyphilis therapy: does HIV status matter? Clin Infect Dis 38:1001–1006

    Article  PubMed  Google Scholar 

  • Marra CM, Colina AP, Godornes C, Tantalo LC, Puray M, Centurion-Lara A, Lukehart SA (2006) Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum. J Infect Dis 194:1771–1773

    Article  PubMed  CAS  Google Scholar 

  • Marra CM, Maxwell CL, Tantalo LC, Sahi SK, Lukehart SA (2008) Normalization of serum rapid plasma reagin titer predicts normalization of cerebrospinal fluid and clinical abnormalities after treatment of neurosyphilis. Clin Infect Dis 47:893–899

    Article  PubMed  Google Scholar 

  • Marra CM, Sahi SK, Tantalo L, Godornes C, Reid T, Behets F, Rompalo AM, Klausner JD, Yin YP, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA (2010a) Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 202:1380–1388

    Article  PubMed  CAS  Google Scholar 

  • Marra CM, Tantalo LC, Sahi SK, Maxwell CL, Lukehart SA (2010b) CXCL13 as a cerebrospinal fluid marker for neurosyphilis in HIV-infected patients with syphilis. Sex Transm Dis 37:283–287

    PubMed  CAS  Google Scholar 

  • Martin IE, Gu W, Yang Y, Tsang RS (2009) Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin Infect Dis 49:515–521

    Article  PubMed  CAS  Google Scholar 

  • Martin IE, Tsang RS, Sutherland K, Anderson B, Read R, Roy C, Yanow S, Fonseca K, White W, Kandola K, Kouadjo E, Singh AE (2010) Molecular typing of Treponema pallidum strains in western Canada: predominance of 14d subtypes. Sex Transm Dis 37:544–548

    Article  PubMed  CAS  Google Scholar 

  • Mashkilleyson AL, Gomberg MA, Mashkilleyson N, Kutin SA (1996) Treatment of syphilis with azithromycin. Int J STD AIDS 7((Suppl 1)):13–15

    Article  PubMed  Google Scholar 

  • Matejkova P, Flasarova M, Zakoucka H, Borek M, Kremenova S, Arenberger P, Woznicova V, Weinstock GM, Smajs D (2009) Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23 S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol 58:832–836

    Article  PubMed  CAS  Google Scholar 

  • Mathers DA, Leung WK, Fenno JC, Hong Y, McBride BC (1996) The major surface protein complex of Treponema denticola depolarizes and induces ion channels in HeLa cell membranes. Infect Immun 64:2904–2910

    PubMed  CAS  Google Scholar 

  • McBroom RL, Styles AR, Chiu MJ, Clegg C, Cockerell CJ, Radolf JD (1999) Secondary syphilis in persons infected with and not infected with HIV-1: a comparative immunohistologic study. Am J Dermatopathol 21:432–441

    Article  PubMed  CAS  Google Scholar 

  • Medici MA (1972) The immunoprotective niche–a new pathogenic mechanism for syphilis, the systemic mycoses and other infectious diseases. J Theor Biol 36:617–625

    Article  PubMed  CAS  Google Scholar 

  • Merritt HH, Adams AD, Solomon JC (1946) Neurosyphilis. Oxford University Press, New York

    Google Scholar 

  • Metchnikoff EL, Roux EM (1906) Etudes experimentales sur la syphilis. Ann Inst Pasteur 20:785–800

    Google Scholar 

  • Miller JN (1973) Immunity in experimental syphilis. VI. Successful vaccination of rabbits with Treponema pallidum, Nichols strain, attenuated by γ- irradiation. J Immunol 110:1206–1215

    PubMed  CAS  Google Scholar 

  • Miller JN (1975) Value and limitations of nontreponemal and treponemal tests in the laboratory diagnosis of syphilis. Clin Obstet Gynecol 18:191–203

    Article  PubMed  CAS  Google Scholar 

  • Mindel A, Tovey SJ, Timmins DJ, Williams P (1989) Primary and secondary syphilis, 20 years’ experience. 2. Clinical features. Genitourin Med 65:1–3

    PubMed  CAS  Google Scholar 

  • Mitchell SJ, Engelman J, Kent CK, Lukehart SA, Godornes C, Klausner JD (2006) Azithromycin-resistant syphilis infection: San Francisco, California, 2000–2004. Clin Infect Dis 42:337–345

    Article  PubMed  Google Scholar 

  • Molepo J, Pillay A, Weber B, Morse SA, Hoosen AA (2007) Molecular typing of Treponema pallidum strains from patients with neurosyphilis in Pretoria, South Africa. Sex Transm Infect 83:189–192

    Article  PubMed  CAS  Google Scholar 

  • Moore JE, Hopkins HH (1930) Asymptomatic neurosyphilis. VI. the prognosis of early and late asymptomatic neurosyphilis. J Am Med Assoc 95:1637–1641

    Article  Google Scholar 

  • Moore MW, Cruz AR, LaVake CJ, Marzo AL, Eggers CH, Salazar JC, Radolf JD (2007) Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect Immun 75:2046–2062

    Article  PubMed  CAS  Google Scholar 

  • Morgan CA, Lukehart SA, Van Voorhis WC (2002a) Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun 70:6811–6816

    Article  PubMed  CAS  Google Scholar 

  • Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC (2002b) Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol 169:952–957

    PubMed  CAS  Google Scholar 

  • Morshed MG, Jones HD (2006) Treponema pallidum macrolide resistance in BC. CMAJ 174:349

    PubMed  Google Scholar 

  • Musher DM, Schell RF, Jones RH, Jones AM (1975) Lymphocyte transformation in syphilis: an in vitro correlate of immune suppression in vivo? Infect Immun 11:1261–1264

    PubMed  CAS  Google Scholar 

  • Musher DM, Hague-Park M, Gyorkey F, Anderson DC, Baughn RE (1983) The interaction between Treponema pallidum and human polymorphonuclear leukocytes. J Infect Dis 147:77–86

    Article  PubMed  CAS  Google Scholar 

  • Musher DM, Hamill RJ, Baughn RE (1990) Effect of human immunodeficiency virus (HIV) infection on the course of syphilis and on the response to treatment. Ann Intern Med 113:872–881

    PubMed  CAS  Google Scholar 

  • Nelson RA, Mayer MM (1949) Immobilization of Treponema pallidum in vitro by antibody produced in syphilis infection. J Exp Med 89:369–393

    Article  PubMed  Google Scholar 

  • Nichols HJ, Hough WH (1913) Demonstration of Spirochaeta pallida in the cerebrospinal fluid. JAMA 60:108–110

    Article  Google Scholar 

  • Norgard MV, Miller JN (1981) Plasmid DNA in Treponema pallidum (Nichols): potential for antibiotic resistance by syphilis bacteria. Science 213:553–555

    Article  PubMed  CAS  Google Scholar 

  • Norgard MV, Riley BS, Richardson JA, Radolf JD (1995) Dermal inflammation elicited by synthetic analogs of Treponema pallidum and Borrelia burgdorferi lipoproteins. Infect Immun 63:1507–1515

    PubMed  CAS  Google Scholar 

  • Norris SJ, Edmondson DG (1986) Factors affecting the multiplication and subculture of Treponema pallidum subsp. pallidum in a tissue culture system. Infect Immun 53:534–539

    PubMed  CAS  Google Scholar 

  • Norris SJ, Miller JN, Sykes JA, Fitzgerald TJ (1978) Influence of oxygen tension, sulfhydryl compounds, and serum on the motility and virulence of Treponema pallidum (Nichols strain) in a cell- free system. Infect Immun 22:689–697

    PubMed  CAS  Google Scholar 

  • O’Regan AW, Castro C, Lukehart SA, Kasznica JM, Rice PA, Joyce-Brady MF (2002) Barking up the wrong tree? Use of polymerase chain reaction to diagnose syphilitic aortitis. Thorax 57:917–918

    Article  PubMed  Google Scholar 

  • Owusu-Edusei K Jr, Peterman TA, Ballard RC (2011) Serologic testing for syphilis in the United States: a cost-effectiveness analysis of two screening algorithms. Sex Transm Dis 38:1–7

    Article  PubMed  Google Scholar 

  • Palacios R, Jimenez-Onate F, Aguilar M, Galindo MJ, Rivas P, Ocampo A, Berenguer J, Arranz JA, Rios MJ, Knobel H, Moreno F, Ena J, Santos J (2007) Impact of syphilis infection on HIV viral load and CD4 cell counts in HIV-infected patients. J Acquir Immune Defic Syndr 44:356–359

    Article  PubMed  Google Scholar 

  • Park IU, Chow JM, Bolan G, Stanley M, Shieh J, Schapiro JM (2011) Screening for syphilis with the treponemal immunoassay: analysis of discordant serology results and implications for clinical management. J Infect Dis 204:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Parran T (1937) Shadow on the land. Reynal & Hitchcock, New York

    Google Scholar 

  • Peeling RW, Holmes KK, Mabey D, Ronald A (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82((Suppl 5)):v1–v6

    Article  PubMed  Google Scholar 

  • Perine PL, Weiser RS, Klebanoff SJ (1973) Immunity to syphilis. I. Passive transfer in rabbits with hyperimmune serum. Infect Immun 8:787–790

    PubMed  CAS  Google Scholar 

  • Peterson KM, Baseman JB, Alderete JF (1983) Treponema pallidum receptor binding proteins interact with fibronectin. J Exp Med 157:1958–1970

    Article  PubMed  CAS  Google Scholar 

  • Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, Morse SA (1998) Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis 25:408–414

    Article  PubMed  CAS  Google Scholar 

  • Pillay A, Liu H, Ebrahim S, Chen CY, Lai W, Fehler G, Ballard RC, Steiner B, Sturm AW, Morse SA (2002) Molecular typing of Treponema pallidum in South Africa: cross-sectional studies. J Clin Microbiol 40:256–258

    Article  PubMed  CAS  Google Scholar 

  • Poliseli R, Vidal JE, Penalva De Oliveira AC, Hernandez AV (2008) Neurosyphilis in HIV-infected patients: clinical manifestations, serum venereal disease research laboratory titers, and associated factors to symptomatic neurosyphilis. Sex Transm Dis 35:425–429

    Article  PubMed  Google Scholar 

  • Pope V, Fox K, Liu H, Marfin AA, Leone P, Sena AC, Chapin J, Fears MB, Markowitz L (2005) Molecular subtyping of Treponema pallidum from North and South Carolina. J Clin Microbiol 43:3743–3746

    Article  PubMed  CAS  Google Scholar 

  • Radolf JD, Lukehart SA (2006) Immunology of syphilis. In: Radolf JD, Lukehart SA (eds) Pathogenic Treponema: molecular and cellular biology. Caister Academic Press, Norfolk, pp 285–322

    Google Scholar 

  • Radolf JD, Moomaw C, Slaughter CA, Norgard MV (1989a) Penicillin-binding proteins and peptidoglycan of Treponema pallidum subsp. pallidum. Infect Immun 57:1248–1254

    PubMed  CAS  Google Scholar 

  • Radolf JD, Norgard MV, Schulz WW (1989b) Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci USA 86:2051–2055

    Article  PubMed  CAS  Google Scholar 

  • Reverby SM (2000) Tuskegee’s truths: Rethinking the Tuskegee syphilis study. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Reverby SM (2009) Examining Tuskegee: the infamous syphilis study and its legacy. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Riedner G, Rusizoka M, Todd J, Maboko L, Hoelscher M, Mmbando D, Samky E, Lyamuya E, Mabey D, Grosskurth H, Hayes R (2005) Single-dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. N Engl J Med 353:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Riley BS, Oppenheimer-Marks N, Hansen EJ, Radolf JD, Norgard MV (1992) Virulent Treponema pallidum activates human vascular endothelial cells. J Infect Dis 165:484–493

    Article  PubMed  CAS  Google Scholar 

  • Riviere GR, Wagoner MA, Baker-Zander SA, Weisz KS, Adams DF, Simonson L, Lukehart SA (1991) Identification of spirochetes related to Treponema pallidum in necrotizing ulcerative gingivitis and chronic periodontitis. N Engl J Med 325:539–543

    Article  PubMed  CAS  Google Scholar 

  • Rockwell DH, Yobs AR, Moore MB (1964) The Tuskegee study of untreated syphilis: the 30th year of observation. Arch Intern Med 114:792–798

    Article  PubMed  CAS  Google Scholar 

  • Rolfs RT, Joesoef MR, Hendershot EF, Rompalo AM, Augenbraun MH, Chiu M, Bolan G, Johnson SC, French P, Steen E, Radolf JD, Larsen S (1997) A randomized trial of enhanced therapy for early syphilis in patients with and without human immunodeficiency virus infection. The syphilis and HIV study group. N Engl J Med 337:307–314

    Article  PubMed  CAS  Google Scholar 

  • Rompalo AM, Lawlor J, Seaman P, Quinn TC, Zenilman JM, Hook EW 3rd (2001) Modification of syphilitic genital ulcer manifestations by coexistent HIV infection. Sex Transm Dis 28:448–454

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht TA, Kirschning CJ, Popp B, Kastenbauer S, Fingerle V, Pfister HW, Koedel U (2007) Borrelia garinii induces CXCL13 production in human monocytes through Toll-like receptor 2. Infect Immun 75:4351–4356

    Article  PubMed  CAS  Google Scholar 

  • Sadiq ST, McSorley J, Copas AJ, Bennett J, Edwards SJ, Kaye S, Kirk S, French P, Weller IV (2005) The effects of early syphilis on CD4 counts and HIV-1 RNA viral loads in blood and semen. Sex Transm Infect 81:380–385

    Article  PubMed  CAS  Google Scholar 

  • Salazar JC, Pope CD, Moore MW, Pope J, Kiely TG, Radolf JD (2005) Lipoprotein-dependent and -independent immune responses to spirochetal infection. Clin Diagn Lab Immunol 12:949–958

    PubMed  CAS  Google Scholar 

  • Salazar JC, Cruz AR, Pope CD, Valderrama L, Trujillo R, Saravia NG, Radolf JD (2007a) Treponema pallidum elicits innate and adaptive cellular immune responses in skin and blood during secondary syphilis: a flow-cytometric analysis. J Infect Dis 195:879–887

    Article  PubMed  CAS  Google Scholar 

  • Salazar JC, Rathi A, Michael NL, Radolf JD, Jagodzinski LL (2007b) Assessment of the kinetics of Treponema pallidum dissemination into blood and tissues in experimental syphilis by real-time quantitative PCR. Infect Immun 75:2954–2958

    Article  PubMed  CAS  Google Scholar 

  • Santos-Silva T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Moura I, Moura JJ, Romao MJ (2005) Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:967–970

    Article  PubMed  CAS  Google Scholar 

  • Schaudinn F, Hoffman E (1905) Vorläufiger Bericht Ă¼ber das Vorkommen von Spirochaeten in syphilitischen Krankheitsprodukten und bei Papillome. Arb Gesundh Amt Berlin 22:528–534

    Google Scholar 

  • Schmid GP, Stoner BP, Hawkes S, Broutet N (2007) The need and plan for global elimination of congenital syphilis. Sex Transm Dis 34:S5–S10

    Article  PubMed  Google Scholar 

  • Schober PC, Gabriel G, White P, Felton WF, Thin RN (1983) How infectious is syphilis? Br J Vener Dis 59:217–219

    PubMed  CAS  Google Scholar 

  • Schroeter AL, Turner RH, Lucas JB, Brown WJ (1971) Therapy for incubating syphilis. Effectiveness of gonorrhea treatment. JAMA 218:711–713

    Article  PubMed  CAS  Google Scholar 

  • Sell S, Baker-Zander S, Powell HC (1982) Experimental syphilitic orchitis in rabbits: ultrastructural appearance of Treponema pallidum during phagocytosis and dissolution by macrophages in vivo. Lab Invest 46:355–364

    PubMed  CAS  Google Scholar 

  • Sell S, Salman J, Norris SJ (1985) Reinfection of chancre-immune rabbits with Treponema pallidum. I. Light and immunofluorescence studies. Am J Pathol 118:248–255

    PubMed  CAS  Google Scholar 

  • Sellati TJ, Waldrop SL, Salazar JC, Bergstresser PR, Picker LJ, Radolf JD (2001) The cutaneous response in humans to Treponema pallidum lipoprotein analogues involves cellular elements of both innate and adaptive immunity. J Immunol 166:4131–4140

    PubMed  CAS  Google Scholar 

  • Semeniuk I, Reverby S (2010) A shocking discovery. Nature 467:645

    Article  PubMed  CAS  Google Scholar 

  • Shaffer JM, Baker-Zander SA, Lukehart SA (1993) Opsonization of Treponema pallidum is mediated by immunoglobulin G antibodies induced only by pathogenic treponemes. Infect Immun 61:781–784

    PubMed  CAS  Google Scholar 

  • Sheffield JS, Sanchez PJ, Morris G, Maberry M, Zeray F, McIntire DD, Wendel GD Jr (2002) Congenital syphilis after maternal treatment for syphilis during pregnancy. Am J Obstet Gynecol 186:569–573

    Article  PubMed  Google Scholar 

  • Sheffield JS, Wendel GD Jr, McIntire DD, Norgard MV (2007) Effect of genital ulcer disease on HIV-1 coreceptor expression in the female genital tract. J Infect Dis 196:1509–1516

    Article  PubMed  CAS  Google Scholar 

  • Shin JL, Chung KY, Kang JM, Lee TH, Lee MG (2004) The effects of Treponema pallidum on human dendritic cells. Yonsei Med J 45:515–522

    PubMed  Google Scholar 

  • Spindler HH, Scheer S, Chen SY, Klausner JD, Katz MH, Valleroy LA, Schwarcz SK (2007) Viagra, methamphetamine, and HIV risk: results from a probability sample of MSM, San Francisco. Sex Transm Dis 34:586–591

    PubMed  Google Scholar 

  • Stamm LV, Bergen HL (2000a) A point mutation associated with bacterial macrolide resistance is present in both 23 S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother 44:806–807

    Article  PubMed  CAS  Google Scholar 

  • Stamm LV, Bergen HL (2000b) The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and street strain 14 encodes heterogeneous TprK proteins. Infect Immun 68:6482–6486

    Article  PubMed  CAS  Google Scholar 

  • Stamm LV, Parrish EA (1990) In-vitro activity of azithromycin and CP-63,956 against Treponema pallidum. J Antimicrob Chemother 25((Suppl A)):11–14

    Article  PubMed  CAS  Google Scholar 

  • Stamm LV, Stapleton JT, Bassford PJ Jr (1988) In vitro assay to demonstrate high-level erythromycin resistance of a clinical isolate of Treponema pallidum. Antimicrob Agents Chemother 32:164–169

    Article  PubMed  CAS  Google Scholar 

  • Stapleton JT, Stamm LV, Bassford PJ Jr (1985) Potential for development of antibiotic resistance in pathogenic treponemes. Rev Infect Dis 7((Suppl 2)):S314–S317

    Article  PubMed  CAS  Google Scholar 

  • Stary G, Klein I, Bruggen MC, Kohlhofer S, Brunner PM, Spazierer D, Mullauer L, Petzelbauer P, Stingl G (2010) Host defense mechanisms in secondary syphilitic lesions: a role for IFN-gamma-/IL-17-producing CD8+ T cells? Am J Pathol 177:2421–2432

    Article  PubMed  CAS  Google Scholar 

  • Stokes JH, Beerman H, Ingram NR (1944) Modern clinical syphilology. W.B. Saunders, Philadelphia

    Google Scholar 

  • Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect 6:725–737

    Article  PubMed  CAS  Google Scholar 

  • Sutton MY, Liu H, Steiner B, Pillay A, Mickey T, Finelli L, Morse S, Markowitz LE, St Louis ME (2001) Molecular subtyping of Treponema pallidum in an Arizona County with increasing syphilis morbidity: use of specimens from ulcers and blood. J Infect Dis 183:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Sykes JA, Miller JN (1973) Ultrastructural studies of treponemes: location of axial filaments and some dimensions of Treponema pallidum (Nichols strain), Treponema denticola, and Treponema reiteri. Infect Immun 7:100–110

    PubMed  CAS  Google Scholar 

  • Sykes JA, Miller JN, Kalan AJ (1974) Treponema pallidum within cells of a primary chancre from a human female. Br J Vener Dis 50:40–44

    PubMed  CAS  Google Scholar 

  • Tantalo LC, Lukehart SA, Marra CM (2005) Treponema pallidum strain-specific differences in neuroinvasion and clinical phenotype in a rabbit model. J Infect Dis 191:75–80

    Article  PubMed  Google Scholar 

  • Taylor MM, Aynalem G, Smith LV, Montoya J, Kerndt P (2007) Methamphetamine use and sexual risk behaviours among men who have sex with men diagnosed with early syphilis in Los Angeles County. Int J STD AIDS 18:93–97

    Article  PubMed  Google Scholar 

  • Taylor MM, Aynalem G, Olea LM, He P, Smith LV, Kerndt PR (2008) A consequence of the syphilis epidemic among men who have sex with men (MSM): neurosyphilis in Los Angeles, 2001–2004. Sex Transm Dis 35:430–434

    Article  PubMed  Google Scholar 

  • Thomas DD, Baseman JB, Alderete JF (1985) Fibronectin mediates Treponema pallidum cytadherence through recognition of fibronectin cell-binding domain. J Exp Med 161:514–525

    Article  PubMed  CAS  Google Scholar 

  • Thomas DD, Navab M, Haake DA, Fogelman AM, Miller JN, Lovett MA (1988) Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc Natl Acad Sci USA 85:3608–3612

    Article  PubMed  CAS  Google Scholar 

  • Tipple C, Hanna MO, Hill S, Daniel J, Goldmeier D, McClure MO, Taylor GP (2011a) Getting the measure of syphilis: qPCR to better understand early infection. Sex Transm Infect 87:479–485

    Article  PubMed  Google Scholar 

  • Tipple C, McClure MO, Taylor GP (2011b) High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex Transm Infect 87:486–488

    Article  PubMed  Google Scholar 

  • Tosca A, Lehou J, Hatjivasiliou M, Varelzidis A, Stratigos JD (1988) Infiltrate of syphilitic lesions before and after treatment. Genitourin Med 64:289–293

    PubMed  CAS  Google Scholar 

  • Turner TB (1939) Protective antibodies in the serum of syphilitic rabbits. J Exp Med 69:867–890

    Article  PubMed  CAS  Google Scholar 

  • Turner TB, Hollander DH (1957) Biology of the treponematoses. World Health Organization, Geneva

    Google Scholar 

  • Van Damme K, Behets F, Ravelomanana N, Godornes C, Khan M, Randrianasolo B, Rabenja NL, Lukehart S, Cohen M, Hook E (2009) Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. Sex Transm Dis 36:775–776

    Article  PubMed  Google Scholar 

  • Van Voorhis WC, Barrett LK, Koelle DM, Nasio JM, Plummer FA, Lukehart SA (1996a) Primary and secondary syphilis lesions contain mRNA for Th1 cytokines. J Infect Dis 173:491–495

    Article  PubMed  Google Scholar 

  • Van Voorhis WC, Barrett LK, Nasio JM, Plummer FA, Lukehart SA (1996b) Lesions of primary and secondary syphilis contain activated cytolytic T cells. Infect Immun 64:1048–1050

    PubMed  Google Scholar 

  • Vester B, Douthwaite S (2001) Macrolide resistance conferred by base substitutions in 23 S rRNA. Antimicrob Agents Chemother 45:1–12

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Jauregg J, Bruetsch WL (1946) The history of the malaria treatment of general paralysis. Am J Psychiatry 102:577–582

    PubMed  CAS  Google Scholar 

  • Walker EM, Borenstein LA, Blanco DR, Miller JN, Lovett MA (1991) Analysis of outer membrane ultrastructure of pathogenic Treponema and Borrelia species by freeze-fracture electron microscopy. J Bacteriol 173:5585–5588

    PubMed  CAS  Google Scholar 

  • Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA (1989) Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011

    PubMed  CAS  Google Scholar 

  • Wassermann A, Neisser A, Bruck C (1906) Eine serodiagnostische Reaktion bei Syphilis. Deutsche medicinische Wochenschrift 32:745–746, Berlin

    Article  Google Scholar 

  • Weigel LM, Radolf JD, Norgard MV (1994) The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci USA 91:11611–11615

    Article  PubMed  CAS  Google Scholar 

  • Weintrob AC, Gu W, Qin J, Robertson J, Ganeson A, Crum-Cianflone NF, Landrum ML, Wortmann GW, Follman D, Agan BK (2010) Syphilis co-infection does not affect HIV disease progression. Int J STD AIDS 21:57–59

    Article  PubMed  CAS  Google Scholar 

  • Wicher V, Wicher K (1977a) In vitro cell response of Treponema pallidum-infected rabbits. I. Lymphocyte transformation. Clin Exp Immunol 29:480–486

    PubMed  CAS  Google Scholar 

  • Wicher V, Wicher K (1977b) In vitro cell response of Treponema pallidum-infected rabbits. II. Inhibition of lymphocyte response to phytohaemagglutinin by serum of T. pallidum-infected rabbits. Clin Exp Immunol 29:487–495

    PubMed  CAS  Google Scholar 

  • Woznicova V, Matejkova P, Flasarova M, Zakoucka H, Valisova Z, Smajs D, Dastychova E (2010) Clarithromycin treatment failure due to macrolide resistance in Treponema pallidum in a patient with primary syphilis. Acta Derm Venereol 90:206–207

    Article  PubMed  Google Scholar 

  • Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275–285

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Li K, Lu H, Qian Y, Gu X, Gong W, Tucker JD, Cohen MS (2010) Azithromycin treatment failure among primary and secondary syphilis patients in Shanghai. Sex Transm Dis 37:726–729

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Ho M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ho, E.L., Lukehart, S.A. (2013). Syphilis. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_109

Download citation

Publish with us

Policies and ethics