Skip to main content

Rickettsiia Diseases

  • Reference work entry

Abstract

The genus Rickettsia includes lethal pathogens such as R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, and R. prowazekii, the etiologic agent of epidemic typhus. All the members of this genus are obligately intracellular bacteria, and those that are pathogenic to humans preferentially target the vascular endothelium and are transmitted by arthropod vectors. The diseases they cause are systemic and difficult to diagnose because of initial nonspecific signs and symptoms, and the lack of appropriate diagnostic tests. These small bacteria have a gram-negative wall structure and have lost many genes that became unnecessary once they evolved to an intracellular lifestyle. Much remains to be learned about these fascinating intracellular parasites. Factors that have limited their investigation include the required biosafety level 3 to work with most of the pathogenic rickettsiae, the lack of tools for genetic manipulation, and their intracellular nature, which adds a layer of complexity for experimental work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amano K, Fujita M, Suto T (1993) Chemical properties of lipopolysaccharides from spotted fever group rickettsiae and their common antigenicity with lipopolysaccharides from Proteus species. Infect Immun 61:4350–4355

    PubMed  CAS  Google Scholar 

  • Ammerman NC, Rahman MS, Azad AF (2008) Characterization of Sec-translocon-dependent extracytoplasmic proteins of Rickettsia typhi. J Bacteriol 190:6234–6242

    PubMed  CAS  Google Scholar 

  • Anacker RL, Pickens EG, Lackman DB (1967) Details of the ultrastructure of Rickettsia prowazekii grown in the chick yolk sac. J Bacteriol 94:260–262

    PubMed  CAS  Google Scholar 

  • Anacker RL, McDonald GA, List RH, Mann RE (1987) Neutralizing activity of monoclonal antibodies to heat-sensitive and heat-resistant epitopes of Rickettsia rickettsii surface proteins. Infect Immun 55:825–827

    PubMed  CAS  Google Scholar 

  • Andersson JO, Andersson SG (2001) Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol Biol Evol 18:829–839

    PubMed  CAS  Google Scholar 

  • Andersson SG, Sharp PM (1996) Codon usage and base composition in Rickettsia prowazekii. J Mol Evol 42:525–536

    PubMed  CAS  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    PubMed  CAS  Google Scholar 

  • Audia JP, Patton MC, Winkler HH (2008) DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl Environ Microbiol 74:7809–7812

    PubMed  CAS  Google Scholar 

  • Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O, Gimenez G, Socolovschi C, Mège JL, Cambillau C, Raoult D (2011) Effect of rickettsial toxin VapC on its eukaryotic host. PLoS One 6:e26528

    PubMed  CAS  Google Scholar 

  • Azad AF (1988) Relationship of vector biology and epidemiology of louse- and flea-borne rickettsioses. In: Walker DH (ed) Biology of rickettsial diseases. CRC Press, Boca Raton, pp 51–62

    Google Scholar 

  • Azad AF (2007) Pathogenic rickettsiae as bioterrorism agents. Clin Infect Dis 45(Suppl 1):S52–S55

    PubMed  Google Scholar 

  • Azad AF, Traub R (1985) Transmission of murine typhus rickettsiae by Xenopsylla cheopis, with notes on experimental infection and effects of temperature. Am J Trop Med Hyg 34:555–563

    Google Scholar 

  • Balayeva NM, Nikolskaya VN (1973) Analysis of lung culture of Rickettsia prowazedi E strain with regard to its capacity of increasing virulence in passages on the lungs of white mice. J Hyg Epidemiol Microbiol Immunol 17:294–303

    PubMed  CAS  Google Scholar 

  • Baldridge GD, Burkhardt N, Herron MJ, Kurtti TJ, Munderloh UG (2005) Analysis of fluorescent protein expression in transformants of Rickettsia monacensis, an obligate intracellular tick symbiont. Appl Environ Microbiol 71:2095–2105

    PubMed  CAS  Google Scholar 

  • Baldridge GD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG (2008) Plasmids of the pRM/pRF family occur in diverse Rickettsia species. Appl Environ Microbiol 74:645–652

    PubMed  CAS  Google Scholar 

  • Baldridge GD, Burkhardt NY, Labruna MB, Pacheco RC, Paddock CD, Williamson PC, Billingsley PM, Felsheim RF, Kurtti TJ, Munderloh UG (2010) Wide dispersal and possible multiple origins of low-copy-number plasmids in rickettsia species associated with blood-feeding arthropods. Appl Environ Microbiol 76:1718–1731

    PubMed  CAS  Google Scholar 

  • Bechah Y, Capo C, Grau GE, Raoult D, Mege JL (2007) A murine model of infection with Rickettsia prowazekii: implications for pathogenesis of epidemic typhus. Microbes Infect 9:898–906

    PubMed  CAS  Google Scholar 

  • Bechah Y, Capo C, Mege JL, Raoult D (2008) Epidemic typhus. Lancet Infect Dis 8:417–426

    PubMed  Google Scholar 

  • Bechah Y, Capo C, Grau G, Raoult D, Mege JL (2009) Rickettsia prowazekii infection of endothelial cells increases leukocyte adhesion through alphavbeta3 integrin engagement. Clin Microbiol Infect 15(Suppl 2):249–250

    PubMed  CAS  Google Scholar 

  • Bechah Y, Paddock CD, Capo C, Mege JL, Raoult D (2010a) Adipose tissue serves as a reservoir for recrudescent Rickettsia prowazekii infection in a mouse model. PLoS One 5:e8547

    PubMed  Google Scholar 

  • Bechah Y, El Karkouri K, Mediannikov O, Leroy Q, Pelletier N, Robert C, Médigue C, Mege JL, Raoult D (2010b) Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res 20:655–663

    PubMed  CAS  Google Scholar 

  • Bechelli JR, Rydkina E, Colonne PM, Sahni SK (2009) Rickettsia rickettsii infection protects human microvascular endothelial cells against staurosporine-induced apoptosis by a cIAP(2)-independent mechanism. J Infect Dis 199:1389–1398

    PubMed  CAS  Google Scholar 

  • Billings AN, Feng HM, Olano JP, Walker DH (2001) Rickettsial infection in murine models activates an early anti-rickettsial effect mediated by NK cells and associated with production of gamma interferon. Am J Trop Med Hyg 65:52–56

    PubMed  CAS  Google Scholar 

  • Blair PJ, Schoeler GB, Moron C, Anaya E, Caceda R, Cespedes M, Cruz C, Felices V, Guevara C, Huaman A, Luckett R, Mendoza L, Richards AL, Rios Z, Sumner JW, Villaseca P, Olson JG (2004) Evidence of rickettsial and leptospira infections in Andean northern Peru. Am J Trop Med Hyg 70:357–363

    PubMed  Google Scholar 

  • Blanc G, Ogata H, Robert C, Audic S, Claverie JM, Raoult D (2007a) Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 17:1657–1664

    PubMed  CAS  Google Scholar 

  • Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D (2007b) Reductive genome evolution from the mother of Rickettsia. PLoS Genet 3:e14

    PubMed  Google Scholar 

  • Botelho-Nevers E, Rovery C, Richet H, Raoult D (2011) Analysis of risk factors for malignant Mediterranean spotted fever indicates that fluoroquinolone treatment has a deleterious effect. J Antimicrob Chemother 66:1821–1830

    PubMed  CAS  Google Scholar 

  • Bovarnick MR, Miller JC, Snyder JC (1950) The influence of certain salts, amino acids, sugars, and proteins on the stability of rickettsiae. J Bacteriol 59:509–522

    PubMed  CAS  Google Scholar 

  • Bozeman FM, Masiello SA, Williams MS, Elisberg BL (1975) Epidemic typhus rickettsiae isolated from flying squirrels. Nature 255:545–547

    PubMed  CAS  Google Scholar 

  • Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129(Suppl):S161–S176

    PubMed  CAS  Google Scholar 

  • Burgdorfer W, Brinton LP (1975) Mechanisms of transovarial infection of spotted fever Rickettsiae in ticks. Ann N Y Acad Sci 266:61–72

    PubMed  CAS  Google Scholar 

  • Burgdorfer W, Anacker RL, Bird RG, Bertram DS (1968) Intranuclear growth of Rickettsia rickettsii. J Bacteriol 96:1415–1418

    PubMed  CAS  Google Scholar 

  • Cardwell MM, Martinez JJ (2009) The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect Immun 77:5272–5280

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2004) Fatal cases of Rocky Mountain spotted fever in family clusters–three states, 2003. MMWR Morb Mortal Wkly Rep 53:407–410

    Google Scholar 

  • Chan YG, Cardwell MM, Hermanas TM, Uchiyama T, Martinez JJ (2009) Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol 11:629–644

    PubMed  CAS  Google Scholar 

  • Chan YG, Riley SP, Chen E, Martinez JJ (2011) Molecular basis of immunity to Rickettsial infection conferred through outer membrane protein B. Infect Immun 79:2303–2313

    PubMed  CAS  Google Scholar 

  • Chapman AS, Bakken JS, Folk SM, Paddock CD, Bloch KC, Krusell A, Sexton DJ, Buckingham SC, Marshall GS, Storch GA, Dasch GA, McQuiston JH, Swerdlow DL, Dumler SJ, Nicholson WL, Walker DH, Eremeeva ME, Ohl CA, Tickborne Rickettsial Diseases Working Group, CDC (2006) Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever, ehrlichioses, and anaplasmosis--United States: a practical guide for physicians and other health-care and public health professionals. MMWR Recomm Rep 55:1–27

    Google Scholar 

  • Chen LF, Sexton DJ (2008) What's new in Rocky Mountain spotted fever? Infect Dis Clin North Am 22:415–432, vii-viii

    PubMed  Google Scholar 

  • Churilla A, Ching WM, Dasch GA, Carl M (1990) Human T lymphocyte recognition of cyanogen bromide fragments of the surface protein of Rickettsia typhi. Ann N Y Acad Sci 590:215–220

    PubMed  CAS  Google Scholar 

  • Civen R, Ngo V (2008) Murine typhus: an unrecognized suburban vectorborne disease. Clin Infect Dis 46:913–918

    PubMed  Google Scholar 

  • Clarke DH, Fox JP (1948) The phenomenon of in vitro hemolysis produced by the rickettsiae of typhus fever, with a note on the mechanism of rickettsial toxicity in mice. J Exp Med 88:25–41

    PubMed  CAS  Google Scholar 

  • Clements ML, Wisseman CL, Woodward TE, Fiset P, Dumler JS, McNamee W, Black RE, Rooney J, Hughes TP, Levine MM (1983) Reactogenicity, immunogenicity, and efficacy of a chick embryo cell-derived vaccine for Rocky Mountain spotted fever. J Infect Dis 148:922–930

    PubMed  CAS  Google Scholar 

  • Cox HR (1938) Use of yolk sac of developing chick embryo as medium for growing rickettsiae of Rocky Mountain spotted fever and typhus groups. Public Health Rep 53:2241–2247

    Google Scholar 

  • Cox HR (1941) Cultivation of Rickettsiae of the Rocky Mountain spotted fever, Typhus and Q fever groups in the embryonic tissues of developing chicks. Science 94:399–403

    PubMed  CAS  Google Scholar 

  • Crocquet-Valdes PA, Díaz-Montero CM, Feng HM, Li H, Barrett AD, Walker DH (2001) Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine 20:979–988

    PubMed  CAS  Google Scholar 

  • da Rocha-Lima H (1968) On the etiology of typhus fever. In: Selected papers on the pathogenic rickettsiae. Harvard University Press, Cambridge, pp 74–78

    Google Scholar 

  • Damås JK, Davì G, Jensenius M, Santilli F, Otterdal K, Ueland T, Flo TH, Lien E, Espevik T, Frøland SS, Vitale G, Raoult D, Aukrust P (2009) Relative chemokine and adhesion molecule expression in Mediterranean spotted fever and African tick bite fever. J Infect 58:68–75

    PubMed  Google Scholar 

  • Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022

    PubMed  CAS  Google Scholar 

  • Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG (2007) Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 23:511–520

    PubMed  CAS  Google Scholar 

  • de Lemos ER, Alvarenga FB, Cintra ML, Ramos MC, Paddock CD, Ferebee TL, Zaki SR, Ferreira FC, Ravagnani RC, Machado RD, Guimarães MA, Coura JR (2001) Spotted fever in Brazil: a seroepidemiological study and description of clinical cases in an endemic area in the state of São Paulo. Am J Trop Med Hyg 65:329–334

    PubMed  Google Scholar 

  • Demeester R, Claus M, Hildebrand M, Vlieghe E, Bottieau E (2010) Diversity of life-threatening complications due to Mediterranean spotted fever in returning travelers. J Travel Med 17:100–104

    PubMed  Google Scholar 

  • Demma LJ, Traeger MS, Nicholson WL, Paddock CD, Blau DM, Eremeeva ME, Dasch GA, Levin ML, Singleton J, Zaki SR, Cheek JE, Swerdlow DL, McQuiston JH (2005) Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 353:587–594

    PubMed  CAS  Google Scholar 

  • Devamanoharan PS, Santucci LA, Hong JE, Tian X, Silverman DJ (1994) Infection of human endothelial cells by Rickettsia rickettsii causes a significant reduction in the levels of key enzymes involved in protection against oxidative injury. Infect Immun 62:2619–2621

    PubMed  CAS  Google Scholar 

  • Dignat-George F, Teysseire N, Mutin M, Bardin N, Lesaule G, Raoult D, Sampol J (1997) Rickettsia conorii infection enhances vascular cell adhesion molecule-1- and intercellular adhesion molecule-1-dependent mononuclear cell adherence to endothelial cells. J Infect Dis 175:1142–1152

    PubMed  CAS  Google Scholar 

  • Dreher-Lesnick SM, Ceraul SM, Rahman MS, Azad AF (2008) Genome-wide screen for temperature-regulated genes of the obligate intracellular bacterium, Rickettsia typhi. BMC Microbiol 8:61

    PubMed  Google Scholar 

  • Driskell LO, Yu XJ, Zhang L, Liu Y, Popov VL, Walker DH, Tucker AM, Wood DO (2009) Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect Immun 77:3244–3248

    PubMed  CAS  Google Scholar 

  • Duan C, Meng Y, Wang X, Xiong X, Wen B (2011) Exploratory study on pathogenesis of far-eastern spotted Fever. Am J Trop Med Hyg 85:504–509

    PubMed  CAS  Google Scholar 

  • Duma RJ, Sonenshine DE, Bozeman FM, Veazey JM, Elisberg BL, Chadwick DP, Stocks NI, McGill TM, Miller GB, MacCormack JN (1981) Epidemic typhus in the United States associated with flying squirrels. JAMA 245:2318–2323

    PubMed  CAS  Google Scholar 

  • Dumler JS, Walker DH (2005) Rocky Mountain spotted fever–changing ecology and persisting virulence. N Engl J Med 353:551–553

    PubMed  CAS  Google Scholar 

  • DuPont HL, Hornick RB, Dawkins AT, Heiner GG, Fabrikant IB, Wisseman CL, Woodward TE (1973) Rocky Mountain spotted fever: a comparative study of the active immunity induced by inactivated and viable pathogenic Rickettsia rickettsii. J Infect Dis 128:340–344

    PubMed  CAS  Google Scholar 

  • Eisemann CS, Nypaver MJ, Osterman JV (1984) Susceptibility of inbred mice to rickettsiae of the spotted fever group. Infect Immun 43:143–148

    PubMed  CAS  Google Scholar 

  • Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Porcella SF, Hackstadt T (2008) Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 76:542–550

    PubMed  CAS  Google Scholar 

  • Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Hackstadt T (2009) Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One 4:e5612

    PubMed  Google Scholar 

  • Eremeeva ME, Silverman DJ (1998) Effects of the antioxidant alpha-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infect Immun 66:2290–2299

    PubMed  CAS  Google Scholar 

  • Farhang-Azad A, Traub R, Baqar S (1985) Transovarial transmission of Murine Typhus Rickettsiae in Xenopsylla cheopis Fleas. Science 227:543–545

    PubMed  CAS  Google Scholar 

  • Felsheim RF, Kurtti TJ, Munderloh UG (2009) Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS One 4:e8361

    PubMed  Google Scholar 

  • Feng HM, Walker DH (2000) Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect Immun 68:6729–6736

    PubMed  CAS  Google Scholar 

  • Feng HM, Walker DH (2003) Cross-protection between distantly related spotted fever group rickettsiae. Vaccine 21:3901–3905

    PubMed  Google Scholar 

  • Feng WC, Waner JL (1980) Serological cross-reaction and cross-protection in guinea pigs infected with Rickettsia rickettsii and Rickettsia montana. Infect Immun 28:627–629

    PubMed  CAS  Google Scholar 

  • Feng HM, Popov VL, Walker DH (1994) Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect Immun 62:1952–1960

    PubMed  CAS  Google Scholar 

  • Feng H, Popov VL, Yuoh G, Walker DH (1997) Role of T lymphocyte subsets in immunity to spotted fever group Rickettsiae. J Immunol 158:5314–5320

    PubMed  CAS  Google Scholar 

  • Feng HM, Whitworth T, Popov V, Walker DH (2004) Effect of antibody on the rickettsia-host cell interaction. Infect Immun 72:3524–3530

    PubMed  CAS  Google Scholar 

  • Fournier PE, El Karkouri K, Leroy Q, Robert C, Giumelli B, Renesto P, Socolovschi C, Parola P, Audic S, Raoult D (2009) Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10:166

    PubMed  Google Scholar 

  • Fox JP, Everritt MG, Robinson TA, Conwell DP (1954) Immunization of man against epidemic typhus by infection with avirulent Rickettsia prowazeki (strain E); observations as to post-vaccination reactions, the relation of serologic response to size and route of infecting dose, and the resistance to challenge with virulent typhus strains. Am J Hyg 59:74

    PubMed  CAS  Google Scholar 

  • Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM (2009) The role of saliva in tick feeding. Front Biosci 14:2051–2088

    PubMed  CAS  Google Scholar 

  • Fuller HS, Murray ES, Snyder JC (1949) Studies of human body lice, Pediculus humanus corporis. I. A method for feeding lice through a membrane and experimental infection with Rickettsia prowazekii, R. mooseri, and Borrelia novyi. Public Health Rep 64:1287–1292

    PubMed  CAS  Google Scholar 

  • Fuxelius HH, Darby A, Min CK, Cho NH, Andersson SG (2007) The genomic and metabolic diversity of Rickettsia. Res Microbiol 158:745–753

    PubMed  CAS  Google Scholar 

  • Gage KL, Jerrells TR (1992) Demonstration and partial characterization of antigens of Rickettsia rhipicephali that induce cross-reactive cellular and humoral immune responses to Rickettsia rickettsii. Infect Immun 60:5099–5106

    PubMed  CAS  Google Scholar 

  • García-García JC, Portillo A, Núñez MJ, Santibáñez S, Castro B, Oteo JA (2010) A patient from Argentina infected with Rickettsia massiliae. Am J Trop Med Hyg 82:691–692

    PubMed  Google Scholar 

  • George F, Brouqui P, Boffa MC, Mutin M, Drancourt M, Brisson C, Raoult D, Sampol J (1993) Demonstration of Rickettsia conorii-induced endothelial injury in vivo by measuring circulating endothelial cells, thrombomodulin, and von Willebrand factor in patients with Mediterranean spotted fever. Blood 82:2109–2116

    PubMed  CAS  Google Scholar 

  • Georgiades K, Merhej V, El Karkouri K, Raoult D, Pontarotti P (2011) Gene gain and loss events in Rickettsia and Orientia species. Biol Direct 6:6

    PubMed  Google Scholar 

  • Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, Sobral BS, Azad AF (2007) Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2:e266

    PubMed  Google Scholar 

  • Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS (2008) Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3:e2018

    PubMed  Google Scholar 

  • Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, Setubal JC, Sobral BS, Azad AF (2009a) An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One 4:e4833

    PubMed  Google Scholar 

  • Gillespie JJ, Ammerman NC, Beier-Sexton M, Sobral BS, Azad AF (2009b) Louse-and flea-borne rickettsioses: biological and genomic analyses. Vet Res 40(2):12

    PubMed  Google Scholar 

  • Gillespie JJ, Brayton KA, Williams KP, Diaz MA, Brown WC, Azad AF, Sobral BW (2010) Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun 78:1809–1823

    PubMed  CAS  Google Scholar 

  • Gimenez DF (1964) Staining rickettsiae in yolk-sac cultures. Stain Technol 39:135–140

    PubMed  CAS  Google Scholar 

  • Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, Li R, Cossart P (2004) The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457–461

    PubMed  CAS  Google Scholar 

  • Gross L (1996) How Charles Nicolle of the Pasteur Institute discovered that epidemic typhus is transmitted by lice: reminiscences from my years at the Pasteur Institute in Paris. Proc Natl Acad Sci USA 93:10539–10540

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Messer R, Cieplak W, Peacock MG (1992) Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing. Infect Immun 60:159–165

    PubMed  CAS  Google Scholar 

  • Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD (2010) Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 12:1057–1063

    PubMed  CAS  Google Scholar 

  • Hayes SF, Burgdorfer W (1982) Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis. Infect Immun 37:779–785

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Hayes SF, Peacock MG, Hackstadt T (1993) Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect Immun 61:1926–1935

    PubMed  CAS  Google Scholar 

  • Hidalgo M, Sánchez R, Orejuela L, Hernández J, Walker DH, Valbuena G (2007) Prevalence of antibodies against spotted fever group rickettsiae in a rural area of Colombia. Am J Trop Med Hyg 77:378–380

    PubMed  CAS  Google Scholar 

  • Holman RC, Paddock CD, Curns AT, Krebs JW, McQuiston JH, Childs JE (2001) Analysis of risk factors for fatal Rocky Mountain Spotted Fever: evidence for superiority of tetracyclines for therapy. J Infect Dis 184:1437–1444

    PubMed  CAS  Google Scholar 

  • Hong JE, Santucci LA, Tian X, Silverman DJ (1998) Superoxide dismutase-dependent, catalase-sensitive peroxides in human endothelial cells infected by Rickettsia rickettsii. Infect Immun 66:1293–1298

    PubMed  CAS  Google Scholar 

  • Housley NA, Winkler HH, Audia JP (2011) The Rickettsia prowazekii ExoU homologue possesses phospholipase A1 (PLA1), PLA2, and lyso-PLA2 activities and can function in the absence of any eukaryotic co-factors in vitro. J Bacteriol 193(18):4634–4642

    PubMed  CAS  Google Scholar 

  • Huebner RJ, Jellison WL, Pomerantz C (1946) Rickettsialpox, a newly recognized rickettsial disease; isolation of a Rickettsia apparently identical with the causative agent of rickettsialpox from Allodermanyssus sanguineus, a rodent mite. Public Health Rep 61:1677–1682

    PubMed  CAS  Google Scholar 

  • Jeng RL, Goley ED, D'Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA, Welch MD (2004) A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 6:761–769

    PubMed  CAS  Google Scholar 

  • Jerrells TR, Jarboe DL, Eisemann CS (1986) Cross-reactive lymphocyte responses and protective immunity against other spotted fever group rickettsiae in mice immunized with Rickettsia conorii. Infect Immun 51:832–837

    PubMed  CAS  Google Scholar 

  • Jordan JM, Woods ME, Soong L, Walker DH (2009) Rickettsiae stimulate dendritic cells through toll-like receptor 4, leading to enhanced NK cell activation in vivo. J Infect Dis 199:236–242

    PubMed  CAS  Google Scholar 

  • Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC, Durand JM, Soubeyrand J, Dinarello CA, Bongrand P (1995) IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J Clin Invest 96:2839–2844

    PubMed  CAS  Google Scholar 

  • King WW (1906) Experimental transmission of Rocky Mountain spotted fever by means of the tick. Public Health Rep 72:863–864

    Google Scholar 

  • Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, Ito A (2007) A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189:844–850

    PubMed  CAS  Google Scholar 

  • Kleba B, Clark TR, Lutter EI, Ellison DW, Hackstadt T (2010) Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun 78:2240–2247

    PubMed  CAS  Google Scholar 

  • Kordová N (1966) Plaque assay of rickettsiae. Acta Virol 10:278

    PubMed  Google Scholar 

  • La Scola B, Raoult D (1996) Diagnosis of Mediterranean spotted fever by cultivation of Rickettsia conorii from blood and skin samples using the centrifugation-shell vial technique and by detection of R. conorii in circulating endothelial cells: a 6-year follow-up. J Clin Microbiol 34:2722–2727

    PubMed  Google Scholar 

  • La MV, François P, Rovery C, Robineau S, Barbry P, Schrenzel J, Raoult D, Renesto P (2007) Development of a method for recovering rickettsial RNA from infected cells to analyze gene expression profiling of obligate intracellular bacteria. J Microbiol Methods 71:292–297

    PubMed  CAS  Google Scholar 

  • Labruna MB (2009) Ecology of rickettsia in South America. Ann N Y Acad Sci 1166:156–166

    PubMed  Google Scholar 

  • Lee N, Ip M, Wong B, Lui G, Tsang OT, Lai JY, Choi KW, Lam R, Ng TK, Ho J, Chan YY, Cockram CS, Lai ST (2008) Risk factors associated with life-threatening rickettsial infections. Am J Trop Med Hyg 78:973–978

    PubMed  Google Scholar 

  • Lee CS, Hwang JH, Lee HB, Kwon KS (2009) Risk factors leading to fatal outcome in scrub typhus patients. Am J Trop Med Hyg 81:484–488

    PubMed  Google Scholar 

  • Li H, Walker DH (1998) rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog 24:289–298

    PubMed  CAS  Google Scholar 

  • Li Z, Díaz-Montero CM, Valbuena G, Yu XJ, Olano JP, Feng HM, Walker DH (2003) Identification of CD8 T-lymphocyte epitopes in OmpB of Rickettsia conorii. Infect Immun 71:3920–3926

    PubMed  CAS  Google Scholar 

  • Liu ZM, Tucker AM, Driskell LO, Wood DO (2007) Mariner-based transposon mutagenesis of Rickettsia prowazekii. Appl Environ Microbiol 73:6644–6649

    PubMed  CAS  Google Scholar 

  • Mansueto P, Vitale G, Di Lorenzo G, Arcoleo F, Mansueto S, Cillari E (2008) Immunology of human rickettsial diseases. J Biol Regul Homeost Agents 22:131–139

    PubMed  CAS  Google Scholar 

  • Marrero M, Raoult D (1989) Centrifugation-shell vial technique for rapid detection of Mediterranean spotted fever rickettsia in blood culture. Am J Trop Med Hyg 40:197–199

    PubMed  CAS  Google Scholar 

  • Martinez JJ, Cossart P (2004) Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J Cell Sci 117:5097–5106

    PubMed  CAS  Google Scholar 

  • Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P (2005) Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123:1013–1023

    PubMed  CAS  Google Scholar 

  • Mason RA, Wenzel RP, Seligmann EB, Ginn RK (1976) A reference, inactivated, epidemic typhus vaccine: clinical trials in man. J Biol Stand 4:217–224

    PubMed  CAS  Google Scholar 

  • Masters EJ, Olson GS, Weiner SJ, Paddock CD (2003) Rocky Mountain spotted fever: a clinician’s dilemma. Arch Intern Med 163:769–774

    PubMed  Google Scholar 

  • Maxwell SS, Stoklasek TA, Dash Y, Macaluso KR, Wikel SK (2005) Tick modulation of the in-vitro expression of adhesion molecules by skin-derived endothelial cells. Ann Trop Med Parasitol 99:661–672

    PubMed  CAS  Google Scholar 

  • McDade JE, Stakebake JR, Gerone PJ (1969) Plaque assay system for several species of Rickettsia. J Bacteriol 99:910–912

    PubMed  CAS  Google Scholar 

  • McDade JE, Shepard CC, Redus MA, Newhouse VF, Smith JD (1980) Evidence of Rickettsia prowazekii infections in the United States. Am J Trop Med Hyg 29:277–284

    PubMed  CAS  Google Scholar 

  • McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, McNeill TZ, Jiang H, Muzny D, Jacob LS, Hawes AC, Sodergren E, Gill R, Hume J, Morgan M, Fan G, Amin AG, Gibbs RA, Hong C, Yu XJ, Walker DH, Weinstock GM (2004) Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186:5842–5855

    PubMed  CAS  Google Scholar 

  • Medina-Sanchez A, Bouyer DH, Alcantara-Rodriguez V, Mafra C, Zavala-Castro J, Whitworth T, Popov VL, Fernandez-Salas I, Walker DH (2005) Detection of a typhus group Rickettsia in Amblyomma ticks in the state of Nuevo Leon, Mexico. Ann N Y Acad Sci 1063:327–332

    PubMed  Google Scholar 

  • Merhej V, Raoult D (2011) Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 86:379–405

    PubMed  Google Scholar 

  • Merhej V, Notredame C, Royer-Carenzi M, Pontarotti P, Raoult D (2011) The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. Mol Biol Evol 28:3213–3223

    PubMed  CAS  Google Scholar 

  • Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443

    PubMed  CAS  Google Scholar 

  • Niebylski ML, Peacock MG, Schwan TG (1999) Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl Environ Microbiol 65:773–778

    PubMed  CAS  Google Scholar 

  • Nikolskaya VN, Balayeva NM (1973) Homogeneity of Rickettsia prowazeki E strain egg culture as to the capacity to increase virulence in passages on white mouse lungs. J Hyg Epidemiol Microbiol Immunol 17:505–506

    PubMed  CAS  Google Scholar 

  • Ogata H, Audic S, Renesto-Audiffren P, Fournier PE, Barbe V, Samson D, Roux V, Cossart P, Weissenbach J, Claverie JM, Raoult D (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:2093–2098

    PubMed  CAS  Google Scholar 

  • Ogata H, Renesto P, Audic S, Robert C, Blanc G, Fournier PE, Parinello H, Claverie JM, Raoult D (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3:e248

    PubMed  Google Scholar 

  • Ogata H, La Scola B, Audic S, Renesto P, Blanc G, Robert C, Fournier PE, Claverie JM, Raoult D (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2:e76

    PubMed  Google Scholar 

  • Openshaw JJ, Swerdlow DL, Krebs JW, Holman RC, Mandel E, Harvey A, Haberling D, Massung RF, McQuiston JH (2010) Rocky mountain spotted fever in the United States, 2000–2007: interpreting contemporary increases in incidence. Am J Trop Med Hyg 83:174–182

    PubMed  Google Scholar 

  • Ormsbee RA (1969) Rickettsiae (as organisms). Annu Rev Microbiol 23:275–292

    PubMed  CAS  Google Scholar 

  • Ormsbee R, Peacock M, Philip R, Casper E, Plorde J, Gabre-Kidan T, Wright L (1978) Antigenic relationships between the typhus and spotted fever groups of rickettsiae. Am J Epidemiol 108:53–59

    PubMed  CAS  Google Scholar 

  • Paddock CD (2005) Rickettsia parkeri as a paradigm for multiple causes of tick-borne spotted fever in the western hemisphere. Ann N Y Acad Sci 1063:315–326

    PubMed  Google Scholar 

  • Paddock CD, Greer PW, Ferebee TL, Singleton J, McKechnie DB, Treadwell TA, Krebs JW, Clarke MJ, Holman RC, Olson JG, Childs JE, Zaki SR (1999) Hidden mortality attributable to Rocky Mountain spotted fever: immunohistochemical detection of fatal, serologically unconfirmed disease. J Infect Dis 179:1469–1476

    PubMed  CAS  Google Scholar 

  • Paddock CD, Holman RC, Krebs JW, Childs JE (2002) Assessing the magnitude of fatal Rocky Mountain spotted fever in the United States: comparison of two national data sources. Am J Trop Med Hyg 67:349–354

    PubMed  Google Scholar 

  • Paddock CD, Sumner JW, Comer JA, Zaki SR, Goldsmith CS, Goddard J, McLellan SL, Tamminga CL, Ohl CA (2004) Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin Infect Dis 38:805–811

    PubMed  Google Scholar 

  • Paddock CD, Finley RW, Wright CS, Robinson HN, Schrodt BJ, Lane CC, Ekenna O, Blass MA, Tamminga CL, Ohl CA, McLellan SL, Goddard J, Holman RC, Openshaw JJ, Sumner JW, Zaki SR, Eremeeva ME (2008a) Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever. Clin Infect Dis 47:1188–1196

    PubMed  Google Scholar 

  • Paddock CD, Fernandez S, Echenique GA, Sumner JW, Reeves WK, Zaki SR, Remondegui CE (2008b) Rocky Mountain spotted fever in Argentina. Am J Trop Med Hyg 78:687–692

    PubMed  Google Scholar 

  • Pang H, Winkler HH (1994) Analysis of the peptidoglycan of Rickettsia prowazekii. J Bacteriol 176:923–926

    PubMed  CAS  Google Scholar 

  • Park H, Lee JH, Cossart P, Gouin E, Izard T (2011) The Rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J Biol Chem 286(40):35096–35103

    PubMed  CAS  Google Scholar 

  • Parker RR, Kohls GM, Cox GW, Davis GE (1939) Observations of an infectious agent from Amblyomma maculatum. Public Health Rep 54:1482–1484

    Google Scholar 

  • Parker RR, Cox HR (1940) Report of proceedings of the International Congress of Microbiology. International Congress of Microbiology

    Google Scholar 

  • Parola P, Paddock CD, Raoult D (2005) Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18:719–756

    PubMed  Google Scholar 

  • Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier PE, Sotto A, Labauge P, Raoult D (2008) Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis 2:e338

    PubMed  Google Scholar 

  • Peacock MG, Ormsbee RA, Johnson KM (1971) Rickettsioses of Central America. Am J Trop Med Hyg 20:941–949

    PubMed  CAS  Google Scholar 

  • Perkins HR, Allison AC (1963) Cell-wall constituents of rickettsiae and psittacosis-lymphogranuloma organisms. J Gen Microbiol 30:469–480

    PubMed  CAS  Google Scholar 

  • Philip CB (1943) Nomenclature of the pathogenic rickettsiae. Am J Hyg 37:301–309

    Google Scholar 

  • Philip RN, Casper EA, Burgdorfer W, Gerloff RK, Hughes LE, Bell EJ (1978) Serologic typing of rickettsiae of the spotted fever group by microimmunofluorescence. J Immunol 121:1961–1968

    PubMed  CAS  Google Scholar 

  • Plotz H (1914) The etiology of typhus fever (and of Brill's disease). Preliminary communication. JAMA LXII(20):1556

    Google Scholar 

  • Pober JS, Min W, Bradley JR (2009) Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol 4:71–95

    PubMed  CAS  Google Scholar 

  • Policastro PF, Munderloh UG, Fischer ER, Hackstadt T (1997) Rickettsia rickettsii growth and temperature-inducible protein expression in embryonic tick cell lines. J Med Microbiol 46:839–845

    PubMed  CAS  Google Scholar 

  • Pornwiroon W, Bourchookarn A, Paddock CD, Macaluso KR (2009) Proteomic analysis of Rickettsia parkeri strain portsmouth. Infect Immun 77:5262–5271

    PubMed  CAS  Google Scholar 

  • Qin A, Tucker AM, Hines A, Wood DO (2004) Transposon mutagenesis of the obligate intracellular pathogen Rickettsia prowazekii. Appl Environ Microbiol 70:2816–2822

    PubMed  CAS  Google Scholar 

  • Rachek LI, Tucker AM, Winkler HH, Wood DO (1998) Transformation of Rickettsia prowazekii to rifampin resistance. J Bacteriol 180:2118–2124

    PubMed  CAS  Google Scholar 

  • Rachek LI, Hines A, Tucker AM, Winkler HH, Wood DO (2000) Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J Bacteriol 182:3289–3291

    PubMed  CAS  Google Scholar 

  • Radulovic S, Troyer JM, Beier MS, Lau AO, Azad AF (1999) Identification and molecular analysis of the gene encoding Rickettsia typhi hemolysin. Infect Immun 67:6104–6108

    PubMed  CAS  Google Scholar 

  • Rahman MS, Ammerman NC, Sears KT, Ceraul SM, Azad AF (2010) Functional characterization of a phospholipase A(2) homolog from Rickettsia typhi. J Bacteriol 192:3294–3303

    PubMed  CAS  Google Scholar 

  • Ramm LE, Winkler HH (1973) Rickettsial hemolysis: adsorption of rickettsiae to erythrocytes. Infect Immun 7:93–99

    PubMed  CAS  Google Scholar 

  • Raoult D, Woodward T, Dumler JS (2004) The history of epidemic typhus. Infect Dis Clin North Am 18:127–140

    PubMed  Google Scholar 

  • Renesto P, Dehoux P, Gouin E, Touqui L, Cossart P, Raoult D (2003) Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. J Infect Dis 188:1276–1283

    PubMed  CAS  Google Scholar 

  • Ribeiro JM, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48:73–88

    PubMed  CAS  Google Scholar 

  • Ricketts HT (1906) The transmission of Rocky Mountain spotted fever by the bite of the wood-tick (Dermacentor occidentalis). JAMA 47:358

    Google Scholar 

  • Ricketts HT, Gomez L (1908) Studies on immunity in Rocky Mountain spotted fever. First communication. J Infect Dis 5:221–244

    Google Scholar 

  • Riley SP, Goh KC, Hermanas TM, Cardwell MM, Chan YG, Martinez JJ (2010) The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect Immun 78:1895–1904

    PubMed  CAS  Google Scholar 

  • Ripoll CM, Remondegui CE, Ordonez G, Arazamendi R, Fusaro H, Hyman MJ, Paddock CD, Zaki SR, Olson JG, Santos-Buch CA (1999) Evidence of rickettsial spotted fever and ehrlichial infections in a subtropical territory of Jujuy, Argentina. Am J Trop Med Hyg 61:350–354

    PubMed  CAS  Google Scholar 

  • Rizzo M, Mansueto P, Di Lorenzo G, Morselli S, Mansueto S, Rini GB (2004) Rickettsial disease: classical and modern aspects. New Microbiol 27:87–103

    PubMed  CAS  Google Scholar 

  • Rolain JM, Maurin M, Vestris G, Raoult D (1998) In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob Agents Chemother 42:1537–1541

    PubMed  CAS  Google Scholar 

  • Rovery C, Renesto P, Crapoulet N, Matsumoto K, Parola P, Ogata H, Raoult D (2005) Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation. Res Microbiol 156:211–218

    PubMed  CAS  Google Scholar 

  • Rydkina E, Silverman DJ, Sahni SK (2005) Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell Microbiol 7:1519–1530

    PubMed  CAS  Google Scholar 

  • Rydkina E, Sahni A, Baggs RB, Silverman DJ, Sahni SK (2006) Infection of human endothelial cells with spotted fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect Immun 74:5067–5074

    PubMed  CAS  Google Scholar 

  • Rydkina E, Turpin LC, Sahni SK (2008) Activation of p38 mitogen-activated protein kinase module facilitates in vitro host cell invasion by Rickettsia rickettsii. J Med Microbiol 57:1172–1175

    PubMed  Google Scholar 

  • Rydkina E, Turpin LC, Silverman DJ, Sahni SK (2009) Rickettsia rickettsii infection of human pulmonary microvascular endothelial cells: modulation of cyclooxygenase-2 expression. Clin Microbiol Infect 15(Suppl 2):300–302

    PubMed  CAS  Google Scholar 

  • Rydkina E, Turpin LC, Sahni SK (2010) Rickettsia rickettsii infection of human macrovascular and microvascular endothelial cells reveals activation of both common and cell type-specific host response mechanisms. Infect Immun 78:2599–2606

    PubMed  CAS  Google Scholar 

  • Sahni SK (2007) Endothelial cell infection and hemostasis. Thromb Res 119:531–549

    PubMed  CAS  Google Scholar 

  • Sahni SK, Van Antwerp DJ, Eremeeva ME, Silverman DJ, Marder VJ, Sporn LA (1998) Proteasome-independent activation of nuclear factor kappaB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii. Infect Immun 66:1827–1833

    PubMed  CAS  Google Scholar 

  • Sahni SK, Rydkina E, Joshi SG, Sporn LA, Silverman DJ (2003) Interactions of Rickettsia rickettsii with endothelial nuclear factor-kappaB in a “cell-free” system. Ann N Y Acad Sci 990:635–641

    PubMed  CAS  Google Scholar 

  • Sahni SK, Kiriakidi S, Colonne MP, Sahni A, Silverman DJ (2009) Selective activation of signal transducer and activator of transcription (STAT) proteins STAT1 and STAT3 in human endothelial cells infected with Rickettsia rickettsii. Clin Microbiol Infect 15(Suppl 2):303–304

    PubMed  CAS  Google Scholar 

  • Schaechter M, Bozeman FM, Smadel JE (1957) Study on the growth of Rickettsiae II. Morphologic observations of living Rickettsiae in tissue culture cells. Virology 3:160–172

    PubMed  CAS  Google Scholar 

  • Schmaier AH, Srikanth S, Elghetany MT, Normolle D, Gokhale S, Feng HM, Walker DH (2001) Hemostatic/fibrinolytic protein changes in C3H/HeN mice infected with Rickettsia conorii–a model for Rocky Mountain spotted fever. Thromb Haemost 86:871–879

    PubMed  CAS  Google Scholar 

  • Schramek S, Brezina R, Kazár J (1977) Some biological properties of an endotoxic lipopolysaccharide from the typhus group rickettsiae. Acta Virol 21:439–441

    PubMed  CAS  Google Scholar 

  • Serio AW, Jeng RL, Haglund CM, Reed SC, Welch MD (2010) Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 7:388–398

    PubMed  CAS  Google Scholar 

  • Shapiro MR, Fritz CL, Tait K, Paddock CD, Nicholson WL, Abramowicz KF, Karpathy SE, Dasch GA, Sumner JW, Adem PV, Scott JJ, Padgett KA, Zaki SR, Eremeeva ME (2010) Rickettsia 364D: a newly recognized cause of eschar-associated illness in California. Clin Infect Dis 50:541–548

    PubMed  CAS  Google Scholar 

  • Shaw EI, Marks GL, Winkler HH, Wood DO (1997) Transcriptional characterization of the Rickettsia prowazekii major macromolecular synthesis operon. J Bacteriol 179:6448–6452

    PubMed  CAS  Google Scholar 

  • Shirai A, Dietel JW, Osterman JV (1975) Indirect hemagglutination test for human antibody to typhus and spotted fever group rickettsiae. J Clin Microbiol 2:430–437

    PubMed  CAS  Google Scholar 

  • Sievers O (1945) The Weil-Felix reaction in typhus fever. Acta Pathol Microbiol Scand 22:238–247

    PubMed  CAS  Google Scholar 

  • Silverman DJ (1984) Rickettsia rickettsii-induced cellular injury of human vascular endothelium in vitro. Infect Immun 44:545–553

    PubMed  CAS  Google Scholar 

  • Silverman DJ, Santucci LA (1988) Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever. Infect Immun 56:3110–3115

    PubMed  CAS  Google Scholar 

  • Silverman DJ, Wisseman CL (1978) Comparative ultrastructural study on the cell envelopes of Rickettsia prowazekii, Rickettsia rickettsii, and Rickettsia tsutsugamushi. Infect Immun 21:1020–1023

    PubMed  CAS  Google Scholar 

  • Silverman DJ, Boese JL, Wisseman CL (1974) Ultrastructural studies of Rickettsia prowazeki from louse midgut cells to feces: search for “dormant” forms. Infect Immun 10:257–263

    PubMed  CAS  Google Scholar 

  • Silverman DJ, Wisseman CL, Waddell AD, Jones M (1978) External layers of Rickettsia prowazekii and Rickettsia rickettsii: occurrence of a slime layer. Infect Immun 22:233–246

    PubMed  CAS  Google Scholar 

  • Simser JA, Rahman MS, Dreher-Lesnick SM, Azad AF (2005) A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol Microbiol 58:71–79

    PubMed  CAS  Google Scholar 

  • Socolovschi C, Mediannikov O, Raoult D, Parola P (2009) The relationship between spotted fever group Rickettsiae and ixodid ticks. Vet Res 40:34

    PubMed  Google Scholar 

  • Sonenshine DE, Bozeman FM, Williams MS, Masiello SA, Chadwick DP, Stocks NI, Lauer DM, Elisberg BL (1978) Epizootiology of epidemic typhus (Rickettsia prowazekii) in flying squirrels. Am J Trop Med Hyg 27:339–349

    PubMed  CAS  Google Scholar 

  • Spencer RR, Parker RR (1923) Rocky Mountain spotted fever: infectivity of fasting and recently fed ticks. Public Health Rep 38:333–339

    Google Scholar 

  • Sporn LA, Marder VJ (1996) Interleukin-1 alpha production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation. Infect Immun 64:1609–1613

    PubMed  CAS  Google Scholar 

  • Sporn LA, Lawrence SO, Silverman DJ, Marder VJ (1993) E-selectin-dependent neutrophil adhesion to Rickettsia rickettsii-infected endothelial cells. Blood 81:2406–2412

    PubMed  CAS  Google Scholar 

  • Sporn LA, Sahni SK, Lerner NB, Marder VJ, Silverman DJ, Turpin LC, Schwab AL (1997) Rickettsia rickettsii infection of cultured human endothelial cells induces NF-kappaB activation. Infect Immun 65:2786–2791

    PubMed  CAS  Google Scholar 

  • Steen NA, Barker SC, Alewood PF (2006) Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47:1–20

    PubMed  CAS  Google Scholar 

  • Sumner JW, Sims KG, Jones DC, Anderson BE (1995) Protection of guinea-pigs from experimental Rocky Mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 13:29–35

    PubMed  CAS  Google Scholar 

  • Tamura A, Ohashi N, Urakami H, Miyamura S (1995) Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45:589–591

    PubMed  CAS  Google Scholar 

  • Teysseire N, Chiche-Portiche C, Raoult D (1992) Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res Microbiol 143:821–829

    PubMed  CAS  Google Scholar 

  • Thepparit C, Bourchookarn A, Petchampai N, Barker SA, Macaluso KR (2010) Interaction of Rickettsia felis with histone H2B facilitates the infection of a tick cell line. Microbiology 156:2855–2863

    PubMed  CAS  Google Scholar 

  • Traub R, Wisseman CL (1978) The ecology of murine typhus-a critical review. Trop Dis Bull 75:237–317

    PubMed  CAS  Google Scholar 

  • Tucker AM, Driskell LO, Pannell LK, Wood DO (2011) Differential proteomic analysis of Rickettsia prowazekii propagated in diverse host backgrounds. Appl Environ Microbiol 77:4712–4718

    PubMed  CAS  Google Scholar 

  • Turco J, Winkler HH (1994) Cytokine sensitivity and methylation of lysine in Rickettsia prowazekii EVir and interferon-resistant R. prowazekii strains. Infect Immun 62:3172–3177

    PubMed  CAS  Google Scholar 

  • Tyson KR, Elkins C, de Silva AM (2008) A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J Immunol 180:3964–3968

    PubMed  CAS  Google Scholar 

  • Uchiyama T, Kishi M, Ogawa M (2011) Restriction of the growth of a nonpathogenic spotted fever group rickettsia. FEMS Immunol Med Microbiol 64(1):42–47

    Google Scholar 

  • Valbuena G, Walker DH (2009) Infection of the endothelium by members of the order Rickettsiales. Thromb Haemost 102:1071–1079

    PubMed  CAS  Google Scholar 

  • Valbuena G, Bradford W, Walker DH (2003) Expression analysis of the T-cell-targeting chemokines CXCL9 and CXCL10 in mice and humans with endothelial infections caused by rickettsiae of the spotted fever group. Am J Pathol 163:1357–1369

    PubMed  CAS  Google Scholar 

  • Valbuena G, Jordan JM, Walker DH (2004) T cells mediate cross-protective immunity between spotted fever group rickettsiae and typhus group rickettsiae. J Infect Dis 190:1221–1227

    PubMed  Google Scholar 

  • Vellaiswamy M, Kowalczewska M, Merhej V, Nappez C, Vincentelli R, Renesto P, Raoult D (2011) Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb Pathog 50:233–242

    PubMed  CAS  Google Scholar 

  • Vishwanath S (1991) Antigenic relationships among the rickettsiae of the spotted fever and typhus groups. FEMS Microbiol Lett 65:341–344

    PubMed  CAS  Google Scholar 

  • Vitale G, Mansuelo S, Rolain JM, Raoult D (2006) Rickettsia massiliae human isolation. Emerg Infect Dis 12:174–175

    PubMed  Google Scholar 

  • Walker DH (2003) Principles of the malicious use of infectious agents to create terror: reasons for concern for organisms of the genus Rickettsia. Ann N Y Acad Sci 990:739–742

    PubMed  Google Scholar 

  • Walker DH, Cain BG (1980) The rickettsial plaque. Evidence for direct cytopathic effect of Rickettsia rickettsii. Lab Invest 43:388–396

    PubMed  CAS  Google Scholar 

  • Walker TS, Winkler HH (1978) Penetration of cultured mouse fibroblasts (L cells) by Rickettsia prowazeki. Infect Immun 22:200–208

    PubMed  CAS  Google Scholar 

  • Walker DH, Yu XJ (2005) Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci 1063:13–25

    PubMed  CAS  Google Scholar 

  • Walker DH, Firth WT, Ballard JG, Hegarty BC (1983) Role of phospholipase-associated penetration mechanism in cell injury by Rickettsia rickettsii. Infect Immun 40:840–842

    PubMed  CAS  Google Scholar 

  • Walker DH, Occhino C, Tringali GR, Di Rosa S, Mansueto S (1988) Pathogenesis of rickettsial eschars: the tache noire of boutonneuse fever. Hum Pathol 19:1449–1454

    PubMed  CAS  Google Scholar 

  • Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM (1997) Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest 76:129–138

    PubMed  CAS  Google Scholar 

  • Walker DH, Popov VL, Feng HM (2000) Establishment of a novel endothelial target mouse model of a typhus group rickettsiosis: evidence for critical roles for gamma interferon and CD8 T lymphocytes. Lab Invest 80:1361–1372

    PubMed  CAS  Google Scholar 

  • Walker DH, Olano JP, Feng HM (2001) Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. Infect Immun 69:1841–1846

    PubMed  CAS  Google Scholar 

  • Walker DH, Valbuena GA, Olano JP (2003) Pathogenic mechanisms of diseases caused by Rickettsia. Ann N Y Acad Sci 990:1–11

    PubMed  CAS  Google Scholar 

  • Weinberg EH, Stakebake JR, Gerone PJ (1969) Plaque assay for Rickettsia rickettsii. J Bacteriol 98:398–402

    PubMed  CAS  Google Scholar 

  • Weinert LA, Welch JJ, Jiggins FM (2009a) Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally. Proc Biol Sci 276:3619–3627

    PubMed  CAS  Google Scholar 

  • Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM (2009b) Evolution and diversity of Rickettsia bacteria. BMC Biol 7:6

    PubMed  Google Scholar 

  • Weiss E (1973) Growth and physiology of rickettsiae. Microbiol Mol Biol Rev 37:259

    CAS  Google Scholar 

  • Whitman TJ, Richards AL, Paddock CD, Tamminga CL, Sniezek PJ, Jiang J, Byers DK, Sanders JW (2007) Rickettsia parkeri infection after tick bite, Virginia. Emerg Infect Dis 13:334–336

    PubMed  Google Scholar 

  • Whitworth T, Popov VL, Yu XJ, Walker DH, Bouyer DH (2005) Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect Immun 73:6668–6673

    PubMed  CAS  Google Scholar 

  • Wike DA, Burgdorfer W (1972) Plaque formation in tissue cultures by Rickettsia rickettsii isolated directly from whole blood and tick hemolymph. Infect Immun 6:736–738

    PubMed  CAS  Google Scholar 

  • Wike DA, Tallent G, Peacock MG, Ormsbee RA (1972) Studies of the rickettsial plaque assay technique. Infect Immun 5:715–722

    PubMed  CAS  Google Scholar 

  • Wikel SK (1999) Tick modulation of host immunity: an important factor in pathogen transmission. Int J Parasitol 29:851–859

    PubMed  CAS  Google Scholar 

  • Wilson WJ (1922) The serological test in typhus: a stable and sensitive “diagnosticum”. Lancet 199:222–223

    Google Scholar 

  • Winkler HH (1976) Rickettsial permeability. An ADP-ATP transport system. J Biol Chem 251:389–396

    PubMed  CAS  Google Scholar 

  • Wisseman CL, Edlinger EA, Waddell AD, Jones MR (1976a) Infection cycle of Rickettsia rickettsii in chicken embryo and L-929 cells in culture. Infect Immun 14:1052–1064

    PubMed  Google Scholar 

  • Wisseman CL, Waddell AD, Silverman DJ (1976b) In vitro studies on Rickettsia-host cell interactions: lag phase in intracellular growth cycle as a function of stage of growth of infecting Rickettsia prowazeki, with preliminary observations on inhibition of rickettsial uptake by host cell fragments. Infect Immun 13:1749–1760

    PubMed  Google Scholar 

  • Wolbach SB (1916a) The etiology of Rocky Mountain spotted fever (A preliminary report). J Med Res 34(1):121–126

    PubMed  CAS  Google Scholar 

  • Wolbach SB (1916b) The etiology of Rocky Mountain spotted fever. Occurrence of the parasite in the tick. J Med Res 35(1):147–150

    PubMed  CAS  Google Scholar 

  • Wolbach SB (1917) The etiology and pathology of Rocky Mountain spotted fever. Third preliminary report. J Med Res 37(3):499–508

    Google Scholar 

  • Wolbach SB (1919) Studies on Rocky Mountain spotted fever. J Med Res XLI:3–70

    Google Scholar 

  • Wood WH, Wisseman CL (1967) The cell wall of Rickettsia mooseri. I. Morphology and chemical composition. J Bacteriol 93:1113–1118

    PubMed  CAS  Google Scholar 

  • Woodard A, Wood DO, Jeyaseelan S (2011) Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii. PLoS One 6:545–547

    Google Scholar 

  • Woods ME, Olano JP (2008) Host defenses to Rickettsia rickettsii infection contribute to increased microvascular permeability in human cerebral endothelial cells. J Clin Immunol 28:174–185

    PubMed  Google Scholar 

  • Woods ME, Wen G, Olano JP (2005) Nitric oxide as a mediator of increased microvascular permeability during acute rickettsioses. Ann N Y Acad Sci 1063:239–245

    PubMed  CAS  Google Scholar 

  • Woodward TE (1986) Rickettsial vaccines with emphasis on epidemic typhus. Initial report of an old vaccine trial. S Afr Med J (Suppl):73–76

    Google Scholar 

  • Zahorchak RJ, Winkler HH (1983) Transmembrane electrical potential in Rickettsia prowazekii and its relationship to lysine transport. J Bacteriol 153:665–671

    PubMed  CAS  Google Scholar 

  • Zavala-Castro JE, Dzul-Rosado KR, León JJ, Walker DH, Zavala-Velázquez JE (2008) An increase in human cases of spotted fever rickettsiosis in Yucatan, Mexico, involving children. Am J Trop Med Hyg 79:907–910

    PubMed  Google Scholar 

  • Zavala-Velazquez JE, Yu XJ, Walker DH (1996) Unrecognized spotted fever group rickettsiosis masquerading as dengue fever in Mexico. Am J Trop Med Hyg 55:157–159

    PubMed  CAS  Google Scholar 

  • Zavala-Velazquez JE, Ruiz-Sosa J, Vado-Solis I, Billings AN, Walker DH (1999) Serologic study of the prevalence of rickettsiosis in Yucatán: evidence for a prevalent spotted fever group rickettsiosis. Am J Trop Med Hyg 61:405–408

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Hao JF, Walker DH, Yu XJ (2006) A mutation inactivating the methyltransferase gene in avirulent Madrid E strain of Rickettsia prowazekii reverted to wild type in the virulent revertant strain Evir. Vaccine 24:2317–2323

    PubMed  CAS  Google Scholar 

  • Zinsser H (1937) The rickettsial diseases: variety, epidemiology and geographical distribution. Am J Hyg 25:430–463

    Google Scholar 

  • Zinsser H (2007) Rats, lice and history. Transaction Publishers, New Brunswick, NJ

    Google Scholar 

  • Zinsser H, Castaneda MR (1933) On the isolation from a case of Brill’s disease of a typhus strain resembling the European type. N Engl J Med 209:815–819

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Valbuena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Valbuena, G. (2013). Rickettsiia Diseases. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_107

Download citation

Publish with us

Policies and ethics