Skip to main content

Bacterial Stress Response

  • Reference work entry
The Prokaryotes

Abstract

Bacteria respond to stress by regulatory networks which modulate gene expression. These response mechanisms are essential for coping with the stress and for adapting to the new conditions. The regulation of the stress response involves several molecular pathways which control transcription, translation, and stability of transcripts and of proteins. These molecular responses are the topic of this chapter, which focuses on adaptation to upshift in temperature (heat-shock response) and to starvation-stationary conditions (general stress response).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar S, Price CW (1996) Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor sigma B. Gene 177:123–128

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Gaidenko TA, Kang CM, O’Reilly M, Devine KM, Price CW (2001) New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol 183:1329–1338

    Article  CAS  PubMed  Google Scholar 

  • Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  CAS  PubMed  Google Scholar 

  • Allen SP, Polazzi JO, Gierse JK, Easton AM (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 174:6938–6947

    CAS  PubMed  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  CAS  PubMed  Google Scholar 

  • Antelmann H, Bernhardt J, Schmid R, Hecker M (1995) A gene at 333 degrees on the Bacillus subtilis chromosome encodes the newly identified sigma B-dependent general stress protein GspA. J Bacteriol 177:3540–3545

    CAS  PubMed  Google Scholar 

  • Antelmann H, Bernhardt J, Schmid R, Mach H, Volker U, Hecker M (1997a) First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:1451–1463

    Article  CAS  PubMed  Google Scholar 

  • Antelmann H, Engelmann S, Schmid R, Sorokin A, Lapidus A, Hecker M (1997b) Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol 179:7251–7256

    CAS  PubMed  Google Scholar 

  • Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839

    Article  CAS  PubMed  Google Scholar 

  • Baird PN, Hall LM, Coates AR (1989) Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis. J Gen Microbiol 135(Pt 4):931–939

    CAS  PubMed  Google Scholar 

  • Bardwell JC, Craig EA (1984) Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 81:848–852

    Article  CAS  PubMed  Google Scholar 

  • Bardwell JC, Craig EA (1987) Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci USA 84:5177–5181

    Article  CAS  PubMed  Google Scholar 

  • Bardwell JC, Tilly K, Craig E, King J, Zylicz M, Georgopoulos C (1986) The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein. J Biol Chem 261:1782–1785

    CAS  PubMed  Google Scholar 

  • Basineni SR, Madhugiri R, Kolmsee T, Hengge R, Klug G (2009) The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target rpoS in E. coli is growth phase dependent. RNA Biol 6:584–594

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt J, Volker U, Volker A, Antelmann H, Schmid R, Mach H, Hecker M (1997) Specific and general stress proteins in Bacillus subtilis–a two-dimensional protein electrophoresis study. Microbiology 143:999–1017

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt J, Buttner K, Scharf C, Hecker M (1999) Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis. Electrophoresis 20:2225–2240

    Article  CAS  PubMed  Google Scholar 

  • Biran D, Brot N, Weissbach H, Ron EZ (1995) Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J Bacteriol 177:1374–1379

    CAS  PubMed  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  • Bouche S, Klauck E, Fischer D, Lucassen M, Jung K, Hengge-Aronis R (1998) Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol Microbiol 27:787–795

    Article  CAS  PubMed  Google Scholar 

  • Bucca G, Ferina G, Puglia AM, Smith CP (1995) The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17:663–674

    Article  CAS  PubMed  Google Scholar 

  • Bucca G, Hindle Z, Smith CP (1997) Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol 179:5999–6004

    CAS  PubMed  Google Scholar 

  • Bucca G, Brassington AM, Schonfeld HJ, Smith CP (2000) The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger. Mol Microbiol 38:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349–360

    Article  CAS  PubMed  Google Scholar 

  • Burgess RR, Anthony L (2001) How sigma docks to RNA polymerase and what sigma does. Curr Opin Microbiol 4:126–131

    Article  CAS  PubMed  Google Scholar 

  • Burgess RR, Travers AA, Dunn JJ, Bautz EK (1969) Factor stimulating transcription by RNA polymerase. Nature 221:43–46

    Article  CAS  PubMed  Google Scholar 

  • Burton Z, Burgess RR, Lin J, Moore D, Holder S, Gross CA (1981) The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E coli K12. Nucleic Acids Res 9:2889–2903

    Article  CAS  PubMed  Google Scholar 

  • Buttner K, Bernhardt J, Scharf C, Schmid R, Mader U, Eymann C, Antelmann H, Volker A, Volker U, Hecker M (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22:2908–2935

    Article  CAS  PubMed  Google Scholar 

  • Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G (2000a) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23S ribosomal RNA methyltransferase. J Biol Chem 275:16414–16419

    Article  CAS  PubMed  Google Scholar 

  • Caldas T, Binet E, Bouloc P, Richarme G (2000b) Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Biochem Biophys Res Commun 271:714–718

    Article  CAS  PubMed  Google Scholar 

  • Caron MP, Lafontaine DA, Masse E (2010) Small RNA-mediated regulation at the level of transcript stability. RNA Biol 7:140–144

    Article  CAS  PubMed  Google Scholar 

  • Chuang SE, Blattner FR (1993) Characterization of twenty-six new heat shock genes of Escherichia coli. J Bacteriol 175:5242–5252

    CAS  PubMed  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18:239–280

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140

    Article  CAS  PubMed  Google Scholar 

  • Dartigalongue C, Raina S (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 17:3968–3980

    Article  CAS  PubMed  Google Scholar 

  • De Las Penas A, Connolly L, Gross CA (1997) SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179:6862–6864

    PubMed  Google Scholar 

  • Derre I, Rapoport G, Devine K, Rose M, Msadek T (1999a) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32:581–593

    Article  CAS  PubMed  Google Scholar 

  • Derre I, Rapoport G, Msadek T (1999b) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31:117–131

    Article  CAS  PubMed  Google Scholar 

  • Deuerling E, Mogk A, Richter C, Purucker M, Schumann W (1997) The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol Microbiol 23:921–933

    Article  CAS  PubMed  Google Scholar 

  • Emetz D, Klug G (1998) Cloning and characterization of the rpoH gene of Rhodobacter capsulatus. Mol Gen Genet 260:212–217

    Article  CAS  PubMed  Google Scholar 

  • Engelmann S, Lindner C, Hecker M (1995) Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J Bacteriol 177:5598–5605

    CAS  PubMed  Google Scholar 

  • Erickson JW, Gross CA (1989) Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3:1462–1471

    Article  CAS  PubMed  Google Scholar 

  • Erickson JW, Vaughn V, Walter WA, Neidhardt FC, Gross CA (1987) Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev 1:419–432

    Article  CAS  PubMed  Google Scholar 

  • Eymann C, Hecker M (2001) Induction of sigma(B)-dependent general stress genes by amino acid starvation in a spo0H mutant of Bacillus subtilis. FEMS Microbiol Lett 199:221–227

    CAS  PubMed  Google Scholar 

  • Frohlich KS, Vogel J (2009) Activation of gene expression by small RNA. Curr Opin Microbiol 12:674–682

    Article  PubMed  CAS  Google Scholar 

  • Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69:833–842

    Article  CAS  PubMed  Google Scholar 

  • Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld HJ, Schirra C, Bujard H, Bukau B (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J 15:607–617

    CAS  PubMed  Google Scholar 

  • Gayda RC, Stephens PE, Hewick R, Schoemaker JM, Dreyer WJ, Markovitz A (1985) Regulatory region of the heat shock-inducible capR (lon) gene: DNA and protein sequences. J Bacteriol 162:271–275

    CAS  PubMed  Google Scholar 

  • Gerth U, Kruger E, Derre I, Msadek T, Hecker M (1998) Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28:787–802

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (1972) Degradation of abnormal proteins in Escherichia coli (protein breakdown- protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci USA 69:422–426

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S (1989) Genetics of proteolysis in Escherichia coli. Annu Rev Genet 23:163–198

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Clark WP, de Crecy-Lagard V, Maurizi MR (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem 268:22618–22626

    CAS  PubMed  Google Scholar 

  • Gottesman S, McCullen CA, Guillier M, Vanderpool CK, Majdalani N, Benhammou J, Thompson KM, FitzGerald PC, Sowa NA, FitzGerald DJ (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71:1–11

    Article  CAS  PubMed  Google Scholar 

  • Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gur E, Biran D, Ron EZ (2011) Regulated proteolysis in gram-negative bacteria–how and when? Nat Rev Microbiol 9:839–848

    Article  CAS  PubMed  Google Scholar 

  • Hatfield GW, Hung SP, Baldi P (2003) Differential analysis of DNA microarray gene expression data. Mol Microbiol 47:871–877

    Article  CAS  PubMed  Google Scholar 

  • Hecker M, Volker U (1990) General stress proteins in Bacillus subtilis. FEMS Microbiol Ecol 74:197–214

    Article  CAS  Google Scholar 

  • Hecker M, Volker U (1998) Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol 29:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD (1999) Anti-sigma factors. Curr Opin Microbiol 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872

    Article  CAS  PubMed  Google Scholar 

  • Hengge R (2009) Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res Microbiol 160:667–676

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis R (2000) The general stress response in Escherichia coli. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 161–178

    Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395, table of contents

    Article  CAS  PubMed  Google Scholar 

  • Henkin TM (2009) RNA-dependent RNA switches in bacteria. Methods Mol Biol 540:207–214

    Article  CAS  PubMed  Google Scholar 

  • Herman C, Lecat S, D’Ari R, Bouloc P (1995a) Regulation of the heat-shock response depends on divalent metal ions in an hflB mutant of Escherichia coli. Mol Microbiol 18:247–255

    Article  CAS  PubMed  Google Scholar 

  • Herman C, Thevenet D, D’Ari R, Bouloc P (1995b) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci USA 92:3516–3520

    Article  CAS  PubMed  Google Scholar 

  • Huang LH, Tseng YH, Yang MT (1998) Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor. Biochem Biophys Res Commun 244:854–860

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286

    Article  CAS  PubMed  Google Scholar 

  • Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M (1999) The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67:1560–1568

    CAS  PubMed  Google Scholar 

  • Inbar O, Ron EZ (1993) Induction of cadmium tolerance in Escherichia coli K-12. FEMS Lett 113:197–200

    Article  CAS  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518

    Article  CAS  PubMed  Google Scholar 

  • Jenal U, Hengge-Aronis R (2003) Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6:163–172

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic G, Weiner L, Model P (1996) Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 178:1936–1945

    CAS  PubMed  Google Scholar 

  • Kaan T, Jurgen B, Schweder T (1999) Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genet 262:351–354

    Article  CAS  PubMed  Google Scholar 

  • Kallipolitis BH, Valentin-Hansen P (1998) Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Mol Microbiol 29:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, Busconi L, Sherman M, Goldberg AL (1994) Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J Biol Chem 269:23575–23582

    CAS  PubMed  Google Scholar 

  • Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179:7219–7225

    CAS  PubMed  Google Scholar 

  • Kanemori M, Yanagi H, Yura T (1999) The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J Bacteriol 181:3674–3680

    CAS  PubMed  Google Scholar 

  • Karls RK, Brooks J, Rossmeissl P, Luedke J, Donohue TJ (1998) Metabolic roles of a Rhodobacter sphaeroides member of the sigma32 family. J Bacteriol 180:10–19

    CAS  PubMed  Google Scholar 

  • Kitagawa M, Wada C, Yoshioka S, Yura T (1991) Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J Bacteriol 173:4247–4253

    CAS  PubMed  Google Scholar 

  • Klauck E, Typas A, Hengge R (2007) The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 90:103–127

    CAS  PubMed  Google Scholar 

  • Klinkert B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66:2661–2676

    Article  CAS  PubMed  Google Scholar 

  • Korber P, Zander T, Herschlag D, Bardwell JC (1999) A new heat shock protein that binds nucleic acids. J Biol Chem 274:249–256

    Article  CAS  PubMed  Google Scholar 

  • Korber P, Stahl JM, Nierhaus KH, Bardwell JC (2000) Hsp15: a ribosome-associated heat shock protein. EMBO J 19:741–748

    Article  CAS  PubMed  Google Scholar 

  • Kornitzer D, Teff D, Altuvia S, Oppenheim AB (1991) Isolation, characterization, and sequence of an Escherichia coli heat shock gene, htpX. J Bacteriol 173:2944–2953

    CAS  PubMed  Google Scholar 

  • Kruger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180:6681–6688

    CAS  PubMed  Google Scholar 

  • Kruger E, Volker U, Hecker M (1994) Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J Bacteriol 176:3360–3367

    CAS  PubMed  Google Scholar 

  • Kruger E, Msadek T, Hecker M (1996) Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 20:713–723

    Article  CAS  PubMed  Google Scholar 

  • Landick R, Vaughn V, Lau ET, VanBogelen RA, Erickson JW, Neidhardt FC (1984) Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor. Cell 38:175–182

    Article  CAS  PubMed  Google Scholar 

  • Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59

    Article  CAS  PubMed  Google Scholar 

  • Liberek K, Georgopoulos C (1993) Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc Natl Acad Sci USA 90:11019–11023

    Article  CAS  PubMed  Google Scholar 

  • Liberek K, Galitski TP, Zylicz M, Georgopoulos C (1992) The Dnak chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc Natl Acad Sci USA 89:3516–3520

    Article  CAS  PubMed  Google Scholar 

  • Lipinska B, Sharma S, Georgopoulos C (1988) Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067

    Article  CAS  PubMed  Google Scholar 

  • Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV (2006) The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J 25:196–210

    Article  CAS  PubMed  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    CAS  PubMed  Google Scholar 

  • Maul B, Volker U, Riethdorf S, Engelmann S, Hecker M (1995) Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 248:114–120

    Article  CAS  PubMed  Google Scholar 

  • Maurizi MR (1992) Proteases and protein degradation in Escherichia coli. Experientia 48:178–201

    Article  CAS  PubMed  Google Scholar 

  • Maurizi MR, Clark WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S (1990a) Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265:12536–12545

    CAS  PubMed  Google Scholar 

  • Maurizi MR, Clark WP, Kim SH, Gottesman S (1990b) Clp P represents a unique family of serine proteases. J Biol Chem 265:12546–12552

    CAS  PubMed  Google Scholar 

  • Michaud S, Marin R, Tanguay RM (1997) Regulation of heat shock gene induction and expression during Drosophila development. Cell Mol Life Sci 53:104–113

    Article  CAS  PubMed  Google Scholar 

  • Missiakas D, Georgopoulos C, Raina S (1993) The Escherichia coli heat shock gene htpY: mutational analysis, cloning, sequencing, and transcriptional regulation. J Bacteriol 175:2613–2624

    CAS  PubMed  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Kanemori M, Yanagi H, Yura T (1999a) Heat-induced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181:401–410

    CAS  PubMed  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999b) Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    Article  CAS  PubMed  Google Scholar 

  • Morita MT, Kanemori M, Yanagi H, Yura T (2000) Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli. Proc Natl Acad Sci USA 97:5860–5865

    Article  CAS  PubMed  Google Scholar 

  • Msadek T, Kunst F, Rapoport G (1994) MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc Natl Acad Sci USA 91:5788–5792

    Article  CAS  PubMed  Google Scholar 

  • Mueller JP, Bukusoglu G, Sonenshein AL (1992) Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J Bacteriol 174:4361–4373

    CAS  PubMed  Google Scholar 

  • Mujacic M, Bader MW, Baneyx F (2004) Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Mol Microbiol 51:849–859

    Article  CAS  PubMed  Google Scholar 

  • Munchbach M, Dainese P, Staudenmann W, Narberhaus F, James P (1999a) Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. Eur J Biochem 264:39–48

    Article  CAS  PubMed  Google Scholar 

  • Munchbach M, Nocker A, Narberhaus F (1999b) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90

    CAS  PubMed  Google Scholar 

  • Nagai H, Yano R, Erickson JW, Yura T (1990) Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter. J Bacteriol 172:2710–2715

    CAS  PubMed  Google Scholar 

  • Nagai H, Yuzawa H, Yura T (1991a) Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci USA 88:10515–10519

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Yuzawa H, Yura T (1991b) Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translation control of sigma 32 synthesis. Biochimie 73:1473–1479

    Article  CAS  PubMed  Google Scholar 

  • Nair S, Derre I, Msadek T, Gaillot O, Berche P (2000) CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 35:800–811

    Article  CAS  PubMed  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1995) Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23:4383–4390

    CAS  PubMed  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1998) Regulatory conservation and divergence of sigma32 homologs from gram- negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. J Bacteriol 180:2402–2408

    CAS  PubMed  Google Scholar 

  • Nakahigashi K, Ron EZ, Yanagi H, Yura T (1999) Differential and independent roles of a sigma(32) homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 181:7509–7515

    CAS  PubMed  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (2001) DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 183:5302–5310

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F, Krummenacher P, Fischer HM, Hennecke H (1997) Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum. Mol Microbiol 24:93–104

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F, Kaser R, Nocker A, Hennecke H (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F, Obrist M, Fuehrer F, Langklotz S (2009) Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 160(9):652–659

    Article  CAS  PubMed  Google Scholar 

  • Neidhardt FC, Phillips TA, VanBogelen RA, Smith MW, Georgalis Y, Subramanian AR (1981) Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J Bacteriol 145:513–520

    CAS  PubMed  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001a) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807

    Article  CAS  PubMed  Google Scholar 

  • Nocker A, Krstulovic NP, Perret X, Narberhaus F (2001b) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176:44–51

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Papenfort K, Said N, Welsink T, Lucchini S, Hinton JC, Vogel J (2009) Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol Microbiol 74:139–158

    Article  CAS  PubMed  Google Scholar 

  • Peake P, Winter N, Britton W (1998) Phosphorylation of Mycobacterium leprae heat-shock 70 protein at threonine 175 alters its substrate binding characteristics. Biochim Biophys Acta 1387:387–394

    Article  CAS  PubMed  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631

    Article  CAS  PubMed  Google Scholar 

  • Podkaminski D, Vogel J (2010) Small RNAs promote mRNA stability to activate the synthesis of virulence factors. Mol Microbiol 78:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Pruteanu M, Hengge-Aronis R (2002) The cellular level of the recognition factor RssB is rate-limiting for sigmaS proteolysis: implications for RssB regulation and signal transduction in sigmaS turnover in Escherichia coli. Mol Microbiol 45:1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Raina S, Georgopoulos C (1990) A new Escherichia coli heat shock gene, htrC, whose product is essential for viability only at high temperatures. J Bacteriol 172:3417–3426

    CAS  PubMed  Google Scholar 

  • Raina S, Georgopoulos C (1991) The htrM gene, whose product is essential for Escherichia coli viability only at elevated temperatures, is identical to the rfaD gene. Nucleic Acids Res 19:3811–3819

    Article  CAS  PubMed  Google Scholar 

  • Raina S, Missiakas D, Georgopoulos C (1995) The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 14:1043–1055

    CAS  PubMed  Google Scholar 

  • Rasouly A, Shenhar Y, Ron EZ (2007) Thermoregulation of Escherichia coli hchA transcript stability. J Bacteriol 189:5779–5781

    Article  CAS  PubMed  Google Scholar 

  • Rene O, Alix JH (2011) Late steps of ribosome assembly in E. coli are sensitive to a severe heat stress but are assisted by the HSP70 chaperone machine. Nucleic Acids Res 39:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27:3821–3835

    Article  CAS  PubMed  Google Scholar 

  • Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L (1996) Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 178:1829–1841

    CAS  PubMed  Google Scholar 

  • Ron EZ, Segal G, Robinson M, Graur D (1999) Control elements in the regulation of bacterial heat shock response. In: Rosenberg E (ed) Microbial ecology and infectious disease. ASM Press, Washington, DC

    Google Scholar 

  • Rose JK, Rankin CH (2001) Analyses of habituation in Caenorhabditis elegans. Learn Mem 8:63–69

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Ron EZ (2002) Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 21:244–265

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Buttner K, Schmid R, Hecker M, Ron EZ (2001) Stress-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 35:277–285

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Buttner K, Becher D, Nakahigashi K, Yura T, Hecker M, Ron EZ (2002) Heat shock proteome of Agrobacterium tumefaciens: evidence for new control systems. J Bacteriol 184:1772–1778

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004) Highly phosphorylated bacterial proteins. Proteomics 4:3068–3077

    Article  CAS  PubMed  Google Scholar 

  • Sahu GK, Chowdhury R, Das J (1997) The rpoH gene encoding sigma 32 homolog of Vibrio cholerae. Gene 189:203–207

    Article  CAS  PubMed  Google Scholar 

  • Sastry MS, Korotkov K, Brodsky Y, Baneyx F (2002) Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J Biol Chem 277:46026–46034

    Article  CAS  PubMed  Google Scholar 

  • Scharf C, Riethdorf S, Ernst H, Engelmann S, Volker U, Hecker M (1998) Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J Bacteriol 180:1869–1877

    CAS  PubMed  Google Scholar 

  • Schmidt R, Bukau B, Mogk A (2009) Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 160:629–636

    Article  CAS  PubMed  Google Scholar 

  • Schulz A, Tzschaschel B, Schumann W (1995) Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol Microbiol 15:421–429

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Hawkins AC, Harwood CS, Greenberg EP (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985

    Article  CAS  PubMed  Google Scholar 

  • Segal G, Ron EZ (1993) Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin-loop structure. J Bacteriol 175:3083–3088

    CAS  PubMed  Google Scholar 

  • Segal G, Ron EZ (1995a) The dnaKJ operon of Agrobacterium tumefaciens: transcriptional analysis and evidence for a new heat shock promoter. J Bacteriol 177:5952–5958

    CAS  PubMed  Google Scholar 

  • Segal G, Ron EZ (1995b) The groESL operon of Agrobacterium tumefaciens: evidence for heat shock-dependent mRNA cleavage. J Bacteriol 177:750–757

    CAS  PubMed  Google Scholar 

  • Segal G, Ron EZ (1996a) Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat. J Bacteriol 178:3634–3640

    CAS  PubMed  Google Scholar 

  • Segal R, Ron EZ (1996b) Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett 138:1–10

    Article  CAS  PubMed  Google Scholar 

  • Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann N Y Acad Sci 851:147–151

    Article  CAS  PubMed  Google Scholar 

  • Servant P, Mazodier P (1996) Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation. J Bacteriol 178:7031–7036

    CAS  PubMed  Google Scholar 

  • Servant P, Rapoport G, Mazodier P (1999) RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology 145:2385–2391

    CAS  PubMed  Google Scholar 

  • Severinov K (2000) RNA polymerase structure-function: insights into points of transcriptional regulation. Curr Opin Microbiol 3:118–125

    Article  CAS  PubMed  Google Scholar 

  • Shenhar Y, Rasouly A, Biran D, Ron EZ (2009) Adaptation of Escherichia coli to elevated temperatures involves a change in stability of heat shock gene transcripts. Environ Microbiol 11:2989–2997

    Article  CAS  PubMed  Google Scholar 

  • Sherman M, Goldberg AL (1992) Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J 11:71–77

    CAS  PubMed  Google Scholar 

  • Sherman MY, Goldberg AL (1996) Involvement of molecular chaperones in intracellular protein breakdown. EXS 77:57–78

    CAS  PubMed  Google Scholar 

  • Singh SS, Typas A, Hengge R, Grainger DC (2011) Escherichia coli sigma senses sequence and conformation of the promoter spacer region. Nucleic Acids Res 39:5109–5118

    Article  CAS  PubMed  Google Scholar 

  • Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator. Hfq PLoS Genet 4:e1000163

    Article  CAS  Google Scholar 

  • Sparrer H, Rutkat K, Buchner J (1997) Catalysis of protein folding by symmetric chaperone complexes. Proc Natl Acad Sci USA 94:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nature Rev Immunol 2:185–194

    Article  CAS  Google Scholar 

  • Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  CAS  PubMed  Google Scholar 

  • Strauch KL, Johnson K, Beckwith J (1989) Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696

    CAS  PubMed  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329:348–351

    Article  CAS  PubMed  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1989) The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev 3:2003–2010

    Article  CAS  PubMed  Google Scholar 

  • Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4:2202–2209

    Article  CAS  PubMed  Google Scholar 

  • Studemann A, Noirclerc-Savoye M, Klauck E, Becker G, Schneider D, Hengge R (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 22:4111–4120

    Article  PubMed  Google Scholar 

  • Taura T, Kusukawa N, Yura T, Ito K (1989) Transient shut off of Escherichia coli heat shock protein synthesis upon temperature shift down. Biochem Biophys Res Commun 163:438–443

    Article  CAS  PubMed  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat shock response of Escherichia coli. Cell 34:641–646

    Article  CAS  PubMed  Google Scholar 

  • Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor sigma. J Bacteriol 171:1585–1589

    CAS  PubMed  Google Scholar 

  • Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman AJ, Oppenheim AB, Yura T, Yamanaka K, Niki H et al (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J 14:2551–2560

    CAS  PubMed  Google Scholar 

  • Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413

    Article  CAS  PubMed  Google Scholar 

  • Typas A, Barembruch C, Possling A, Hengge R (2007a) Stationary phase reorganisation of the Escherichia coli transcription machinery by Crl protein, a fine-tuner of sigmaS activity and levels. EMBO J 26:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Typas A, Becker G, Hengge R (2007b) The molecular basis of selective promoter activation by the sigmaS subunit of RNA polymerase. Mol Microbiol 63:1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Typas A, Stella S, Johnson RC, Hengge R (2007c) The −35 sequence location and the Fis-sigma factor interface determine sigmas selectivity of the proP (P2) promoter in Escherichia coli. Mol Microbiol 63:780–796

    CAS  PubMed  Google Scholar 

  • Ueki T, Inouye S (2002) Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J Biol Chem 277:6170–6177

    Article  CAS  PubMed  Google Scholar 

  • Val DL, Cronan JE Jr (1998) In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol 180:2644–2651

    CAS  PubMed  Google Scholar 

  • van Asseldonk M, Simons A, Visser H, de Vos WM, Simons G (1993) Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol 175:1637–1644

    PubMed  Google Scholar 

  • Van Bogelen RA, Kelley PM, Neidhardt FC (1987) Differential induction of heat shock, SOS and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169:26–32

    Google Scholar 

  • Varon D, Boylan SA, Okamoto K, Price CW (1993) Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. J Bacteriol 175:3964–3971

    CAS  PubMed  Google Scholar 

  • Varon D, Brody MS, Price CW (1996) Bacillus subtilis operon under the dual control of the general stress transcription factor sigma B and the sporulation transcription factor sigma H. Mol Microbiol 20:339–350

    Article  CAS  PubMed  Google Scholar 

  • Vicente M, Chater KF, De Lorenzo V (1999) Bacterial transcription factors involved in global regulation. Mol Microbiol 33:8–17

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Huttenhofer A, Wagner EG (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 31:6435–6443

    Article  CAS  PubMed  Google Scholar 

  • Volker U, Engelmann S, Maul B, Riethdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140(Pt 4):741–752

    Article  PubMed  Google Scholar 

  • von Blohn C, Kempf B, Kappes RM, Bremer E (1997) Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25:175–187

    Article  Google Scholar 

  • Waldminghaus T, Gaubig LC, Klinkert B, Narberhaus F (2009) The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements. RNA Biol 6:455–463

    Article  CAS  PubMed  Google Scholar 

  • Wang QP, Kaguni JM (1989) dnaA protein regulates transcriptions of the rpoH gene of Escherichia coli. J Biol Chem 264:7338–7344

    CAS  PubMed  Google Scholar 

  • Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651

    Article  CAS  PubMed  Google Scholar 

  • Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Georgopoulos C, Zylicz M (1995) The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J 14:1867–1877

    CAS  PubMed  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  CAS  PubMed  Google Scholar 

  • Widerak M, Kern R, Malki A, Richarme G (2005) U2552 methylation at the ribosomal A-site is a negative modulator of translational accuracy. Gene 347:109–114

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Kang CM, Brody MS, Price CW (1996) Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 10:2265–2275

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Schurr MJ, Deretic V (1995) Functional equivalence of Escherichia coli sigma E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J Bacteriol 177:3259–3268

    CAS  PubMed  Google Scholar 

  • Yuan G, Wong SL (1995a) Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 177:6462–6468

    CAS  PubMed  Google Scholar 

  • Yuan G, Wong SL (1995b) Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177:5427–5433

    CAS  PubMed  Google Scholar 

  • Yuzawa H, Nagai H, Mori H, Yura T (1993) Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res 21:5449–5455

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Scott JM, Haldenwang WG (2001) Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor sigma(B). J Bacteriol 183:2316–2321

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124

    Article  CAS  PubMed  Google Scholar 

  • Zhou YN, Kusukawa N, Erickson JW, Gross CA, Yura T (1988) Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J Bacteriol 170:3640–3649

    CAS  PubMed  Google Scholar 

  • Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 15:627–637

    Article  CAS  PubMed  Google Scholar 

  • Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliora Z. Ron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ron, E.Z. (2013). Bacterial Stress Response. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_79

Download citation

Publish with us

Policies and ethics